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a b s t r a c t 

It is an explicit mode to use the clicking points by the mouse in the interactive image segmentation, 

while an implicit interaction mode is to use the fixation points from the eye-tracking device. Both modes 

can provide a series of points. Inspired by the similarity between these two interaction modes, we pro- 

pose a novel human visual system (HVS) based neural network for transferring the constrained fixation 

point based segmentation to the clicking point based interactive segmentation. Briefly speaking, the se- 

quence of information transmission and processing in our model is RGB image, VGG-16 backbone, LGN- 

like module (LGNL) and ConvLSTM block, which correspond to the pathway of stimulus transmission and 

processing, i.e. stimulus, retina, lateral geniculate nucleus (LGN) and visual cortex in the HVS. First, the 

RGB image is fed to the VGG-16 backbone to obtain the multiple-layer feature maps. Then the LGNL 

is adopted to effectively incorporate edge-aware features and semantic features from different layers of 

the VGG-16 backbone in multiple resolutions, so as to produce rich contextual features. Finally, with the 

guidance of the fixation density map transformed from the fixation points, the output feature maps of 

LGNL are utilized to generate the segmentation map via a stack of ConvLSTM blocks in a coarse-to-fine 

manner. Comprehensive experiments demonstrate that the proposed HVS based neural network achieves 

a higher segmentation performance and outperforms seven state-of-the-art methods, and prove that the 

transfer from constrained fixation points to clicking points is reasonable and valid. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Interactive image segmentation, which aims at segmenting the

object according to the user’s input, is a fundamental and chal-

lenging problem in the field of computer vision. It is well known

that clicking points and drawing scribbles are two typical interac-

tion modes, which require users to mark the image with the seed

pixels of foreground and background. Numerous interactive seg-

mentation methods based on clicking points and drawing scribbles

have been proposed. Boykov and Jolly [1] proposed the interactive

graph cuts for segmentation by solving a max-flow/min-cut based

energy minimization problem. In [2] , according to the connection

between random walks on graphs and discrete potential theory,

the probability that a random walker starting at each unlabeled

pixel first reaches one of the pre-labeled pixels can be determined,

and then the image segmentation is obtained by assigning each

pixel to the label of the calculated greatest probability. In [3] ,
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ulshan et al. proposed an interactive segmentation method by

ombining the geodesic distance information with the explicit

dge information under the framework of graph cuts. Actually,

ifferent users have their own ways to click points or draw

cribbles on the images. However, the segmentation methods

1–3] mentioned above are sensitive to the locations of inputs, so

hat they cannot accurately segment the same objects according

o various inputs from different users. 

Besides clicking points and drawing scribbles with the mouse,

he fixation point is another interaction way. Both clicking points

nd fixation points provide a series of points. This means that the

ap between fixation points and clicking points is tiny. In par-

icular, Mishra et al. [4] reformulated the segmentation problem

n conjunction with fixation points, and defined the segmentation

roblem as segmenting the region containing fixation points. In

4] , the fixation points they used are marked artificially with a

ouse, and all the fixation points are inside the object. Therefore,

e can bridge the constrained fixation points that locate inside the

bjects with the clicking points, to derive the clicking point based

nteractive segmentation from the constrained fixation point based

egmentation. 

https://doi.org/10.1016/j.neucom.2019.08.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.08.051&domain=pdf
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There are also some studies on the fixation point based seg-

entation/detection. Tian and Jung [5] proposed a fixation point

ased image segmentation method using the superpixel based ran-

om walk model. According to the analysis of gaze distribution, Shi

t al. [6] proposed a gaze based object segmentation method. Some

esearchers also transformed the fixation points into a fixation map

o study object segmentation/detection. In [7] , Li et al. proposed a

imple fixation map based model for salient object segmentation,

n which a set of object candidates are ranked with a fixation map

ia a scoring function to produce the segmentation result. In [8] ,

he fixation map is considered as a significant prior of salient ob-

ects. In [9] , a multilayer graph-based two-stage saliency detection

odel by merging fixation map is proposed to detect salient ob-

ects in complex scenes. Wang et al. [10] proposed a unified neural

etwork to infer salient objects from fixation map in a top-down

anner. 

We know that fixation points closely relate to the human visual

ystem. In the previous studies, the fixation points can be used

o serve as the seed points [5] or the object prior [8,9] , to rank

he object candidates [6,7] , and to assist the segmentation pro-

ess [10] . However, these methods [5 –10] do not study the fixation

oint based segmentation from a physiological point of view. Thus,

n this paper, we will the study fixation point based segmentation

rom the perspective of the human visual system, and transfer it

o the clicking point based interactive segmentation via the con-

trained fixation points. 

