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ABSTRACT 

 
Co-saliency detection, as a developing research branch of 
saliency detection, devotes to identify the common salient 
objects in a group of related images. The major challenge of 
co-saliency detection is how to effectively represent features 
considering both intra-image and inter-image information. 
In this paper, we propose a co-saliency detection model 
using collaborative feature extraction and high-to-low 
feature integration. We first feed the target image and its co-
images into the Individual Feature Extraction Module 
(IFEM) to produce multi-level individual features. Then, to 
capture the collaborative inter-image information, the 
Collaborative Feature Extraction Module (CFEM) is applied 
to all highest-level individual features, generating the 
collaborative feature. Finally, we build a High-to-low 
Feature Integration Module (HFIM), which integrates the 
collaborative feature and multi-level individual features of 
the target image, to enrich the collaborative feature with 
individual intra-image information. Extensive experiments 
on two public datasets demonstrate that the proposed model 
achieves the state-of-the-art performance. 
 

Index Terms— Co-saliency detection, collaborative 
feature extraction, high-to-low feature integration 
 

1. INTRODUCTION∗ 
 
Saliency detection is defined as the task of discovering the 
most attractive objects in a scene automatically and serves 
as a pre-processing step for many computer vision tasks, 
such as salient object segmentation [1, 2], image 
manipulation [3], object-based image retrieval [4], weakly 
supervised semantic segmentation [5, 6] and so on. In recent 
years, with the popularity of the Internet and smartphones, 
                                                 

∗Zhi Liu is the corresponding author. This work was supported 
by the National Natural Science Foundation of China under Grants 
61771301, 61901145 and U1908210. 

we can easily collect a large number of images sharing 
similar objects. Co-saliency detection, which aims at 
highlighting the common and salient objects in a group of 
related images, has received extensive attention. It benefits 
lots of visual tasks including object co-segmentation [7, 8], 
co-localization [9], and weakly supervised localization [10]. 

Inspired by human visual attention mechanism, many 
early co-saliency detection models leverage hand-crafted 
features and explore heuristic prior knowledge to predict co-
saliency maps. For example, in [11], three visual attention 
cues, i.e. contrast cues, spatial cue, and corresponding cue, 
are devised to measure the cluster-level co-saliency. Cao et 
al. [12] formalized the consistency property among salient 
regions as the rank constraint, which is employed to 
calculate the fused weights of existing saliency maps self-
adaptively. In [13], a region-level fusion method exploits the 
similarities between regions, and a pixel-level refinement 
method integrates color-spatial similarity with border 
connectivity prior. These models have achieved satisfying 
results in some scenarios. However, they hardly make use of 
high-level semantic features which are crucial to robustly 
mine the collaborative information in complex scenes. 

Recently, learning-based models become the mainstream 
research direction for co-saliency detection. These models 
utilize various machine learning techniques to learn co-
saliency patterns from the image groups. For instance, 
Zhang et al. [14] designed a multiple-instance learning 
model, which introduces the self-paced learning theory for 
selecting training samples and gradually learns the co-
saliency cues from confident image regions to ambiguous 
ones. In [15], the proposed model jointly learns 
discriminative feature representation and co-salient object 
detector by optimizing an objective function that embeds a 
metric learning regularization term into support vector 
machine training. Besides, convolutional neural network 
(CNN) can directly process two-dimensional images and 
keep the spatial position of images all the time. The model 
proposed in [16] is a typical CNN based co-saliency model, 
which builds a united learning scheme for exploring the 
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intrinsic correlations between saliency detection in 
individual image and the image group. In [17], multi-layer 
convolutional features are fused through four stages to 
output co-saliency maps. Despite the great progress made by 
these learning-based models, most of them have not fully 
mined both intra-image and inter-image information. 

To solve the problem of capturing collaborative inter-
image information, some relevant studies have tried some 
beneficial exploration. In [18], the deep object co-
segmentation model exploits a mutual correlation layer to 
detect common objects in a pair of images. The correlation 
layer is first introduced in Flownet [19] for estimating 
optical flow. It computes the correlation between each pair 
of patches from two features and outputs a feature map 
which highlights the common objects. The convolutional 
LSTM module (ConvLSTM) [20] substitutes dot products 
with convolutional operations in traditional fully connected 
LSTM [21] to fit spatial features. It can progressively 
discard the irrelevant information and fuse recurrent 
important information of image sequences through updating 
the memory cell. The ConvLSTM is often utilized in video 
processing tasks [22, 23] for learning relevant information 
between video frames. 

