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Abstract. Numerous deep learning based efforts have been done for
image saliency detection, and thus, it is a natural idea that we can con-
struct video saliency model on basis of these image saliency models in
an effective way. Besides, as for the limited number of training videos,
existing video saliency model is trained with large-scale synthetic video
data. In this paper, we construct video saliency model based on existing
image saliency model and perform training on the limited video data.
Concretely, our video saliency model consists of three steps including
feature extraction, feature aggregation and spatial refinement. Firstly,
the concatenation of current frame and its optical flow image is fed into
the feature extraction network, yielding feature maps. Then, a tensor,
which consists of the generated feature maps and the original informa-
tion including the current frame and the optical flow image, is passed to
the aggregation network, in which the original information can provide
complementary information for aggregation. Finally, in order to obtain
a high-quality saliency map with well-defined boundaries, the output of
aggregation network and the current frame are used to perform spatial
refinement, yielding the final saliency map for the current frame. The
extensive qualitative and quantitative experiments on two challenging
video datasets show that the proposed model consistently outperforms
the state-of-the-art saliency models for detecting salient objects in videos.
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Fig. 1. The main flowchart of the proposed video saliency model. Given (a) the cur-
rent frame Ft and its optical flow image OPt, we obtain five feature maps {SMPi, i =
1, . . . , 5} via (b) the feature extraction network. Then these feature maps and the orig-
inal information including Ft and OPt are concatenated and passed to (c) the aggre-
gation network. Besides, the current frame Ft and the output of aggregation network
SAt are passed to (d) the contour snapping network, to perform spatial refinement.
(e) Shows the saliency map St of current frame, which is the summation of the outputs
of aggregation network and contour snapping network, i.e. SAt and SCt

1 Introduction

Saliency detection aims to identify the salient object regions in images or videos,
which plays an important role as a preprocessing step in many computer vision
applications such as object detection and segmentation [7,11,21,29,33], content-
aware image/video retargeting [8,28], and content-based image/video compres-
sion [12,13]. According the input of the visual system, saliency detection can be
categorized into two classes including image saliency models and video saliency
models. Up to now, numerous efforts have been devoted to the saliency detec-
tion for still images, but the research on video saliency has received relatively
few attention. In this paper, we focus on the video saliency detection.

Video saliency detection is different from image saliency detection, since it
takes into account both spatial and temporal information of the video sequences
simultaneously. In order to deal with both cues in videos and pop-out the
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prominent objects from videos, many priors efforts have been done from vari-
ous aspects such as the center-surround scheme [15,22], information theory [18],
machine learning [16,25], information fusion [5,9], and regional saliency assess-
ment [19,20,26,32]. The above saliency models can obtain satisfactory results to
some degree, however their performances degrade in dealing with complicated
motion and complex scenes such as fast motion, dynamic background, nonlin-
ear deformation, and occlusion, etc. Fortunately, convolutional neural networks
(CNNs) have been successfully applied to many areas in computer vision such as
object detection and semantic segmentation [6,10]. Further, it also pushes for-
ward the progress of saliency detection in still images such as the multi-context
deep learning framework [31] and the aggregation of multi-level convolutional
feature framework [30]. Obviously, it is a natural idea that we can construct
video saliency model based on existing deep learning based image saliency mod-
els. Unfortunately, we can see that the temporal information over frames is not
incorporated by these deep saliency models, thus, it is not appropriate to conduct
video saliency detection on each frame by using existing deep saliency models
directly. Recently, deep learning is also applied in video saliency detection such
as the two cascade modules based deep saliency network in [27]. However, due
to the limited number of annotated training videos, this model is trained on
large-scale synthetic video data.

Motivated by this, we propose a video saliency model based on existing image
saliency model and train it with limited video data only. Concretely, our model
consists of three steps including feature extraction, feature aggregation and spa-
tial refinement. The current frame and its optical flow image are first concate-
nated and fed into the feature extraction network, generating the corresponding
feature maps. Notably, we employ an off-the-shelf convolutional neural networks
(CNNs) based image saliency model [30] as our feature extraction network. Then,
the obtained feature maps, the current frame and its optical image are combined
and passed to the aggregation network, which is used to perform feature inte-
gration. Finally, a contour snapping network based spatial refinement network is
deployed to the output of aggregation network and generates the final saliency
map.

