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A B S T R A C T

Most of the deep convolutional neural networks (CNNs) based RGBD saliency models either regard the RGB
and depth cues as the same status or trust the depth information excessively. However, they ignore that
the low-quality depth map is an interference factor and the multi-level deep features that originated from
RGB images contain abundant appearance information. Therefore, we propose a novel RGBD saliency model,
where the attention-guided bottom-up and top-down modules are powerfully combined by using multi-
level deep RGB features, to utilize the deep RGB and depth features in a sufficient and appropriate way.
Concretely, a two-stream structure based bottom-up module is first constructed to dig and fuse the RGB and
depth information, yielding the fused deep feature. Besides, the module embeds the depth cue based atten-
tion maps to guide the indication of salient objects. Then, considering the abundant appearance information,
a top-down module is deployed to perform coarse-to-fine saliency inference, where the fused deep feature is
progressively integrated with appearance information. Similarly, the attention map is also inserted into this
module for locating salient objects. Extensive experiments are performed on five public RGBD datasets and
the corresponding experimental results firmly demonstrate the effectiveness and superiority of our model
when compared with the state-of-the-art RGBD saliency models.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Saliency detection aims to highlight the most visually discrimi-
native objects in some scenes and has received increasing concern
in recent years. It has a wide variety of applications in many fields
such as image segmentation [1,2], quality assessment [3], action
recognition [4] and person re-identification [5]. Correspondingly,
there are many effective efforts in this field, in particular, the tra-
ditional machine learning based models [6-10] together with the
convolutional neural networks (CNNs) based models [11-15] signif-
icantly promote the performance of saliency detection. However,
these existing saliency models mainly focus on RGB images or
videos. Meanwhile, with the recent development of RGBD sensing
technologies such as Microsoft Kinect, mobile phone camera and
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edu.cn (J. Zhang).

RealSense, depth information, which provides complementary infor-
mation about objects’ spatial structure and layout, can be obtained
conveniently. On the basis of this, the booming research topic, i.e.
RGBD saliency detection, which employs RGB image and depth map
together to pop-out the most attractive objects in RGBD scenes,
draws more and more attention due to its practical application value
in many visual analysis tasks, such as object detection [16], visual
tracking [17], and image retargeting [18].

For RGBD saliency models, most of the early efforts [19-30] mainly
design hand-crafted features to construct various models, such as
contrast-based models [23], background-based model [25], cellu-
lar automata based model [27], minimum barrier distance based
model [29] and multi-scale fusion based model [28]. However, the
performance of the aforementioned efforts often declines signifi-
cantly when dealing with some complex scenes such as cluttered
background, low contrast and heterogeneous objects. This can be
mainly attributed to the lack of high-level semantic information,
because most of the hand-crafted features are low-level features,
which cannot provide effective representations for salient objects
and background regions. Fortunately, in recent years, deep learning
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techniques especially the CNNs, which is often used for extracting
high-level semantic features, are widely deployed to RGBD saliency
models [31-42], such as complementarity-aware fusion network [35],
three-stream model [41] and fluid pyramid integration model [42],
which further boost the RGBD saliency detection’s performance.

Among these RGBD saliency models, there are two major mod-
els. The first one is the single-stream model, such as the efforts
[28,38,36,42], which inserts the depth information into the core
branch, i.e. RGB branch and achieves a comparable performance
when compared with the state-of-art models. The other major model
adopts two-stream structure [20,23,21,26,34,35,40,39], which tries
to aggregate the RGB and depth information via the multi-level
and multi-modal fusion architecture, and also achieves an encour-
aging performance. However, a further promotion for RGBD saliency
detection is still imperative, especially when dealing with some
challenging scenes including small object, unclear depth, complex
objects and so on. Meanwhile, through a thorough study, we find
that the aforementioned efforts treat the RGB and depth informa-
tion equally or rely on the depth information heavily. Unfortunately,
as we know, the inherent attributes of RGB and depth information
are considerably different, and they may lead to some incompat-
ible faults when combined by using simple operations (including
concatenation, summation and multiplication), some complicated
methods as well as symmetric information interaction between the
paired modality. Besides, due to the technique limitation of sen-
sors, depth maps usually contain amount of noise and their quality
is lower than RGB images. Furthermore, for the multi-level deep
features generated from RGB branch, namely the appearance infor-
mation, it is also beneficial for the depiction of salient objects, where
the top layers contain rich semantic information and the bottom
layers indicate spatial details. Thus, according to this, we can say
that the usage of RGB and depth information is worthy of serious
consideration.

Motivated by the aforementioned argumentation, this paper pro-
poses a novel RGBD saliency model to utilize the RGB and depth
information sufficiently and appropriately. To achieve this goal, we
devise three key components. First, bottom-up and top-down strate-
gies have been successfully applied in saliency models [43-45],
and the U-shape architecture based or fully convolutional net-
works (FCN) based saliency models [11,12,15], which are mainly an
encoder-decoder architecture, have also achieved an encouraging
performance. Thus, inspired by this, our entire network also adopts
a U-shape or encoder-decoder architecture, which contains bottom-
up and top-down modules. Meanwhile, considering the successful
employment of two-stream structure in RGBD saliency models, we
design a two-stream structure based bottom-up module to perform
feature extraction and fusion for the RGB and depth modalities.
Besides, as the aforementioned discussion about multi-level deep
features obtained from RGB branch in the bottom-up module, we pay
more attention to RGB information, namely the abundant appear-
ance information, via the top-down module, in which the fused
deep feature generated by bottom-up module gradually integrates
appearance information from top layers to bottom layers. Follow-
ing this way, the bottom-up module and the top-down module
are further combined using multi-level deep RGB features. Lastly,
enlightened by the effective utilization of attention maps [46,14], we
also embed the attention maps, which can be obtained from depth
cue by using the contrast-enhanced method [42], into the entire net-
work to guide the differentiation of salient objects and background
regions. In this way, we can not only ease the negative impact of
some low-quality depth maps but also further promote the sufficient
utilization of the depth information.