From the psychological aspect, the recent psychological stud-

es [11–13] have shown that when viewing an identical scene, the

isual systems of different individuals exhibit heterogeneous gaze

atterns. In other words, when viewing the same object, the loca-

ions of fixation points of different individuals are different. Such

 difference is related to age, race, gender and education of indi-

idual. Based on this study, Xu et al. [14] proposed a multi-task

onvolutional neural network (CNN) to perform the personalized

aliency prediction, which is different from the universal saliency

rediction models [15–20] . We adopt the personalized constrained

xation points to simulate the users’ various inputs in the clicking

oint based interactive segmentation. 

Recently, convolutional neural networks have made a significant

rogress in the field of computer vision, such as image recognition

21 –23] , semantic segmentation [24,25] , video object segmentation

26] and saliency detection [27–29] . It is universally known that

he computer vision system aims to replace the visual organs with

arious imaging systems, and the computer replaces the brain to

omplete the processing and interpretation of images and videos.

he ultimate goal of computer vision is to enable computers to vi-

ually observe and understand the world like humans, and to adapt

o the environment. Therefore, it is worth thinking about the pro-

ess how brain processing visual information, and how to simulate

his process with a computational model. Bell et al. [30] believed

hat the visual information processing in HVS can be divided into

hree parts: low-level, medium-level and high-level. The low-level

rocessing extracts the physical characteristics of visual stimuli,

uch as brightness, boundary, color and motion. The medium-level

rocessing involves the process of combining the information of

hese physical characteristics. The high-level processing involves

egmenting, recognizing, classifying and understanding the objects.

onsidering that the pathway of visual information transmission

nd processing in HVS is stimulus, retina, lateral geniculate nucleus

LGN) and visual cortex in turn, we can simply distinguish that the

etina is responsible for low-level processing, the LGN is in charge

f medium-level processing as the relay station between retina and

isual cortex, and the visual cortex manages high-level processing. 

Inspired by the structure of HVS and the outstanding perfor-

ance of CNN, we propose a novel deep neural network imitating

he information processing pathway of HVS to segment objects
ith constrained fixation points. The pipeline of information

ransmission and processing in our network is RGB image, VGG-16

ackbone [21] , LGN-like module and ConvLSTM blocks in turn.

he VGG-16 backbone processes the RGB image to generate the

mage-level features, which are rich in edge-aware information and

emantic information. This backbone is treated as the low-level

rocessing, and the medium-level processing is in the proposed

GN-like module. The LGN-like module receives feature maps of

ifferent layers from the backbone, and effectively incorporates

hese feature maps through multiple convolutional layers with

ifferent dilation rates to generate the contextual features. In the

igh-level processing, the integrated rich contextual features are

oncatenated with the fixation density map, which is transformed

rom the fixation points and used as the guidance, to segment

nd refine the objects in the ConvLSTM blocks. In this way, our

etwork achieves a higher consistency with HVS. And the HVS

ased neural network can be transferred to the clicking point

ased interactive segmentation. 

Overall, the main contributions of this paper are summarized as

ollows: 

(1) We study the clicking point based interactive segmentation

from a new perspective, and we transfer the constrained fix-

ation point based segmentation to it. 

(2) We propose a novel HVS based neural network to segment

objects with constrained fixation points. Our model simu-

lates the pathway of visual information transmission and

processing in HVS, and experimental results demonstrate the

superiority and effectiveness of our model. 

(3) We propose a LGN-like module in our network for the ag-

gregation and fusion of hierarchical features. The proposed

module effectively incorporates edge-aware features in low

layers and semantic features in high layers. Meanwhile, the

integrated rich contextual features in the LGN-like module

are complementary and robust for segmenting and refining

the objects. 

The remainder of this paper is organized as follows. The pro-

osed HVS based model is detailed in Section 2 . Experimental re-

ults and analysis are shown in Section 3 , and the conclusion is

rawn in Section 4 . 

. The proposed model 

In this section, we first describe the overall network archi-

ecture of our proposed model in Section 2.1 . Then we present

he fixation points transformation in Section 2.2 . We give the de-

ailed formulas of LGN-like module in Section 2.3 . In the end,

e describe the ConvLSTM based segmentation and refinement in

ection 2.4 . 