The advantages of our model are threefold. Firstly, the input of the feature
extraction network is the concatenation of the current frame and its optical flow
image, which gives a strong prior for the salient objects in videos. Secondly, the
aggregation network not only incorporates the feature maps generated by the
feature extraction network, but also aggregates the original information includ-
ing the current frame and the optical flow image. The original information can
provide complementary information for the aggregation of feature maps. Thirdly,
a contour snapping based spatial refinement is introduced to improve the quality
of spatiotemporal saliency maps, which not only highlight salient objects effec-
tively, but also be with well-defined boundaries. Overall, our main contributions
are summarized as follows:

1. Based on existing image saliency models, we propose a deep convolutional
neural network based video saliency model, which consists of three steps
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including feature extraction, feature aggregation and spatial refinement.
Specifically, the three steps correspond to three sub-networks including fea-
ture extraction network, feature aggregation network and contour snapping
network.

2. In order to obtain complementary information for the aggregation of feature
maps, we incorporated the original information including the current frame
and its optical flow image into the aggregation network. Concretely, a tensor
that consists of feature maps and original information is fed into the aggre-
gation network.

3. We compare our model with several state-of-the-art saliency models on two
public video datasets, and the experimental results firmly demonstrate the
effectiveness and superiority of the proposed model.

2 Our Approach

Figure 1 shows an overview of the proposed video saliency model. Concretely,
in the first step, i.e. feature extraction, the input is the concatenation of the
current frame Ft and its corresponding optical flow image OPt. Then, we obtain
the feature maps originated from different layers, as shown in Fig. 1(b) and
denoted as {SMPi, i = 1, 2, 3, 4, 5}. Successively, these feature maps and the
original information including Ft and OPt are concatenated and passed to the
aggregation network as shown in Fig. 1(c). Further, a contour snapping network
[4] based spatial refinement shown in Fig. 1(d), is deployed in our model. The
contour snapping network incorporates the current frame Ft and the output
of aggregation network SAt together. Finally, the saliency map St, as shown
in Fig. 1(e), is computed as the summation of the output of the aggregation
network and the contour snapping network, i.e. SAt and SCt.

2.1 Feature Extraction

In order to obtain an appropriate representation for salient objects in videos,
we employ the feature extraction network in [30], which achieves a superiority
performance in saliency detection for still images, to extract feature maps. We
should note that one of the difference between our model and [30] is the input.
Specifically, the input of feature extraction in our model is the concatenation of
the current frame and its corresponding optical flow image, which is a strong
prior for salient objects in videos. Differently, [30] focus on image saliency, thus,
its input is the static image only.

As aforementioned, the input of feature extraction is the concatenation of
the current frame Ft and its corresponding optical flow image OPt, which is
generated using the method of large displacement optical flow (LDOF) [3] and
then converted to a 3-channel (RGB) color coded optical flow image [2]. Besides,
we should note that we concatenate {Ft, OPt} in the channel direction, thus
generating a tensor with the size of h × w × 6, in which h and w refer to the
height and width of the scaled current frame/optical flow image, respectively.
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Here, we set h and w as 256. Then, the generated tensor is fed into the feature
extraction network shown in Fig. 1(b), in which {RFCi, i = 1, 2, 3, 4, 5} refer
to the resolution-based feature combination structure as detailed in [30]. The
output of feature extraction, namely {SMP1,SMP2,SMP3,SMP4,SMP5}
are all with the size of 256 × 256 × 2, which are two channel feature maps
consistent with [30].

2.2 Feature Aggregation

With the output of the feature extraction network, namely feature maps
{SMPi, i = 1, 2, 3, 4, 5}, we design an aggregation network to effectively aggre-
gate these feature maps and generate the coarse result of video saliency detection,
i.e. SAt. To provide complementary information for convolutional features origi-
nated from feature maps, the original information including the current frame Ft

and its optical flow image OPt is also incorporated to the aggregation operation.
Specifically, we first concatenate these feature maps, the current frame Ft

and its optical flow image OPt in the channel direction, yielding a tensor with
the size of 256 × 256 × 16. Secondly, the generated tensor is fed into a series
of convolutional layers including {Conv6 − 1, Conv6 − 2, Conv6 − 3}, each of
them is a convolutional layer with 3× 3 kernel size. Successively, there is a layer
denoted as Conv6−4, which is a 1×1 convolutional filter. Finally, the output of
aggregation network, i.e. SAt, is generated via a softmax layer. Besides, a batch
normalization layer [1] and a ReLU layer are deployed between Conv6 − 1 and
Conv6 − 2, as well as between Conv6 − 2 and Conv6 − 3.