Therefore, our model shown in Fig. 1 first puts the RGB image and
the depth map into the bottom-up module, where we can extract
deep RGB and depth features and generate the fused deep feature.
Then, the top-down module is deployed to progressively integrate

the fused deep feature with the multi-level deep RGB features,
namely the appearance information. During this process, the fine-
grained saliency prediction is performed in a top-down way. Finally,
we can get the high-quality saliency map, i.e. the output of the top-
down module. Overall, the main contribution of this proposed model
can be presented as follows:

1. We propose a novel RGBD saliency model, in which the
attention-guided two-stream structure based bottom-up mod-
ule and top-down module are strongly linked using appear-
ance information, to utilize the RGB and depth information
sufficiently and appropriately.

2. To sufficiently utilize the depth information and effectively
ease the adverse impact of low-quality depth maps, we devise
attention maps to both modules for guiding the discrimination
of salient objects and background regions.

3. To adequately use the RGB information, we pay more attention
to the appearance information, i.e. the multi-level deep RGB
features, which is progressively integrated with the fused deep
feature in a top-down manner.

4. Comparing with the state-of-the-art RGBD saliency models on
five public RGBD datasets, our model shows distinguished per-
formance, and this clearly demonstrates the effectiveness of
the proposed RGBD saliency model.

The remaining of this paper is organized as follows. The related
works about RGBD saliency detection are reviewed in Section 2.
Section 3 gives a detailed description of the proposed RGBD saliency
model. The experimental results and the corresponding analyses are
discussed in Section 4. Finally, we draw a conclusion for this paper in
Section 5.

2. Related works

In recent years, numerous efforts including the hand-crafted
based models [19-30] and the deep learning based models [31-42]
have devoted to perform RGBD saliency detection, and achieve
encouraging performance. Among these models, the exploration in
the complementarity of RGB and depth information is the key issue
in the research of RGBD saliency model. Usually, these models can
be categorized into two classes, namely the single-stream RGBD
saliency model and the two-stream RGBD saliency model. There-
fore, in this section, we mainly give a brief review for the two RGBD
saliency models.

2.1. Single-stream RGBD saliency model

Many efforts have been devoted to the single-stream RGBD
saliency models. For example, in [28], various hand-crafted features
are aggregated via a random forest regressor, and the final saliency
map is the summation of all saliency estimations in all scales. In [31],
various saliency feature vectors such as local/global contrast and spa-
tial/background prior are further processed to generate the saliency
probability for each superpixel, and then Laplacian propagation is
employed to generate the spatial consistent saliency maps. In [32],
the top-down and bottom-up cues are utilized via a deep learn-
ing based architecture, in which the superpixel-based hand-crafted
depth features are combined with the deep RGB features to obtain
saliency scores by using fully-connected layers. In [38], a master net-
work is designed for extracting deep RGB features and a sub-network
is utilized to extract deep depth features, which are incorporated
into the master network. In [36], Liu et al. proposed a single stream
recurrent convolution neural network (SSRCNN), in which the RGB
and depth maps are concatenated into a four-channels input. In [42],
the proposed fluid pyramid network tries to integrate the multi-
level deep features to generate saliency maps for RGBD images. In
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Fig. 1. Illustration of the proposed RGBD saliency model: under the guidance of attention maps
{
AMi

}5
i=1, a two-stream structure based bottom-up module first generates multi-

level and multi-modal deep features
{
FR

i

}L
i=1 and

{
FD

i

}L
i=1 (L = 5), which are further processed by convolutional layers (Conv-si and Conv-si′ , i = 1, · · · , 5) and then aggregated

into a fused deep feature FD using the concatenation (Concat) and convolution (Conv-A). Successively, through the top-down module, the fused deep feature FD is progressively
integrated with the appearance information, i.e. the multi-level deep RGB features

{
FR

i

}L
i=1, via concatenation layers (C) and convolutional blocks (Conv-Bi, (i = 1, · · · , 5)).

Following this way, we can obtain a high-quality saliency map S for each input RGB image I and depth map DH.

comparison with the aforementioned single-stream RGBD saliency
models, our model is unique. For our entire network, we devise a
encoder-decoder-like architecture, where the two-stream structure
based bottom-up module (i.e. encoder) and the top-down module
(i.e. decoder) are trained jointly. During the whole process, our model
gives more concern to appearance information and introduces depth
cue based attention maps, which further strengthen the combination
of both modules and guide the salient objects’ location, respectively.
Following this way, we can acquire a high-quality saliency map for
each RGBD image.

2.2. Two-stream RGBD saliency model

For the two-stream RGBD saliency models, some prior works are
constructed by using hand-crafted features. For example, in [20],
depth contrast, color contrast and spatial bias, which can be obtained
using color and depth values, are combined together to generate
visual saliency maps via multiplication operation. In [23], four kinds
of contrast are first computed using color, luminance, texture and
depth cues, and then they are fused into the final saliency map,
in which the fusion method allocates different weights to differ-
ent contrast maps according to their compactness values. In [21], a
multi-stage saliency model is proposed, where the feature contrast
based map, region grouping based map together with location and
scale based map are all computed using color and depth information
simultaneously. In [26], the color and depth values based compact-
ness saliency map is combined with the foreground saliency map,
which is generated based on depth cue and multiple contrast, via
weighted-sum approach. In [27], an evaluation strategy based RGBD
saliency model is proposed, where the color channel based saliency

map and the depth channel based saliency map are first fused and
then refined using cellular automata.