.1. Network architecture 

In this paper, we propose a HVS based model to address

onstrained fixation point based segmentation, and transfer it

o the clicking point based interactive segmentation. The overall

rchitecture is shown in Fig. 1 . Our network consists of three

omponents: VGG-16 backbone [21] , LGN-like module and ConvL-

TM block. Corresponding to the HVS, the information processing

n our model can also be divided into three levels: low-level,

edium-level and high-level. Specifically, the VGG-16 backbone

s in charge of low-level processing, the LGN-like module is re-

ponsible for medium-level processing, and the ConvLSTM block

anages high-level processing. We first input the RGB image

nto the VGG-16 backbone to produce multi-layer feature maps,

n which the feature maps in low layers are rich in edge-aware

nformation and the feature maps in high layers capture abundant
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Fig. 1. The overall framework of our proposed model. The arrows between cuboids indicate the information stream. Given a RGB image (288 × 288 × 3), multi-level features 

are first extracted by the VGG-16 backbone [13] , which is like the retina. Then hierarchical features aggregation and fusion is performed by LGNL. After that, the integrated 

rich contextual features are concatenated with fixation density map FDM (18 × 18 × 1) to generate the coarse segmentation map in the ConvLSTM block. Finally, the deep 

supervision is applied to improve the pixel-wise accuracy of segmentation. The final segmentation map is obtained by gradual refinements via a stack of ConvLSTM blocks. 

Please zoom-in for details. 
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semantic information. Then we propose the LGN-like module to

aggregate and fuse the feature maps of all the five layers at five

different resolutions. Just like the name of the LGN-like module,

its function is to simply simulate the visual information processing

in LGN. The LGN-like module is made up of convolutional layers

with various fields of view so that it can capture multi-layer and

multi-scale contextual information. In order to make full use of

the fixation points, we transform the fixation points into a fixation

density map by blurring with a Gaussian filter to obtain a good

prior of the objects. And with the guidance of fixation density

map, the first integrated rich contextual feature maps, i.e. the out-

put of LGNL 5, are fed into the ConvLSTM block to segment objects

roughly. With the multi-resolution contextual feature maps, which

are the output of other LGNLs, the coarse segmentation map is

refined via a stack of ConvLSTM blocks in a coarse-to-fine manner

to generate the final segmentation map. Notably, our network can

be learned in an end-to-end way with deep supervision [31] . 

2.2. Fixation points transformation 

Due to the special structure of human eyes, the HVS has a well-

defined contrast sensitivity. Specifically, when we look at a point

in an object, the resolution is higher as the distance from the fix-

ation point is closer. It results in a concentric circle with the fix-

ation point, so the center is clear, and the surroundings are dim.

And thus, we can only clearly recognize the object in the center of

the field of view. Therefore, in order to expand the receptive field

of fixation points and accurately locate the position of the object,

the fixation points are blurred with a Gaussian filter to produce a

fixation density map. 

The fixation points map FP can be generated based on the fix-

ation points recorded by an eye tracker. According to FP , we com-

pute fixation density map FDM as follows: 

FDM = Nor [ FP ∗ G ( σ ) ] , (1)

where Nor [ · ] represents the min–max normalization. The notation

‘ ∗’ refers to the convolutional operator. G ( · ) is a Gaussian filter, and

its parameter σ determines the filter size and the standard devia-

tion of it. The parameter σ is the visual angle in pixels, which is

determined by several parameters when collecting the eye-tracking

data, and it is defined as follows: 

σ = 

[
S img 

2 arctan 

S monitor 

2 D 

]
, (2)

where [ · ] is the rounding operation. S img is the diagonal length of

the image, in pixels. S is the diagonal length of the monitor,
monitor 
n inches, and D refers to the distance between the monitor and

he eyes, also in inches. 

.3. LGN-like module 

Contextual information is quite vital to assist object segmen-

ation. Specifically, there are five-stage feature maps in VGG_16

ackbone, i.e. conv1_2, conv2_2, conv3_3, conv4_3 and conv5_3.

owever, the existing image recognition methods [21,22] just use

he feature map of the last layer ( i.e. conv5_3) of the backbone

etwork. Although the feature map of the last layer is rich in se-

antic information, it cannot capture the contextual information.

 recent work [26] , which aims to video object segmentation,

roposes to up-sample the feature maps of the last four layers

conv2_2, onv3_3, conv4_3 and conv5_3) to the same size as that

f the input frame, and then concatenates them to generate the

egmentation result. In this fusion manner, the features from low

ayers and high layers combined to achieve the better segmen-

ation results. Meanwhile, extracting the contextual features is a

edium-level processing, which further processes the features of

ackbone, just like the function of LGN in the HVS. Inspired by

aelles et al. [26] and LGN, we propose a LGN-like module, which

erforms concatenation, dilated convolution and concatenation in

urn, as shown in Fig. 2 , to incorporate hierarchical features and

earn multi-scale contextual information of objects in the image. 