In our model, the feature extraction network and the aggregation net-
work are jointly trained in an end-to-end manner. Given the training dataset
Dtrain = {(Fn,OPn,Yn)}Nn=1 with N training samples, in which Fn = {Fj

n, j =
1, ..., Np}, OPn = {OPj

n, j = 1, ..., Np} and Yn = {Yj
n, j = 1, ..., Np} denote

the input current frame, its optical flow image and the binary ground-truth with
Np pixels, respectively. Besides, Yj

n = 1 indicates the salient object pixel and
Yj

n = 0 represents the background pixel. For simplicity, we drop the subscript
n and consider {F,OP} for each frame independently. Thus, the loss function
can be defined as:

L (W, b) = − β
∑

j∈Y+

log P
(
Yj = 1|F,OP;W, b

)

− (1 − β)
∑

j∈Y−

log P
(
Yj = 0|F,OP;W, b

)
,

(1)

where W and b are denoted as kernel weights and bias of convolutional layers,
and Y+ and Y− indicate the label sets for salient objects and background,
respectively. β refers to the ratio of salient objects pixels in the ground truth
G, i.e. β = |Y+|/|Y−|. P

(
Yj = 1|F,OP;W, b

)
denotes the probability of the

pixel belonging to salient objects. Besides, the loss function is also the difference
between our model and [30]. Concretely, the loss function in [30] consists of the
fusion loss and the layer loss of other five layers. Differently, the loss function in
our model is the aggregation loss.
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Fig. 2. (better viewed in color) Quantitative evaluation of different saliency models:
(a) presents PR curves, (b) presents F-measure curves, and (c) presents MAE. From
top to down, each row shows the results on the UVSD dataset and the DAVIS dataset,
respectively.

2.3 Spatial Refinement

To further improve the detection accuracy, we introduce a contour snapping
network into our method to perform spatial refinement. The contour snapping
network [4] is trained offline and used to detect object contours. Here, we exploit
the contour snapping network without training or fine-tuning. In our implemen-
tation, we first train the aforementioned networks including feature extraction
network and aggregation network shown in Fig. 1(a, b, c) in an end-to-end man-
ner. Then, in the test phase, we add a second branch, i.e. the contour snapping
network, into our model. Concretely, the current frame Ft and the output of
aggregation network SAt are first passed to the contour snapping network shown
in Fig. 1(d), and the output is denoted as SCt. Then, the outputs of contour
snapping network and aggregation network are combined via linear summation.
Finally, we obtain the final saliency map St for the current frame:

St = Norm [SAt + SCt] , (2)

where the operation Norm normalizes the saliency map into the range of [0, 1].

3 Experimental Results

3.1 Experimental Setup

Datasets and Metrics: The datasets in training and test phases consist of
three public challenging datasets. Concretely, SegTrackV2 [17] consists of 14
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videos with challenging circumstances such as appearance change, motion blur,
occlusion, complex deformation and so on. UVSD [19] contains a total of 18
challenging videos with complicated motions and complex scenes. DAVIS [24] is
a recent dataset for video object segmentation, which contains 50 high-quality
videos with different motions of human, animal and vehicle in challenging circum-
stances. Similar to [27], we train our model on the binary masks of SegTrackV2
and the training set of DAVIS. When testing, we evaluate the performance of the
proposed model over two datasets including UVSD and the test set of DAVIS.
Besides, following the evaluation measures used in [27], we evaluate the video
saliency detection performance using the precision-recall (PR) curve, F-measure
curve by setting its β2 to 0.3, and mean absolute error (MAE) values.

Implementation Details: To avoid over-fitting, some prior works [23,34] have
been done from the perspective of utilizing training-free features. Differently, to
reduce the effect of over-fitting and improve the generalization of neural net-
work, we simply augment these two datasets by mirror reflection and rotation
techniques (0◦, 90◦, 180◦, 270◦). In the training phase, we use Stochastic Gradi-
ent Descent (SGD) with momentum 0.9 for 22000 iterations with base learning
rate 10−8, mini-batch size 32 and a weight decay 0.0001. Besides, the parameters
of multi-level feature extraction layers are initialized from the model [30]. For
other convolutional layers, we initialize the weights by the “msra” method [14].