Motivated by the correlation layer and ConvLSTM, in 
this paper, we propose a CNN based co-saliency detection 
model with two key modules. In the Collaborative Feature 
Extraction Module (CFEM), the correlation layer based 
feature extraction strategy (COR) and the concatenation 
layer based feature extraction strategy (CAT) are applied to 
all highest-level individual features for capturing the 
relevant information between images. The resultant two 
initial collaborative features are further combined with the 
highest-level individual feature of target image by three 

consecutive ConvLSTMs. In the High-to-low Feature 
Integration Module (HFIM), to balance the individual intra-
image information, the collaborative feature is gradually 
integrated with the multi-level individual features of target 
image from high level to low level. Due to the two key 
modules, the proposed model effectively extracts features 
containing both inter-image and intra-image information. 

Our main contributions are summarized as follows: 
1) We propose a co-saliency detection model using 

collaborative feature extraction and high-to-low feature 
integration, which can effectively generate collaborative 
feature via co-images and integrate with the multi-level 
individual features of target image, for co-saliency detection. 

2) We design a Collaborative Feature Extraction Module 
(CFEM), which exploits the feature extraction strategies of 
correlation and concatenation as well as consecutive 
ConvLSTMs, to obtain the collaborative feature. 

3) We build a High-to-low Feature Integration Module 
(HFIM) to enrich the collaborative feature with the intra-
image information. The HFIM integrates the collaborative 
feature with multi-level individual features of the target 
image in a high-to-low manner. 
 

2. PROPOSED MODEL 
 
The flowchart of the proposed co-saliency detection model 
is illustrated in Fig. 1. Given the target image I , multiple 
co-images 1 2{ , ,...}CI CI  can be randomly selected from the 
same category. Considering the issue of computational 
efficiency and memory usage, the number of co-images is 
set to 2 in our model. So, the target image and its two co-
images are combined into a Co-saliency Detection Group 
(CDG), as the input to our model. The output of our model 
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Fig. 1. Flowchart of the proposed co-saliency detection model. Our model consists of three components: the Individual Feature Extraction 
Module (IFEM), the Collaborative Feature Extraction Module (CFEM), and the High-to-low Feature Integration Module (HFIM). 
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is the co-saliency map 6CSM . In the following subsections, 
we will elaborate our co-saliency detection model. Sec. 2.1 
briefly introduces how to extract individual features, Sec. 
2.2 presents the generation process of collaborative feature, 
and Sec. 2.3 gives a detailed description of integrating 
multi-level individual features and collaborative feature 
abided by a high-to-low manner. 
 
2.1. Individual feature extraction module 
 
To obtain abundant individual intra-image features, we build 
the Individual Feature Extraction Module (IFEM) on the 
basis of VGG16 network [24], as shown in the top left of 
Fig. 1. The VGG16 network is primitively designed for 
image classification and has shown a great success in 
extracting features for many computer vision tasks [25, 26]. 
Specifically, we discard the last max-pooling layer and three 
fully connected layers of the original VGG16 network, to fit 
the pixel-wise co-saliency detection task. The modified 
VGG16 network can provide individual features at five 
convolutional layers with different scales, i.e. conv1_2, 
conv2_2, conv3_3, conv4_3, and conv5_3. Corresponding 
to the three input images in CDG, the IFEM is formed by 
three parallel modified VGG16 networks, which share the 
weights with each other for ensuring the undifferentiated 
feature extraction. The extracted five-level individual 
features of all images in CDG are denoted as 
{ , 0,1,2; 1,2,3,4,5}i

j i j= =IF , with the superscript 0i =  
denoting the target image, 1, 2i =  denoting the two co-
images, and the subscript j  denoting the individual feature 
generated by the thj  convolutional layer. 
 