For the input image I with size W × H , we first adopt the VGG-

6 backbone to extract feature maps at five stages, i.e. conv1_2,

onv2_2, conv3_3, conv4_3 and conv5_3, which are represented as

M = { f m i , i = 1 , . . . . . . , 5 } with resolution τi = [ W 

2 i −1 , 
H 

2 i −1 ] , i.e. [ w i ,

 i ]. For the sake of concatenating these feature maps at the same

esolution as that of fm i , we use the convolutional operation to

hrink feature maps with a resolution larger than fm i , and the de-

onvolutional operation to expand feature maps with a resolution

maller than fm i , which is formulated as: 

 

τi = Cat (C on v ( f m 1 ;ψ 1 ) , . . . . . . , C on v ( f m i ;ψ i ) , 

. . . . . . , DeCon v ( f m 5 ;ψ 5 ) ) , (3)

here Conv ( · ) and DeConv ( · ) represent the convolutional opera-

ion and deconvolutional operation, respectively. The notation ψ l is

he kernel size of convolutional or deconvolutional operation, and

 l = 2 | i −l | × 2 | i −l | , l = 1 , . . . . . . , 5 . Cat is the cross-channel concate-

ation. Whether it is the convolutional or the deconvolutional op-

ration, the size of each output feature map is w i × h i × 64. And

hus, the size of f τi is w i × h i × 320. 

In order to simply simulate the processing of information by

ifferent cells in LGN, we use three convolutional layers with
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Fig. 2. Illustration of LGN-like module (LGNL). The LGNL first takes the five-layer 

feature maps with different resolutions and channels as the input. Then these fea- 

ture maps will shrink or expand to the same resolution as that of the feature 

map fm i and equal channels through convolutional or deconvolutional operation. 

The cross-channel concatenation is used to aggregate the five stacks of feature 

maps, namely f τi . And the three convolutional layers with different dilation rates 

are adopted to capture multi-layer and multi-scale contextual information. Finally, 

the multiple contextual feature maps are concatenated in a cross-channel manner, 

called f d τi . Please zoom-in for details. 
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ifferent dilation rates to process f τi . These three dilated convolu-

ional layers [32] can enlarge the fields of view without the loss

f resolution and the increase of computation. In particular, these

hree dilated convolutional layers have the same convolutional

ernel size 3 × 3 with different dilation rates, which are set to

, 2 and 3, respectively, to capture multi-layer and multi-scale

ontextual information. For computational efficiency, the number

f the convolutional filters of each dilated convolutional layer

s 32. Therefore, the size of the output feature map from each

ilated convolutional layer is w i × h i × 32. Finally, we combine the

hree feature maps by cross-channel concatenation to generate the

ulti-layer and multi-scale contextual feature map f d 

τi , with a

ize of w i × h i × 96. 

.4. ConvLSTM based segmentation and refinement 

From the multi-resolution contextual features FD =
 f d 

τi , i = 1 , . . . . . . , 5 } and the fixation density map FDM, we

xpect our network to be able to infer precise segmentation map.

ecause ConvLSTM [33] has exhibited the ability to gradually

efine the details of objects in salient object detection [10,34] ,

e design a ConvLSTM block to infer the precise segmentation

ap. ConvLSTM is a variant of traditional fully connected LSTM

35] and introduces convolutional operation into input-to-state

nd state-to-state transitions. Therefore, ConvLSTM can preserve

he spatial information of convolutional feature maps and opti-

ize the details of the object well. Our ConvLSTM block consists

f three ConvLSTM layers, and each convolutional operation in

onvLSTM layer with 32 filters with kernel size 3 × 3. Its function

s to process the fine information similar to the visual cortex in

VS. 