With the wide application of convolutional neural networks
(CNNs), the CNNs-based RGBD saliency models also perform very
well. For instance, in [34], except the exploration in the comple-
mentarity of RGB and depth information, the RGB branch and the
depth branch are integrated using a combination layer, i.e. a fully
connected layer. In [35], the proposed model aims to explore the
complementarity of RGB and depth cues via a fusion network,
which effectively integrates the cross-modal and cross-level deep
features. Successively, in [40], Chen et al. proposed another two-
stream fusion model, which not only diversifies the paths in RGB
and depth branches but also deploys interactions into many layers.
In [39], the fusion module learns a switch map to adaptively integrate
the estimated saliency results from RGB and depth branches. Gener-
ally, the two-stream structure based bottom-up module in our model
also inherits the merits of the aforementioned two-stream RGBD
saliency models for feature mining and aggregation. Differently,
our model also introduces attention maps for guiding the follow-
ing process including feature extraction, fusion and salient objects’
location. Furthermore, the bottom-up module is strongly combined
with the top-down module by using appearance information, namely
the multi-level deep RGB features, where the generated fused deep
feature is progressively integrated with appearance information,
yielding the high-quality saliency map.

3. The proposed method

In this part, we first give a brief introduction for the proposed
RGBD saliency model in Section 3.1. Then, the bottom-up module
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is detailed in Section 3.2. Next, we discuss the top-down module in
Section 3.3. Lastly, the training and implementation details will be
elaborated in Section 3.4.

3.1. Overall architecture

The proposed RGBD saliency model shown in Fig. 1 contains a
two-stream structure based bottom-up module and top-down mod-
ule, which are effectively combined using appearance information
and are jointly trained in an end-to-end manner. Concretely, the
entire network of our model is an encoder-decoder architecture, and
the bottom-up module (i.e. encoder) is built based on the basic net-
work VGG-16 model [47]. Firstly, the input of our model is the RGB
image I and the depth map DH, which are all in the size of W × H
(W means the width and H is the height). Notably, it is unsuitable
for the original depth map D to directly use the pre-trained model
of VGG-16, thus we encode the original depth map D into a three-
channel HHA image DH using [48]. Then, the input RGB image I
and depth map DH are passed into the bottom-up module to per-
form feature extraction and fusion, yielding the fused deep feature
FD. During this process, we can also obtain multi-level and multi-
modal deep features

{
FR

i

}L
i=1 and

{
FD

i

}L
i=1 (L = 5), i.e. the deep

RGB and depth features in different convolutional blocks. Among
these deep features,

{
FR

i

}L
i=1 contains abundant appearance informa-

tion, which can not only indicate low-level spatial details but also
present high-level semantic cues. Successively, the fused deep fea-
ture FD is progressively aggregated with appearance information{
FR

i

}L
i=1 via the top-down module (i.e. decoder). Following this way,

we can obtain a high-quality saliency map S for each RGBD image.

3.2. Bottom-up module

To sufficiently dig and fuse the RGB and depth information,
and motivated by the existing two-stream RGBD saliency models
[39,35,34], we design the two-stream structure based bottom-up
module to extract and fuse the deep RGB and depth features. Mean-
while, considering the negative impact of low-quality depth maps
and inspired by the contribution of attention maps [46,14], we
also introduce attention maps to the bottom-up module for guiding
the deep feature mining. In the following, a detailed description is
presented for the bottom-up module.

Firstly, the two-stream structure based bottom-up module con-
tains two sibling branches shown in Fig. 1 including a RGB branch
and a depth branch, which are devised to extract deep RGB features
and deep depth features, respectively. Concretely, both branches are
constructed based on VGG-16, and here, according to most of CNNs-
based saliency models, we also remove the last three fully connected
layers and the last pooling layer. Therefore, for each branch of the
bottom-up module, it consists of thirteen convolutional layers and
four max pooling layers, corresponding to five convolutional blocks
shown in Fig. 1. Besides, the two branches with the same structure

are devised to share the same weights in all the corresponding con-
volutional layers, but they are all equipped with batch normalization
(BN) layers [49], which can indicate different domain knowledge
(RGB and depth) from the viewpoint of statistics, between the con-
volutional layers and the ReLU layers. Following this way, we can
acquire deep features with five-level resolutions, which are corre-
sponding to Conv1-2 (in which the number of channels are set to
64), Conv2-2 (128 channels), Conv3-3 (256 channels), Conv4-3 (512
channels) and Conv5-3 (512 channels), in each branch. Here, for
simplicity, Fig. 1 only shows the aforementioned five convolutional
layers. Meanwhile, we denote the generated multi-level and multi-
modal deep RGB and depth features are denoted as

{
FR

i

}L
i=1 and{

FD
i

}L
i=1 (L = 5), which are all in the size of W

2i−1 , H
2i−1

⌋
and refer to

the RGB branch and the depth branch, respectively.
Secondly, the bottom-up module also contains several other lay-

ers. Concretely, after obtaining the multi-level and multi-modal deep
features

{
FR

i

}L
i=1 and

{
FD

i

}L
i=1 (L = 5), we choose to fuse them

to obtain the fused deep feature. However, these deep features
including

{
FR

i

}L
i=1 and

{
FD

i

}L
i=1 are with different resolutions, thus we

employ five pairs of convolutional layers, namely Conv-si and Conv-
si′ (i = 1, · · · , 5), to downsample these deep feature maps and make
these deep features with the same resolution as