2.2. Collaborative feature extraction module 
 
In general, the high-level convolutional features have more 
sematic information than low-level convolutional features, 
and the semantic features are more suitable for extracting 
the relevant information between images. In this subsection, 
we focus on the highest-level individual features of the 
target image and its two co-images, and design a 
Collaborative Feature Extraction Module (CFEM), as shown 
in the top right of Fig. 1. The CFEM contains two different 
feature extraction strategies: one strategy based on 
correlation layer (COR), and another strategy based on 
concatenation layer (CAT). Both of COR and CAT appear 
twice in CFEM: COR1 and CAT1 take 0

5IF  and 1
5IF  as the 

input; COR2 and CAR2 take 0
5IF  and 2

5IF  as the input. 
Concretely, in the first feature extraction strategy, the 

process of COR1 and COR2 is performed by: 
0 1 0

1 5 5 5( ( ( ( ( , )), )))cor Conv Cat Corφ φ=CF IF IF IF ,        (1) 

0 2 0
2 5 5 5( ( ( ( ( , )), )))cor Conv Cat Corφ φ=CF IF IF IF ,       (2) 

where 1corCF  and 2corCF  denote the resultant features of 
COR1 and COR2. ()Cor  is a correlation layer which 
performs multiplicative patch comparisons between two 
features. ()φ  denotes the ReLU activation function, and 

()Cat  denotes the concatenation operation along channel 
direction. Here the intermediate result 0 1

5 5( ( , ))Corφ IF IF  (or 
0 2
5 5( ( , ))Corφ IF IF ) is cascaded with 0

5IF  for replenishing 
the individual feature of the target image. ()Conv  is a 
normal convolutional layer, and it comes after the 
concatenation layer for further combination. We incorporate 
the resultant features of COR1 and COR2 as follows: 

1 2( ( ( , )))initial1 cor corConv Catφ=CF CF CF ,            (3) 
where 1initialCF  represents the initial collaborative feature 
generated by the first feature extraction strategy.  

In the second feature extraction strategy, the process of 
CAT1 and CAT2 is performed by: 

3 0 1
1 5 5( ( ( ( , ))))cat Conv Catφ=CF IF IF� ,               (4) 

3 0 2
2 5 5( ( ( ( , ))))cat Conv Catφ=CF IF IF� ,              (5) 

where 1catCF  and 2catCF  denote the resultant features of 
CAT1 and CAT2. 3 ()�  denotes three recurrent operation 
compositions, and each composition covers a convolutional 
layer and a ReLU activation function. Similar to the first 
feature extraction strategy, 1catCF  and 2catCF  are 
incorporated as follows: 

2 1 2( ( ( , )))initial cat catConv Catφ=CF CF CF ,           (6) 
where 2initialCF  represents the initial collaborative feature 
generated by the second feature extraction strategy. 

The first feature extraction strategy COR places 
emphasis on the mutual relation between features at 
different spatial positions, while the second feature 
extraction strategy CAT focuses attention on the mutual 
relation between features at the cross-channel manner. They 
promote and complement each other. Therefore, the two 
initial collaborative features, 1initialCF  and 2initialCF , with the 
additional 0

5IF , are further combined as follows: 
0

1 2 5( ( ( ), ), )initial initial=CF CF CF IF� � � ,            (7) 
where CF  denotes the final collaborative feature. ()�  
represents the ConvLSTM, which works by continually 
updating the cell memory and hidden state according to 
three controlling gates, namely input gate, forget gate and 
output gate. Here the inputs to the three consecutive 
ConvLSTMs are 1initialCF , 2initialCF  and 0

5IF  in sequence. 
The pervious ConvLSTM passes the updated cell memory 
and hidden state to the next ConvLSTM. The hidden state 
generated by the third ConvLSTM is the final collaborative 
feature CF . 
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2.3. High-to-low feature integration module 
 
The final collaborative feature CF  includes collaborative 
information of images, but may lack individual information 
and boundary details of the target image. Therefore, we 
build a High-to-low Feature Integration Module (HFIM), as 
shown in the bottom left of Fig. 1, to supplement the 
collaborative feature with intra-image information. The 
HFIM exploits the individual features of target image at five 
levels, 0{ , 1,2,3,4,5}j j =IF , to gradually optimize the final 
collaborative feature from high level to low level. At each 
level, the current-level individual feature is integrated with 
the previous integrated feature at the higher level, and the 
current-level integrated feature will be sequentially 
integrated with the individual feature at the lower level. 