As aforementioned, we use the FDM to guide f d 

τ5 for segment-

ng objects coarsely via our ConvLSTM block. Since the resolution

f FDM is 288 × 288, which is unmatched with that of f d 

τ5 (the

esolution is 18 × 18), we down-sample the FDM to 18 × 18 by max

ooling. The FDM and f d 

τ5 are concatenated to form the feature
ap X which is the input to the three ConvLSTM layers recurrently.

e apply convolutional filter with kernel size 1 × 1 with Sigmoid

nd deconvolutional filter with kernel size 2 × 2 to the output of

onvLSTM − 3 , i.e. H 3 , to get sm 

5 (the resolution is 36 × 36) as

hown in Fig. 3 . In particular, the channel number of FDM is 1.

hen the coarse segmentation map sm 

5 will be refined progres-

ively with the multi-resolution contextual features, which are the

utput of other LGN-like modules. Meanwhile, the resolution of

egmentation map will increase gradually to the original size of

he input image. The segmentation map s m 

i ( i = 4 , . . . . . . , 1 ) is

enerated with the same way as sm 

5 , where the FDM is replaced

y s m 

i +1 . In particular, the deconvolutional filter is replaced by a

onvolutional filter with kernel size 1 × 1 for generating the final

egmentation map sm 

1 . In summary, the process of inferring the

egmentation map sm 

i is defined as follows: 

 m 

i = 

⎧ ⎨ 

⎩ 

DeC on v ( C on v ( C B ( FDM , f d 

τi ) ;ψ 6 ) ;ψ 7 ) , i = 5 

DeC on v 
(
C on v 

(
C B 

(
s m 

i +1 , f d 

τi 

)
;ψ 6 

)
;ψ 7 

)
, i = 4 , 3 , 2 , 

C on v 
(
C on v 

(
C B 

(
s m 

i +1 , f d 

τi 

)
;ψ 6 

)
;ψ 6 

)
, i = 1 

(4) 

here CB ( · ) is the operation of ConvLSTM block, Conv ( ∗; ψ 6 ) is

he convolutional layer with kernel size ψ 6 i.e. 1 × 1 and DeConv ( ∗;

 7 ) is the deconvolutional layer with kernel size ψ 7 i.e. 2 × 2.

ere, the sigmoid activation function is omitted for simplicity. 

In order to improve the quality of the intermediate segmen-

ation maps, i.e. s m 

i ( i = 5 , . . . . . . , 2 ) , we adopt the deeply super-

ised learning mechanism [31] . The pixel-wise supervision infor-

ation from the ground truth S will guide the segmentation at

ach level to make the details of sm 

i much finer. Specifically, the

ntermediate segmentation map sm 

i need to be resized to the

ame resolution as the ground truth S . And we adopt the classi-

al cross-entropy loss function in this case, for each resized seg-

entation map sm 

i , the corresponding loss function is defined as

ollows: 

 i 

(
S , s m 

i 
)

= −
∑ 

x,y 

[
S x,y log 

(
sm 

i 
x,y 

)
+ ( 1 − S x,y ) log 

(
1 − sm 

i 
x,y 

)]
, (5) 

here S x, y ∈ {0, 1} is the label of the pixel ( x, y ) in the ground truth

 , and sm 

i 
x,y ∈ [ 0 , 1 ] is the confidence score of the pixel ( x, y ) be-

onging to the object. Thus, the final loss function L is defined as

ollows: 

 = 

5 ∑ 

i =1 

L i 

(
S , s m 

i 
)
. (6) 

. Experimental results 

.1. Experimental setup 

Dataset: Currently, there are no datasets for fixation point based

egmentation. So, we collect suitable data for the fixation point

ased segmentation from OSIE dataset [36] , which is designed for

xation prediction. The OSIE dataset contains eye-tracking data

rom 15 participants for a full set of 700 observation images with a

esolution of 800 × 600, so each image has 15 personalized fixation

oint maps. In addition, each observation image is manually seg-

ented into a collection of objects on which semantic attributes

re manually annotated. In order to obtain the constrained fixa-

ion points, which fall inside the objects, we exploit two criteria to

creen 700 observation images, their corresponding 10,500 fixation

oint maps and semantic ground truths as follows: 

First, on the basis of images, personalized fixation point maps

nd the corresponding semantic ground truths, we choose the fixa-

ion point maps and their semantic ground truths if all the fixation

oints locate in the objects. 

Second, we transform the selected semantic ground truths into

he ground truths of binary object segmentation, i.e. the selected
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Fig. 3. Illustration of ConvLSTM block. The ConvLSTM block receives the f d τi and FDM/sm 

i , and then the concatenated features X are transmitted to three ConvLSTM layers 

to generate the segmentation map s m 

i −1 , which is more precise than sm 

i and has a better segmentation quality. Please zoom-in for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Ablation study of the proposed model on OSIE-CFPS testing set. 