{
FR

i

}L
or

{
FD

i

}L
. Here,

for each pair of convolutional layers Conv-si and Conv-si′, the ker-
nel size is set to 25−i × 25−i, the stride size is equal to 25−i and the
number of channels is set to 64. Successively, we deploy a concatena-
tion layer (Concat) and a convolutional block (Conv-A) to effectively
integrate the multi-level and multi-modal deep features, yielding the
fused deep feature FD. The corresponding process can be defined as:

FD = hA
([[

hSR
i

(
FR

i

)]5

i=1
,
[
hSD

i

(
FD

i

)]5

i=1

])
, (1)

where [.] means concatenation, and hA denotes the convolutional
block Conv-A, which contains a convolutional layer (kernel size =
3 × 3, stride size = 1, channels = 512), a BN layer and a ReLU layer.
Besides, hSR

i and hSD
i refer to the pair of convolutional layers Conv-si

and Conv-si′, respectively.
Lastly, the bottom-up module also introduces attention maps to

guide the feature extraction, which will be beneficial for discriminat-
ing salient objects and background regions. Specifically, the attention
maps {AMi}5

i=2 with four resolutions � W
2i−1 , H

2i−1 � (i = 1, · · · , 5) are
first generated based on depth maps by using the contrast-enhanced
method [42]. Then, we embed these attention maps into later four
levels of RGB and depth branches. Notably, for simplicity, we call
this operation the “guidance item”, which contains the purple line
(pooling and copy), the red circle (embed) and the red line (copy), as
shown in Figs. 1 and 2(a). Thus, the input of ith guidance item, i.e. the
multi-level and multi-modal deep feature F∗

i−1 (* denotes R or D), is
processed in this way:

Fe∗
i−1 = P

(
F∗

i−1

)
+ Conv

(
P

(
F∗

i−1

) � AMi
)

, (2)

Fig. 2. (a): Illustration of the guidance operation of
{
AMi

}5
i=2, (b1): Illustration of the guidance procedure of AM1, and (b2): the detailed configuration of convolutional block

Conv-B1, which consists of convolutional layers (kernel size = 3 × 3, stride = 1), batch normalization layers (BN) and ReLU layers. Noted, in (b1), “C” means concatenation.
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where Fe∗
i−1 is the output of the ith guidance item in both branches,

and it can be regarded as the enhanced deep feature including FeR
i−1

and FeD
i−1, which are also the input of following convolutional block

Convi. Besides, P is the pooling layer between two convolutional
blocks, � means pixel-wise multiplication and Conv is the convolu-
tional layer (kernel size = 3×3, stride size =1). Notably, in this part,
only

{
AMi

}5
i=2 participate in the guidance operation.

3.3. Top-down module

Through the bottom-up module, we can not only obtain the fused
deep feature FD but also acquire the abundant appearance infor-
mation, i.e. the multi-level deep RGB features

{
FR

i

}L
i=1 (L = 5).

Besides, as we know, the multi-level deep RGB features provide pow-
erful high-level semantic cues and low-level spatial details, which
are useful for differentiating salient objects and background regions.
Thus, we employ a decoder-like top-down module shown in Fig. 1 to
gradually integrate the fused deep feature FD with the appearance
information {FR

i }L
i=1 (L = 5) and perform saliency estimation in a

coarse-to-fine way. During this process, we give the RGB information
more concern, which further boosts the combination of bottom-up
and top-down modules. Meanwhile, similar as the bottom-up mod-
ule, i.e. considering the negative influence of low-quality depth maps,
we also deploy attention map into this part for guiding the location
of salient objects.

According to Fig. 1, the top-down module contains five convolu-
tional blocks Conv-Bi (i = 1, 2, 3, 4, 5), and here, we divide it into
two parts: one part includes the last four convolutional blocks Conv-
Bi (i = 2, 3, 4, 5), which consists of convolutional layers (kernel size
= 3 × 3, stride = 1), batch normalization (BN) layers, ReLU layers,
deconvolutional layer (kernel size = 3 × 3, stride = 2) and dropout
layer (ratio=0.5) [50], and the other part is the first convolutional
block Conv-Bi (i = 1). Concretely, firstly, for the ith convolutional
blocks Conv-Bi (i = 2, 3, 4, 5) shown in Fig. 3, the detailed procedure
can be defined as follows:

FB
i = hB

i

([
FB

i+1, FR
i

])
(2 � i � 5) , (3)

where FB
i denotes the output of each convolutional block Conv-Bi,

which is represented by hB
i . Notably, for the last convolutional block

Conv-B5, we initialize the FB
i+1 (i = 5) by FD, namely the input of the

top-down module. During this process, we can see that the appear-
ance information FR

i together with FB
i+1 are passed into the following

convolutional block Conv-Bi, as shown in Fig. 3. Thus, following
this way, we can obtain the intermediate result FB

2 from convolu-
tional block Conv-B2, which only consists of two sub-convolutional
blocks and is slightly different from those three sub-convolutional

blocks based Conv-Bi (i = 3, 4, 5). Similarly, the convolutional block
Conv-B1 also contains two sub-convolutional blocks.