Specifically, before entering into HFIM, the channel of 
the final collaborative feature CF  is reduced to 2 by a 
convolutional layer with 1 1×  kernel size, producing the 
intermediate co-saliency map 1CSM . The integration 
process at five levels is performed by: 

2 0
2 5 1

2 0
7 1

( ( ( , )))
( ( ( , ( ))))k k k

Conv Cat
Conv Cat Dec− −

� =�
� =��

CSM IF CSM
CSM IF CSM

�
�

,     (8) 

where 3,4,5,6k = . 2CSM , 3CSM , 4CSM , 5CSM and 
6CSM  are the integrated features at five levels. ()Dec  is a 

deconvolutional layer which is used for 2×upsampling to 
adapt to the size of lower-level feature. 2 ()�  denotes two 
recurrent operation compositions, and each composition 
covers a convolutional layer and a ReLU activation function. 
The last operation in Eq. (8) is a convolutional layer with 
1 1×  kernel size to reduce the number of channels to 2. The 
first four integrated features can also be regarded as 
intermediate co-saliency maps, and the finally integrated 
feature 6CSM  is the outputted co-saliency map. 

In Fig. 2, we visualize the five intermediate co-saliency 
maps and the outputted co-saliency map to verify the 
effectiveness of our high-to-low feature integration module. 
It is obvious that the worst prediction result is 1CSM  before 
feature integration. As the processing of feature integration 

from high level to low level, i.e. from 2CSM  to 6CSM , the 
prediction accuracy and boundary details are gradually 
improved. This indicates that the individual features of 
target image are fully exploited in the HFIM. 

In addition, as shown in Fig. 1, we adopt six supervision 
branches for the five intermediate co-saliency maps and the 
outputted co-saliency map to enhance the depth of 
supervision. The proposed network is trained end-to-end 
using six softmax losses between each co-saliency map and 
the ground truth (GT) with the corresponding scale. At each 
branch, the loss function is defined as: 

, , , ,
,

log( ) (1 ) log(1 )x y x y x y x y
x y

L l P l P= − + − −� ,         (9) 

where , {0,1}x yl ∈  is the label of pixel ( , )x y  in the GT, and 

,x yP  is the normalized probability of pixel ( , )x y  belong to 
the co-salient objects according to the co-saliency map. 
Following [17], the inter-image propagation based 
refinement is employed to improve the spatial coherence of 
the outputted co-saliency map. 
 

3. EXPERIMENTAL RESULTS 
 
3.1. Experimental setting 
 
Datasets: We train our model on the Cosal2015 dataset 
[27], the PASCAL-VOC dataset [28] and the Coseg-Rep 
dataset [29], in which all images are manually annotated 
with pixel-wise binary ground truths. We test our model on 
two public co-saliency detection datasets including the 
iCoseg dataset [30] and the MSRC dataset [31]. The iCoseg 
dataset contains 38 categories and has a total of 643 images. 
The MSRC dataset has a total of 233 images in 7 categories. 

Evaluation metrics: We evaluate the performance of 
the proposed model using precision-recall (PR) curve, F-
measure and mean absolute error (MAE). The PR curve is 
drawn by using the precision value versus the recall value at 
each integer threshold from 0 to 255. F-measure is defined 
as the harmonic mean of precision and recall values 
obtained by using an adaptive thresholding method [32], and 
the balance factor β  is set to 0.3 as suggested in [10]. MAE 
measures the average difference at pixel level between the 
co-saliency map and the ground truth. 

Implementation details: Our model is implemented on 
MATLAB R2014a platform with the Caffe toolbox [33]. 
The weights of IFEM are initialized from the VGG16 
network [24]. We use Adam [34] to train our model with 
learning rate 1 4e − , which is decreased to 1 5e −  after 50k 
iterations. And the mini-batch size and momentum are set to 
16 and 0.9, respectively. The proposed model needs about 
80k training iterations for convergence, and takes 0.06s to 
generate the outputted co-saliency map of an image with a 
resolution of 512 512. 

(a)          (b)         (c)        (d)          (e)         (f)         (g)        (h) 

Fig. 2. Visualization of intermediate and outputted co-saliency
maps. (a) Images; (b) ground truths; five intermediate co-saliency
maps including (c) CSM1; (d) CSM2; (e) CSM3; (f) CSM4; (g)
CSM5; outputted co-saliency map (h) CSM6. 
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3.2. Comparison with the state-of-the-art 
 
We compare our model with nine state-of-the-art co-
saliency detection models including CB [11], HS [35], 
SACS [12], RFPR [13], ESMG [36], ODR [37], LDW [27], 
MIL [14], and IML [17]. The co-saliency maps are either 
provided by the authors or generated by the implementation 
codes with the recommended parameter settings. 