Aspects Methods mIoU [%] 

Ours ( sm 

1 ) 78.5 

LGN- 

like 

module 

LGNL-w/o dilation 73.0 

LGNL-one convolution 76.7 

LGNL-one layer 76.1 

Variants w/o ConvLSTM block 75.3 

w/o deep supervision 70.0 

Architecture sm 

2 78.2 

sm 

3 77.6 

sm 

4 74.7 

sm 

5 69.7 
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f  
semantic labels are set to the object label ‘1’, and the background

labels are set to ‘0’. 

According to the two criteria, we finally select 3683 constrained

fixation point maps and the corresponding ground truths of binary

object segmentation to build a new dataset, OSIE-CFPS, for con-

strained fixation point based segmentation. According to the se-

rial numbers of the observation images, we specify the fixation

point maps and the binary ground truths corresponding to the first

600 observation images as the training set with 3075 samples, and

those of the last 100 observation images as the testing set with

608 samples. 

Following the parameters S img , S monitor and D described in OSIE

[36] , we use Eq. (2) to calculate the visual angle σ , which is 24

pixels. Thus, we can transform the 3683 fixation point maps into

the fixation density maps. So, one observation image, one fixation

density map and its corresponding binary ground truth consist of

a training triplet. To improve the varieties, we simply augment this

dataset by mirror reflection and rotation (0 ◦, 90 ◦, 180 ◦ and 270 ◦),

producing 15,375 training triplets totally. 

In particular, in order to evaluate the reasonableness and valid-

ity of the transfer from the constrained fixation point based seg-

mentation to the clicking point based interactive segmentation us-

ing our model, we also measure our HVS based neural network on

the GrabCut dataset [37] , which is a common benchmark dataset

for interactive image segmentation methods and consists of 50 nat-

ural images with ground truths. 

Evaluation metrics: To evaluate the segmentation performance,

we adopt the commonly used region similarity in terms of

intersection-over-union (IoU) between the predicted object mask

M ( i.e. sm 

1 in the proposed model) and the binary ground truth S ,

IoU = 

| M ∩ S | 
| M ∪ S | , (7)

we compute the mean of the IoU across all images in the test set

and thus also refer to this metric as mIoU . 

Implementation details: We implement our model based on

MATLAB R2014a platform with the Caffe [38] framework, and train

our model in an end-to-end manner. We run our model in a PC

with an i7-6700K CPU (16 GB memory) and a NVIDIA Titan X GPU

(12 GB memory). The parameters of our backbone are initialized

from the VGG-16 model [21] . For other convolutional layers, we

initialize the weights by the “xavier” method [39] . In the train-

ing phase, we use the standard stochastic gradient descent (SGD)

[40] method with batch size 8, momentum 0.9 and weight decay

0.0 0 01. The learning rate is set to 1e −7 and decreased by 10% af-

ter 20,0 0 0 iterations. The model needs about 40,0 0 0 training it-
rations for convergence, which takes nearly 37.5 h. When testing,

he proposed model takes 0.11 s to generate the segmentation map

ith a resolution of 288 ×288, which is then resized to the same

ize as the input image. 

.2. Ablation study 

We now conduct a more detailed examination of our model

n OSIE-CFPS dataset, and we change one component each time

o assess individual contributions. All the experiments in this sec-

ion are retrained with the same hyperparameters as described in

ection 3.1 . 

LGN-like module: In our model, the function of LGN-like mod-

le is to simply simulate visual information processing in LGN.

owever, due to the complexity of the nervous system in LGN, we

nly use three dilated convolutional layers with different dilation

ates to simply imitate different cells in LGN. In order to verify the

ffectiveness of simulation in LGN-like module, we directly remove

he three dilated convolutional layers, and thus f τi is straightfor-

ardly fed to the ConvLSTM block instead of f d 

τi , named LGNL-w/o

ilation . From Table 1 , we find that the performance of LGNL-w/o

ilation is 73.0%, which is 5.5% lower than the original model ( i.e.

urs ). When we add a convolutional layer with 32 filters with

ernel size 3 × 3 to LGNL-w/o dilation , we get LGNL-one convolution

hich is 3.7% higher than LGNL-w/o dilation but still 1.8% lower

han Ours . This demonstrates that the dilated convolutional layers

n LGNL aggregate and integrate the features from VGG-16 back-

one well, and the dilated convolutional layers with three different

ilation rates can better simulate the information processing in

ifferent cells, i.e. processing information with different receptive

elds reflects the multi-scale information fusion. 