Secondly, according to Fig. 2 (b1), the intermediate result FB
2 first

concatenates with deep RGB feature FR
1, yielding TFC

1, which will be
further enhanced by using the attention map AM1 (W × H). Then,
the enhanced feature TFeC

1 is passed into the first convolutional block
Conv-B1 shown in Fig. 2 (b2), yielding the final deep feature FB

1. Thus,
this guidance procedure can be formulated as:

TFC
1 =

[
FB

2, FR
1

]

TFeC
1 = TFC

1 + Conv
(

TFC
1 � AM1

)

FB
1 = hB

1

(
TFeC

1

)
, (4)

where hB
1 denotes the Conv-B1. Similar to the guidance operation in

Eq. (2), Conv and � also refer to convolution and pixel-wise mul-
tiplication, respectively. Notably, the guidance operation of AM1 is
slightly different from AMi (i = 2, · · · , 5) shown in Fig. 2, where
there is no pooling operation in Eq. (4). Eventually, the final high-
quality saliency map S shown in Fig. 1 can be obtained by performing
softmax operation on FB

1.

3.4. Model learning and implementation

The entire network of our model is a U-shape or encoder-
decoder-like architecture, which can be trained in an end-to-end
manner, and the encoder part, namely the two-stream struc-
ture based bottom-up module, is constructed based on VGG-
16 [47]. Besides, inspired by some deeply-supervised saliency mod-
els [51,52,36], we not only deploy the deep supervision to all convo-
lutional blocks Conv-Bi (i = 1, 2, 3, 4, 5) in the top-down module,
but also appoint it to the last convolutional blocks of RGB and depth
branches in bottom-up module. Furthermore, with the deployment
of attention maps, the corresponding loss (denoted as attention loss)
will also be added in our total loss. Here, except for the attention
loss, all the aforementioned loss are marked in blue lines, as shown
in Fig. 1. Meanwhile, our total loss L can be denoted as:

L = ltR
5 + ltD

5 + la +
5∑

i=1

lsi, (5)

where lsi and la refer to the convolutional block Conv-Bi and the
attention loss, respectively. ltR

5 and ltD
5 respectively denote the loss

of the last convolutional blocks of RGB branch and depth branch.
Notably, lsi, ltR

5 and ltD
5 are all computed using the cross-entropy loss.

We implement the proposed RGBD saliency model by using the
Caffe toolbox [53] on a PC, which is equipped with an i7-4790 K

Fig. 3. Illustration of the convolutional block Conv-Bi (i = 2, · · · , 5). (a): the thumbnail of Conv-Bi, (b): the detailed configuration of Conv-Bi, which consists of convolutional
layers (kernel size = 3 × 3, stride = 1), batch normalization (BN) layers, ReLU layers, deconvolutional layer (kernel size = 3 × 3, stride = 2) and dropout layer (ratio=0.5).
Noted, in (a), “C” in yellow box denotes concatenation.
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CPU, a 32 GB memory RAM and a NVIDIA Titan XP GPU (with 12 GB
memory). Specifically, we first initialize the parameters of the RGB
and depth branches of the bottom-up module with the VGG-16
model, and the remaining parameters are initialized by using the
“xavier” method [54]. Then, the stochastic gradient descent (SGD)
is employed to minimize the total loss shown in Eq. (5), in which
we set dropout ratio, batch size, mini-batch size, momentums and
weight decay as 0.5, 1, 8, 0.9 and 0.0001, respectively. Besides, the
learning rate is initialized to 10−7, and it is consecutively divided by
10 after each 12,500 iterations. Here, we set the total training itera-
tions as 25,000 for convergence. Furthermore, to train the proposed
RGBD saliency model, we employ the same training set as CPFP [42],
which randomly selects 1400 samples from the NJU2 K [22] and 650
samples from the NLPR [21]. In addition, we also adopt augmenta-
tion operations, in which we perform rotation on the original image
with angles 90◦, 180◦, and 270◦ and also adopt mirror reflection for
the original image. In this way, we can totally obtain 10,250 training
triplets including the RGB images, the depth maps and the ground
truths.

4. Experimental results

This section first presents the RGBD datasets and evaluation met-
rics in Section 4.1. Then, in Section 4.2, we will compare our model
with the state-of-the-art RGBD saliency models from the perspective
of quantitative and qualitative views. Lastly, the detailed ablation
studies will be shown in Section 4.3.

4.1. Datasets and evaluation metrics

4.1.1. Datasets
To comprehensively validate our model, we conduct extensive

comparisons on five public RGBD datasets including NJU2K [22],
NLPR [21], STEREO [19], LFSD [55] and DES [20]. In the following,
we will give a brief introduction for these datasets: NJU2K contains
2003 image pairs including RGB images and depth maps, which are
obtained from daily life, Internet and 3-D movies. Notably, 1400
image pairs in the training set are collected from NJU2K, and for test-
ing, 485 image pairs in NJU2 K are taken out to construct a testing
set named “NJU2K-TE”. NLPR is built by using Microsoft Kinect and
contains 1000 image pairs, in which some images possess multiple
salient objects. To train our model, 650 image pairs in NLPR are also
selected to make up the training set. Similarly, we also collect 300
image pairs from NLPR to constitute a testing set denoted as “NLPR-
TE”. STEREO is also called SSB1000 and has 1000 image pairs, which
are mainly collected from Internet images and 3D movies. Here, all
images in STEREO are regarded as testing set. LFSD and DES contain
100 and 135 image pairs, respectively, and both of them are regarded
as testing set. Notably, these five RGBD datasets are all provided with
pixel-wise annotated ground truth.

4.1.2. Evaluation metrics
To quantitatively make a comparison for all RGBD saliency mod-

els, we employ four evaluation metrics including S-measure (S) [56],
max F-measure (maxF), max E-measure (maxE) [57] and mean abso-
lute error (MAE) to evaluate all models’ performance.