Quantitative Evaluation: Fig. 3 shows the 
comparisons of PR curves with nine co-saliency detection 
models on the iCoseg dataset and the MSRC dataset. Tab. 1 
lists all the results of F-measure and MAE for two datasets. 
We observe that our model achieves the best performance 
on both datasets in terms of PR curve, F-measure and MAE. 
This clearly demonstrates the effectiveness and superiority 
of our model. 

Qualitative Evaluation: The visual comparisons of the 
proposed model and nine co-saliency detection models on 
the iCoseg dataset and the MSRC dataset are shown in Fig. 
4. Comparing with other models, our model highlights co-
salient objects more consistently and suppresses background 

more effectively with well-defined boundaries. This proves 
that our model is robust for images with complex 
background and objects with various scales and shapes. 
 
3.3. Ablation study 
 
To verify the contribution of each component in the 
proposed model, we provide five variants of our model with 
different settings. The five variants are set as follows: (1) 
“w/o refinement” means to remove the inter-image 
propagation based refinement; (2) “w/o HFIM” means to 
remove the HFIM and directly take 1CSM  as the outputted 
co-saliency map; (3) “CFEM w/o ConvLSTM” represents 
that we use multiple concatenation layers and convolutional 
layers instead of the three ConvLSTMs; (4) “CFEM w/o 
COR” denotes that the CFEM has only one feature 
extraction strategy CAT; (5) “CFEM w/o CAT” denotes that 
the CFEM has only one feature extraction strategy COR. As 
shown in Tab. 2, we evaluate the five variants using F-
measure and MAE on the iCoseg dataset. Obviously, all 
components in the proposed model contribute to promote 
the co-saliency detection performance. 

(a)  (b)    (c)    (d)     (e)    (f)     (g)    (h)     (i)     (j)     (k)    (l) 

Fig. 4. Visual comparisons of co-saliency maps on iCoseg dataset
(top 10 rows) and MSRC dataset (bottom 5 rows). (a) Images; (b)
ground truths; (c) Ours; (d) CB [11]; (e) HS [35]; (f) SACS [12];
(g) RFPR [13]; (h) ESMG [36]; (i) ODR [37]; (j) LDW [27]; (k)
MIL [14]; (l) IML [17]. 
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Fig. 3. Comparisons of precision-recall (PR) curves with nine co-
saliency models on two public datasets. 
 
Table 1. Comparisons of F-measure and MAE with nine co-
saliency models. The best results are shown in bold. 

 

Models iCoseg [30] MSRC [31] 
F�↑ MAE↓ F�↑ MAE↓ 

Ours 
CB [11] 
HS [35] 

SACS [12] 
RFPR [13] 
ESMG [36] 
ODR [37] 
LDW [27] 
MIL [14] 
IML [17] 

0.856 
0.695 
0.702 
0.784 
0.777 
0.706 
0.800 
0.605 
0.616 
0.846 

0.100 
0.167 
0.181 
0.224 
0.165 
0.126 
0.107 
0.178 
0.159 
0.101 

0.864 
0.573 
0.726 
0.769 
0.702 
0.630 
0.780 
0.721 
0.753 
0.851 

0.152 
0.317 
0.281 
0.263 
0.292 
0.270 
0.191 
0.257 
0.212 
0.164 

 
Table 2. Ablation study for the proposed model on iCoseg dataset. 
The best results are shown in bold. 

 

Model setting F�↑ MAE↓ 
Ours 

w/o refinement 
w/o HFIM 

CFEM w/o ConvLSTM 
CFEM w/o COR 
CEFM w/o CAT 

0.856 
0.838 
0.808 
0.843 
0.825 
0.839 

0.100 
0.091 
0.107 
0.104 
0.109 
0.103 
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4. CONCLUSION 
 

In this paper, we propose a novel co-saliency detection 
model, which extracts features considering both intra-image 
and inter-image information. The proposed model focuses 
on the effective feature extraction and integration. We first 
employ an individual feature extraction module to get multi-
level individual features of the image group. Then, we 
design a collaborative feature extraction module, in which 
all highest-level individual features of the image group are 
used to capture collaborative inter-image information. 
Finally, the multi-level individual feature of target image is 
exploit by the high-to-low feature integration module, to 
balance individual intra-image information. The qualitative 
and quantitative experiments on two public datasets 
demonstrate the effectiveness of the proposed model. 
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