3.2 Performance Comparison with State-of-the-art

We compare our model with state-of-the-art saliency models including SGSP
[19], GD [26], SFCD [5], VSFCN [27], MC [31] and Amulet [30]. The former
three models aim at video saliency while the latter two are deep learning based
image saliency models. Besides, our model is denoted as “OUR”. In the following,
quantitative and qualitative comparisons are performed successively.

A quantitative comparison among OUR, SGSP, GD, SFCD, VSFCN, MC and
Amulet is shown in Fig. 2. We can see that our model achieves the best perfor-
mance in terms of PR curves, F-measure curves and MAE values on UVSD and
DAVIS datasets. It clearly demonstrates the effectiveness of our model. Figures 3
and 4 provide the qualitative evaluation for our model and the state-of-the-art
saliency models on UVSD and DAVIS, respectively. All these videos exhibits
various challenges such as shape complexity, occlusion and non-rigid deforma-
tion and motion blur and so on. Thus, it is a challenging task for video saliency
detection. Compared with other models, we can see that our model achieves
the best performance with completely highlighted salient objects and effectively
suppressed background regions, as shown in Figs. 3(c) and 4(c). For the results
of MC and Amulet shown in Figs. 3(h, i) and 4(h, i), some background regions
are also highlighted due to the lack of temporal information in these two models.
For other three models including SGSP, GD and SFCD, their results can pop-
out the main parts of salient objects and also highlight some background regions
around salient objects. The reason behind this lies in that the features in these
models are not discriminative enough. Thus, it is incapable of differentiating the
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salient objects and background regions effectively. From the results of VSFCN,
as shown in Figs. 3(g) and 4(g), we can see that some background regions are
also popped out for videos with fast motion and non-rigid deformation.

Fig. 3. Examples of spatiotemporal saliency maps for some videos in the UVSD dataset.
(a): Input video frames, (b): binary ground truths, (c): OUR, (d): SGSP, (e): GD, (f):
SFCD, (g): VSFCN, (h): MC, (i): Amulet.

3.3 Analysis of the Proposed Model

To investigate the effectiveness of feature aggregation and spatial refinement, we
conduct ablation experiments on UVSD dataset, and the results are shown in
Fig. 5. In these experiments, our model without contour snapping is denoted as
“woCS”, and on the basis of “woCS”, the input of aggregation network with-
out current frame, optical flow image and the previous two are denoted as
“woRGB”,“woOP” and “woRGBOP”, respectively. Concretely, firstly,“woCS”
achieves the second best performance, and with the help of contour snapping,
“OUR” performs best compared to variants of the proposed model. It clearly
demonstrates the effectiveness of spatial refinement. Secondly, the performance
of “woRGB”,“woOP” and “woRGBOP” is worse than “woCS”, it demonstrates
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Fig. 4. Examples of spatiotemporal saliency maps for some videos in the DAVIS
dataset. (a): Input video frames, (b): binary ground truths, (c): OUR, (d): SGSP,
(e): GD, (f): SFCD, (g): VSFCN, (h): MC, (i): Amulet.
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Fig. 5. (better viewed in color) Quantitative evaluation for the model analysis: (a)
presents PR curves, (b) presents F-measure curves, and (c) presents MAE.

the effectiveness and rationality of feature aggregation, which needs the com-
plementary information originated from current frame and optical flow image.
Lastly, from the perspective of PR curves, F-measure curves and MAE values,
we can see that “woRGB” and “woOP” perform better than “woRGBOP”, and
it indicates that the complementary information originated from current frame
and optical flow image is crucial for aggregation network. Generally speaking,
the ablation study shown in Fig. 5 demonstrates the effectiveness and rationality
of feature aggregation and spatial refinement in the proposed model.
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4 Conclusion

Based on the existing image saliency model, we propose a novel video saliency
model, in which feature extraction, feature aggregation and spatial refinement
are integrated in a unified architecture. Firstly, the concatenation of the cur-
rent frame and its optical flow image is fed into the feature extraction network,
which defines an appropriate representation for salient objects in videos. Then,
the aggregation network is used to aggregate the generated feature maps and the
original information. The novelty lies in the introduction of the original informa-
tion, which provides complementary information for the aggregation of feature
maps. Finally, the contour snapping network is introduced to perform spatial
refinement, yielding a high-quality saliency map with well-defined boundaries.
The experimental results on two public datasets show the effectiveness of the
proposed model.
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