F-measure is treated as a comprehensive evaluation, which is the
weighted harmonic mean of precision and recall, and it is defined as:

Fb =

(
1 + b2)

Precision × Recall
b2Precision + Recall

, (6)

where b2 is set to 0.3 as suggested in [10,58]. We can obtain the max
F-measure by using different thresholds [0,255].

MAE presents a balanced comparison between ground truth GT
and saliency map S, which is formulated as:

MAE =
1

W ∗ H

W∗H∑
i=1

∣∣S(i) − GT(i)
∣∣ , (7)

where W and H mean the width and height of the saliency map,
respectively. Noted, to compute MAE, i.e. Eq. (7), S is firstly scaled to
[0,1] for all RGBD saliency models.

S-measure is a structural similarity measure, which simultane-
ously incorporates the region-aware (Sr) and the object-aware (So) to
measure the structural similarity between saliency map and ground
truth. According to [56], the corresponding definition is shown as:

S = a ∗ So + (1 − a) ∗ Sr , (8)

where a denotes the balance parameter and is set to 0.5.
E-measure means the enhanced-alignment measure, which con-

siders the local details and global information simultaneously.
According to [57], the E-measure is defined as:

n = 2vGT (x,y)◦vFM(x,y)
vGT (x,y)◦vGT (x,y)+vFM(x,y)◦vFM(x,y)

E = 1
W×H

W∑
x=1

H∑
y=1

f (n)
, (9)

where f( • ) can be defined as a convex function such as the quadratic
form and ◦ is the Hadamard product. Besides, alignment matrix n is
built on the bias matrices vGT and vFM, which are regarded as the
distance between each pixel value of ground truth and its mean value
respectively.

4.2. Comparison with the state-of-the-arts

To validate the performance of our model, we compare the pro-
posed RGBD saliency model with totally 13 state-of-the-art RGBD
saliency models including CDCP [30], ACSD [22], LBE [25], DCMC [26],
SE [27], MDSF [28], DF [31], AFNet [39], CTMF [34], PCF [35],
MMCI [40], TANet [41] and CPFP [42] on the aforementioned five
public RGBD datasets including NJU2K-TE, NLPR-TE, STEREO, LFSD
and DES. Here, the former six models are the classical models (i.e.
non-deep learning), and the later seven models are all CNNs-based
models. Notably, the saliency maps of all the 13 state-of-the-art
models are generated by running the source codes or provided by
the authors, and they are scaled to the same resolution as orig-
inal images. Next, we will show the quantitative and qualitative
comparisons successively.

The quantitative comparison results on five public challenging
RGBD datasets are shown in Table 1 including S-measure, max F-
measure, max E-measure and MAE. It can be seen that our model
consistently outperforms the 13 state-of-art RGBD saliency mod-
els on most evaluation items, which convincingly demonstrates the
superiority and effectiveness of the proposed RGBD saliency model.
Besides, we also present the computation cost of all RGBD saliency
models shown in the 2nd row of Table 1. As the aforementioned
description in Section 3.4, our model is running on PC with an i7-
4790 K CPU, a 32 GB memory RAM and a NVIDIA Titan XP GPU
(with 12 GB memory) and is implemented via the Caffe toolbox [53].
Noted, we perform the experiments on 288×288 images. Referring
to Table 1, we can see that the average running time of each image
processed by our model is 0.179 s, which is a comparable result when
compared with the 13 state-of-the-art RGBD saliency models.

Fig. 4 shows the qualitative comparisons for our model and 13
state-of-the-art RGBD saliency models on several challenging exam-
ples, which exhibit many attributes such as heterogeneous objects,
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Table 1
Quantitative results of different RGBD saliency models on five public RGBD datasets in terms of S-measure, max F-measure, max E-measure and MAE. Besides, the average running
time (seconds) of these models is also provided here. Noted, the best results are marked in bold face, and ↑ & ↓ mean that the larger and smaller one is better, respectively.

CDCP ACSD LBE DCMC SE MDSF DF AFNet CTMF PCF MMCI TANet CPFP Ours
Metric [30] [22] [25] [26] [27] [28] [31] [39] [34] [35] [40] [41] [42]

Time >60.0 0.718 3.110 1.200 1.570 >60.0 10.36 0.030 0.630 0.060 0.050 0.070 0.170 0.179
NJU2K-
TE

S ↑ 0.669 0.699 0.695 0.686 0.664 0.748 0.763 0.772 0.849 0.877 0.858 0.878 0.879 0.893
maxF ↑ 0.621 0.711 0.748 0.715 0.748 0.775 0.804 0.775 0.845 0.872 0.852 0.874 0.877 0.891
maxE ↑ 0.741 0.803 0.803 0.799 0.813 0.838 0.864 0.853 0.913 0.924 0.915 0.925 0.926 0.930
MAE ↓ 0.180 0.202 0.153 0.172 0.169 0.157 0.141 0.100 0.085 0.059 0.079 0.060 0.053 0.055

NLPR-
TE

S ↑ 0.727 0.673 0.762 0.724 0.756 0.805 0.802 0.799 0.860 0.874 0.856 0.886 0.888 0.914
maxF ↑ 0.645 0.607 0.745 0.648 0.713 0.793 0.778 0.771 0.825 0.841 0.815 0.863 0.867 0.897
maxE ↑ 0.820 0.780 0.855 0.793 0.847 0.885 0.880 0.879 0.929 0.925 0.913 0.941 0.932 0.950
MAE ↓ 0.112 0.179 0.081 0.117 0.091 0.095 0.085 0.058 0.056 0.044 0.059 0.041 0.036 0.031