Besides, we replace the input of LGNL, which contains all the

eature maps at five different resolutions, with only the feature
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Table 2 

Quantitative comparison of different methods on the OSIE-CFPS testing set and the GrabCut dataset. The red is 

the best, and the blue is the second best. 
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ap at the corresponding resolution from VGG_16 backbone, e.g.

he input of LGNLi is fm i only. We call it LGNL-one layer which

eaches 76.1%, but 2.4% lower than Ours . This shows that the multi-

ayer features provide much richer contextual information than

nly one-layer features. To sum up, our LGN-like module can cap-

ure rich multi-layer and multi-scale contextual information for ob-

ect segmentation. 

ConvLSTM block: Compared with the classic convolutional layers,

he ConvLSTM block recurrently processes the contextual features

nd iteratively optimizes the segmentation map. Hence, to study

he contribution of the ConvLSTM block, we replace the ConvLSTM

lock with three convolutional layers, which have 32 filters with

ernel size 3 × 3, named w/o ConvLSTM block . From Table 1 , we ob-

erve a drop in mIoU of w/o ConvLSTM block , which demonstrates

he effectiveness of the proposed ConvLSTM block. 

Deep supervision: In the training phase, we adopt deeply super-

ised learning mechanism to provide pixel-level supervision of the

ntermediate results, i.e. sm 

5 , sm 

4 , sm 

3 , and sm 

2 , and the interme-

iate results are of high quality. To study the effect of deep super-

ision, we remove the L 5 , L 4 , L 3 and L 2 in Eq. (6) , and the final

oss function L is only L 1 . Then we retrain our model, and the

ariant w/o deep supervision achieves a mIoU of 70.0%. This means

hat the deep supervision plays an important role in our model

ith 8.5% improvement. 

Segmentation refinement: We use the ConvLSTM block to refine

ur coarse segmentation map in a coarse-to-fine manner. Thus, we

est 4 baselines: sm 

5 , sm 

4 , sm 

3 , and sm 

2 , and the corresponding

IoU values are 69.7%, 74.7%, 77.6% and 78.2%, respectively. We

nd that the segmentation maps are gradually optimized by Con-

LSTM block, and the coarse-to-fine refinement is valid. Finally, the

nal segmentation maps, i.e. Ours , achieves a mIoU of 78.5%. 

.3. Performance comparison with the state-of-the-arts 

We compare the proposed HVS based model with four state-of-

he-art fixation point based segmentation methods including GBOS

6] , SOS [7] , AVS [4] and SegNet [25] . In addition, we also compare

ur model with three clicking point based interactive segmentation

ethods, which are GraphCut [1] , RandomWalk [2] and GSC [3] .

he segmentation results of all the other methods are obtained by

unning the publicly available codes provided by the authors. 

For a fair comparison on OSIE-CFPS testing set, we make an ap-

ropriate transformation of the fixation point map in order to sim-

late the interaction of clicking point. Given a fixation point map,

he fixation points are treated as the foreground/positive seeds.

f an interactive segmentation method needs background/negative

eeds, we randomly sample five background pixels in the binary

round truth as background/negative seeds. Then we morpholog-

cally dilate all points including fixation points and background

oints by two pixels to get the label map, which is used to seg-

ent objects in interactive segmentation methods. 

We also compare our model with a semantic segmentation ap-

roach, i.e. SegNet [25] . To make it comparable, the connected
omponent of a given semantic label that contains the fixation

oint is selected as the object and the remaining area is treated as

ackground. As for AVS [4] , we only take one fixation point once

or segmentation, and then merge all the segmentation maps to

btain the final segmentation result. 

Quantitative comparison: For a quantitative comparison,

able 2 shows that our model can achieve the better seg-

entation performance than either the clicking point based

nteractive segmentation methods or the fixation point based

egmentation methods on OSIE-CFPS testing set. The mIoU values

f other methods are mostly around 50.0% on OSIE-CFPS testing

et, while our method reaches 78.5%, which is 26.1% better than

he clicking point based interactive segmentation method GSC

3] and 19.1% better than the best fixation point based segmen-

ation method [25] . The reason behind this is that our model,

ased on physiological structure, simulates the three processes of

ow-level, medium-level and high-level processing in the human

isual system. And the experimental results demonstrate that the

trategy of simulating HVS in our network is effective and superior

or fixation point based segmentation. 