STEREOS ↑ 0.713 0.692 0.660 0.731 0.708 0.728 0.757 0.825 0.848 0.875 0.873 0.871 0.879 0.893
maxF ↑ 0.664 0.669 0.633 0.740 0.755 0.719 0.757 0.823 0.831 0.860 0.863 0.861 0.874 0.886
maxE ↑ 0.786 0.806 0.787 0.819 0.846 0.809 0.847 0.887 0.912 0.925 0.927 0.923 0.925 0.930
MAE ↓ 0.149 0.200 0.250 0.148 0.143 0.176 0.141 0.075 0.086 0.064 0.068 0.060 0.051 0.053

LFSDS ↑ 0.717 0.727 0.729 0.753 0.692 0.700 0.791 0.738 0.796 0.794 0.787 0.801 0.828 0.876
maxF ↑ 0.703 0.763 0.722 0.817 0.786 0.783 0.817 0.744 0.791 0.779 0.771 0.796 0.826 0.877
maxE ↑ 0.786 0.829 0.797 0.856 0.832 0.826 0.865 0.815 0.865 0.827 0.839 0.847 0.872 0.912
MAE ↓ 0.167 0.195 0.214 0.155 0.174 0.190 0.138 0.133 0.119 0.112 0.132 0.111 0.088 0.070

DES S ↑ 0.709 0.728 0.703 0.707 0.741 0.741 0.752 0.770 0.863 0.842 0.848 0.858 0.872 0.913
maxF ↑ 0.631 0.756 0.788 0.666 0.741 0.746 0.766 0.728 0.844 0.804 0.822 0.827 0.846 0.897
maxE ↑ 0.811 0.850 0.890 0.773 0.856 0.851 0.870 0.881 0.932 0.893 0.928 0.910 0.923 0.951
MAE ↓ 0.115 0.169 0.208 0.111 0.090 0.122 0.093 0.068 0.055 0.049 0.065 0.046 0.038 0.031

cluttered background, low contrast between salient objects and
background regions as well as unclear depth. Specifically, from 1st
to 5th rows, the images present heterogeneous salient objects with
cluttered background, especially the 1st(the woman in blue vest with
bare arms), 2nd(the girl with green shirt in red hair) and 3rd(the
orange box with colorful slogan) examples. Thus, it is a challenging
task for all models to perform saliency detection on these scenes.
Fortunately, their depth maps are in a good condition. Based on this,
most of the models can locate the major parts of salient objects.
According to Fig. 4, we can find that our model shown in Fig. 4 (a)
achieves the best performance, which highlights the salient objects
more complete and more accurate. For other models, we can find

that the CNNs-based models (Fig. 4 (j)–(q)) achieve more promising
results than the traditional non-deep learning models (Fig. 4 (e)–(i)),
which also validates the effectiveness of deep learning techniques.

Subsequently, in 6th and 7th rows, the cases are more complex
scenes, which exhibit low contrast between foreground and back-
ground, unclear depth as well as cluttered background. According to
Fig. 4, it can be seen that our model performs best on the two images.
In contrast, other models (Fig. 4 (e)–(q)) not only cannot pop-out the
salient objects coarsely, but also highlight the background regions
falsely. Among those models, especially some deep learning models
such as [39,40] and [35], they yield poor results because of heavily
depending on depth cues, which are in low quality. Lastly, for the

Fig. 4. Visualization comparison of different RGBD saliency models on several challenging scenes. (a): RGB, (b): Depth, (c): GT, (d): Ours, (e): ACSD, (f): LBE, (g): SE, (h): DCMC, (i):
CDCP, (j): DF, (k): MDSF, (l): PCF, (m): CTMF, (n): AFNet, (o): CPFP, (p): MMCI, (q): TANet.
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Table 2
Ablation studies are performed on three public RGBD datasets including NJU2K [22] and LFSD [55]. Noted, the best result
in each column is marked in bold face.

w/oAPP w/oHHA w/oAM wHHADecoder Ours

NJU2K-TE S ↑ 0.883 0.882 0.887 0.893 0.893
maxF ↑ 0.880 0.880 0.884 0.890 0.891
maxE ↑ 0.926 0.921 0.921 0.928 0.930
MAE ↓ 0.057 0.057 0.059 0.055 0.055

LFSD S ↑ 0.856 0.859 0.848 0.861 0.876
maxF ↑ 0.858 0.865 0.840 0.866 0.877
maxE ↑ 0.892 0.902 0.886 0.895 0.912
MAE ↓ 0.078 0.076 0.084 0.076 0.070

last two examples shown in 8th, 9th and 10th rows, they also present
more complex seniors, such as the last example shows a washbasin
on a chair, the 9th example shows a rare stone on a desk, and the
8th case presents a bicycle in a peculiar shape. Meanwhile, the three
examples’ depth maps are in low quality. Though they are challeng-
ing scenes, according to Fig. 4, we can find that our model (Fig. 4 (d))
still highlights the salient objects more completely and suppresses
the background regions more effectively. The reason behind this can
be owing to the sufficient and appropriate utilization of RGB and
depth information via the bottom-up and top-down modules, where
the attention maps are embedded to guide the estimation of salient
objects and appearance information is given more concern.

4.3. Ablation studies

This section deeply analyses some vital components in our model
via the quantitative and qualitative comparisons. Specifically, the
vital components in our model contain the attention maps, the
depth map HHA and the appearance information. Correspondingly,
for studying the contribution of these components, we design several
variations for our model, namely without the attention map, without
the depth map HHA (our model only depends on RGB images) and
without appearance information, which are denoted as “w/oAM”,
“w/oHHA” and “w/oAPP”, respectively. Besides, similar to the usage
of appearance information, we also explore the effect of the multi-
level deep depth features in the top-down module (decoder part)
and denote this variation as “wHHADecoder”. To study the perfor-
mance of these variations, i.e. “ w/oAM”, “w/oHHA”, “w/oAPP” and
“wHHADecoder”, we also execute some comparisons from the per-
spective of quantitative and qualitative views, as shown in Table 2
and Fig. 5.

According to the quantitative comparison results shown in
Table 2, we can find that our model outperforms other variations
including w/oAM, w/oHHA, w/oAPP and wHHADecoder in terms of
S-measure, max F-measure, max E-measure and MAE. Correspond-
ingly, referring to the qualitative comparison results shown in Fig. 5,
we can also see that our model shown in Fig. 5 (d) performs best,
which not only completely pops-out the salient objects but also sup-
presses the background regions effectively. In contrast, most of the
other variations shown in Fig. 5 (e)–(h) falsely highlight the back-
ground regions. For example, the top example is a yellow flower

among the green plants and red flowers, which presents a cluttered
background in the RGB image. It can be seen that the results of
w/oAM, w/oHHA, w/oAPP shown in Fig. 5 (f)–(h) pop-out the red
flowers mistakenly. In stark contrast, our model and wHHADecoder
suppress the background regions successfully, as shown in Fig. 5 (d)
and (e). However, the results of wHHADecoder falsely suppress the
floral axis of yellow flower. For the bottom example (two people are
talking), the results of wHHADecoder, w/oAM, w/oHHA and w/oAPP
shown in Fig. 5 (e)–(h) falsely highlight the woman. In contrast, our
model performs best as shown in Fig. 5 (d), which is the one nearest
the ground truth shown in Fig. 5 (c).

The reasons behind this lie in that the depth and RGB information
should not only be used sufficiently but also be utilized appropri-
ately. As the aforementioned discussion, there are many challenging
scenes for RGBD saliency detection. Meanwhile, if this scenes pre-
sented by RGB images further encounter low-quality depth maps,
the RGBD saliency detection will become a tough challenging task.
Thus, the sufficient and appropriate usage of depth and informa-
tion is a crucial issue. Concretely, firstly, referring to these variations,
w/oAM refers to our model without attention maps in both mod-
ules. Obviously, the resulting saliency maps shown in Fig. 5 (f) falsely
highlight the background regions. As for w/oHHA, it means that the
two-stream structure based bottom-up module in our model only
contains RGB branch but still contains “AM”, which is obtained based
on depth map, and the top-down module stays the same. We can
find that the results of w/oHHA shown in Fig. 5 (g) pop-out less back-
ground regions than w/oAM due to the retain of the attention maps.
Therefore, through the two variations w/oAM and w/oHHA, we can
validate the effectiveness of depth information in our model, and that
is to say we should sufficiently and appropriately utilize the depth
information.

Then, for wHHADecoder, it indicates that the top-down module in
our model introduces the multi-level deep depth features. Following
this settings, it can be seen that both the bottom-up and top-down
modules all utilize the depth information. However, the discrimina-
tion of salient objects and background regions may be not clear in
depth maps, such as the floral axis in the top example and the man in
the bottom example shown in Fig. 5. Thus, we can say that the heavy
trust on depth information may introduce disturbance cues for RGBD
saliency detection. In contrast, for the two examples, the RGB images
can differentiate the floral axis and the man via color contrast. On

Fig. 5. Qualitative comparisons of several variations of the proposed RGBD saliency model on challenging scenes. (a): RGB, (b): Depth, (c): GT, (d): Ours, (e): wHHADecoder, (f):
w/oAM, (g): w/oHHA, (h): w/oAPP.
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the basis of this, our model not only uses the depth information ade-
quately but also pays more attention to the RGB information, yielding
high-quality saliency maps shown in Fig. 5 (d). Lastly, for w/oAPP, it
is our model only with bottom-up module, which gives the equal sta-
tus for RGB and depth information. Referring to Fig. 5 (h), we can find
that its results detect the woman mistakenly. In sharp contrast, our
model suppresses the woman effectively. Therefore, the two varia-
tions including wHHADecoder and w/oAPP not only validate that the
employment of depth information should also be appropriate, but
also demonstrate the effectiveness of appearance information.

Generally speaking, according to the aforementioned ablation
studies, we can find that the usage of RGB and depth information is
very important for RGBD saliency detection, and both cues should be
used in a sufficient and appropriate way. Meanwhile, all these quan-
titative and qualitative results also demonstrate the rationality and
effectiveness of the design of our model.

5. Conclusion

This paper proposes a novel RGBD saliency model, which contains
bottom-up and top-down modules, to perform saliency detection on
RGBD scenes. The core issue of our model lies in that the utilization of
the RGB and depth information should be in a sufficient and appro-
priate way. During the entire process, we deploy attention maps
to boot the salient objects’ location and give more concern to the
appearance information, which further strengthen the combination
of both modules. Specifically, we first introduce the attention maps
to both modules for guiding the differentiation of salient objects and
background regions, which sufficiently utilize the depth information
and effectively ease the deficiency of low-quality depth maps. Sec-
ondly, we further pay more attention to appearance information, i.e.
the multi-level deep RGB features, via the top-down module, which
adequately employs the appearance information by gradually aggre-
gating with the fused deep feature generated by bottom-up module
in a coarse-fine way. In this way, we can obtain a high-quality
saliency map for each RGBD image. Extensive experiments are per-
formed on five public and challenging RGBD datasets, and the results
show that our model consistently outperforms the state-of-the-art
RGBD saliency models, which further demonstrates the effectiveness
and superiority of our model.
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