Qualitative comparison: Fig. 4 illustrates some segmentation

aps generated by our model as well as other seven state-of-the-

rt methods on OSIE-CFPS testing set (the 1–8 rows). It can be

een that our method is well applicable to various complex scenes.

or images with multiple objects and complex background, our

ethod can segment the entire objects with fine details. However,

ther fixation point based methods can only segment partial or in-

omplete objects, and clicking point based interactive segmenta-

ion methods can only segment the region where objects are lo-

ated and cannot segment objects in detail. 

.4. Transferring to the clicking point based interactive segmentation 

In particular, we also test our model on the GrabCut dataset

o evaluate the reasonableness and validity of the transfer from

he constrained fixation points to the clicking points. For each

mage in the GrabCut dataset, we randomly sample four points

n the foreground as fixation points/positive seeds, and also ran-

omly take four points in the background as negative seeds for

he clicking point based interactive segmentation methods [1–3] .

otably, when our HVS based neural network performs segmen-

ation with clicking points, the clicking points are treated as the

xation points. Similarly as the fixation points, the clicking points

re also blurred by a Gaussian filter to produce a clicking density

ap. The clicking density map enables our neural network to un-

erstand which object the user needs to segment. In order to sim-

late various inputs from different users in the interactive segmen-

ation, we conduct three sampling processes on each test image,

nd report the corresponding mean value in Table 2 . 

In Table 2 , we can find that the performances of the fixation

oint based segmentation methods are generally better than those

f the clicking point based interactive segmentation methods on
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Fig. 4. Qualitative comparisons of our model and seven state-of-the-art methods on OSIE-CFPS testing set and GrabCut dataset. (a) Images; (b) Images with fixation/clicking 

points ( i.e. green dots); (c) ground truths; segmentation results obtained using (d) Ours; (e) SegNet [25] ; (f) AVS [4] ; (g) SOS [7] ; (h) GBOS [6] ; (i) RandomWalk [2] ; (j) GSC 

[3] and (k) GraphCut [1] . Please zoom-in for details, especially (b). 
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the GrabCut dataset. Concretely, we calculate the mean mIoU val-

ues of the fixation point based segmentation methods and the

clicking point based interactive segmentation methods, which are

67.5% and 60.6%, respectively. This demonstrates that the trans-

fer from the constrained fixation points to the clicking points is

valid and successful. Notably, our method achieves the best per-

formance 76.2% on the GrabCut dataset among all the eight meth-

ods, and further demonstrates that the transfer of our HVS based

neural network from the constrained fixation points to the click-

ing points is more efficient. This reveals that the information pro-

cessing structure of simulating HVS in our model is also valid and

suitable. 

Qualitative results over example images from the GrabCut

dataset are depicted in the bottom two rows of Fig. 4 . Concretely,

our method can segment the objects completely with only four

positive points (green dots in Fig. 4 ), which are regarded as fixa-

tion points, while the clicking point based interactive segmentation

methods [1–3] cannot segment the objects well with four positive

points and four negative points. For clarity, note that the negative

points are not marked in Fig. 4 . 

Both qualitative and quantitative results on the GrabCut dataset

demonstrate that the transfer from the constrained fixation points

to the clicking points is successful, and our HVS based neu-

ral network works well for the clicking point based interactive

segmentation. It benefits from not only the similarity between the

constrained fixation points and the clicking points, but also the

simulation of the visual information transmission and processing

in HVS. Especially, we use three dilated convolutional layers with
ifferent dilation rates to imitate different cells in LGN, and thus

he LGN-like module can capture rich multi-layer and multi-scale

ontextual information for object segmentation. 

. Conclusion 

In this paper, we propose a HVS based model for transferring

he constrained fixation point based segmentation to the clicking

oint based interactive segmentation. We first obtain the multiple-

ayer feature maps by feeding the RGB image to the VGG-16 back-

one. Then we propose a LGN-like module to aggregate and fuse

ultiple-layer feature maps at different resolutions. The integrated

ontextual features and the fixation density map are fed into the

roposed ConvLSTM blocks to segment the gazed objects in a

oarse-to-fine manner. Experimental results confirm that the sim-

lation of HVS in our model is superior and effective, and demon-

trate that the transfer from the constrained fixation points to the

licking points is reasonable and valid. 
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