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Fixation as representation of one viewer’s attention are very intuitive to reflect the viewer’s observation
procedure. The viewer’s observation behavior can be further revealed by analyzing fixations features. In
this paper, we propose a fixation based personalized salient object segmentation method involving per-
sonal observation behavior learning. Concretely, we design three neural networks and deploy a meta-
learning method. The first network is a base segmentation network that can be converted into a meta-
segmentation network by meta-learning. The meta- segmentation network can learn one viewer’s obser-
vation behavior from only one sample and then generates the viewer’s segmentation network to segment
the other samples. Moreover, a fusion network plays an important role in alleviating an unsuitable trans-
mission problem and generating a final segmentation result. The experimental results demonstrate the
reasonability of our observation behavior learning and the effectiveness of the three proposed neural
networks.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Salient object segmentation aims to extract the most eye-
attracting object regions in a given scene [1–3]. It can assist subse-
quent image processing applications to fulfill object-aware analy-
sis and manipulation, such as object-aware image cropping [4]
and compression [5]. In fact, heterogeneity in different viewers’
interest preferences for one image has been widely recognized in
psychology [6]. Ref. [7] also verified that different viewers have dif-
ferent salient objects in certain scenes with multiple objects.
Therefore, personalized salient object segmentation is essential
to make object-aware image applications more individualized by
designing tailored processing to cater to different viewers’ needs.

With the development of eye tracking technique, an eye tracker
device can record one viewer’s fixation information on certain
images in real time [8]. Since fixation is a kind of representation
of attention, personalized fixation can be treated as an intuitive
and convenient input to drive personalized salient object segmen-
tation as shown in Fig. 1. This implicit input mode is different from
the mode adopted in traditional interactive object segmentation,
which draws some scribbles on the object and background respec-
tively [9]. Compared with the labeled scribbles adopted in the tra-
ditional interactive object segmentation, fixations are unlabeled
and cannot directly distinguish their belonging regions. Fixations
actually reflect one viewer’s whole observation procedure on the
image so that background and non-salient object regions can also
obtain fixations. Therefore, this indicative ambiguity is one prob-
lem for fixation based personalized salient object segmentation.

Additionally, even if different viewers are attracted by the same
salient object, another problem induced by fixations is that differ-
ent viewers still have their own observation behaviors. Examples
of two images with two viewers’ fixations are shown in Fig. 2.
The fixation distributions of these two viewers in the same image
are quite different. One viewer focuses on high semantic regions
only due to concentrated fixations. Conversely, for the other
viewer, the observation extent is larger, as indicated by the scat-
tered fixations. Therefore, it is difficult to design a universal model
for all viewers to segment their salient objects. However, every
coin has two sides. We can also see that since these two images
are similar to some extent, i.e., one prominent object, these two
viewers adopt similar observation behaviors on these similar
scenes. Therefore, if one viewer’s personalized observation behav-
ior on a certain image can be learned, fixation based segmentation
methods can better understand and utilize this viewer’s fixations.
This means that the learned observation behavior may alleviate

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.03.042&domain=pdf
https://doi.org/10.1016/j.neucom.2021.03.042
mailto:zxforchid@hdu.edu.cn
https://doi.org/10.1016/j.neucom.2021.03.042
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. Examples of different personalized fixation distributions on one same image and corresponding salient object segmentation masks. Fixations are labelled as red dots.
(a) and (b) represent two different viewers.
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the indicative ambiguity problem and improve this viewer’s salient
object segmentation in other similar scenes.

For known viewers, we can collect their lots of samples and
then train their models [7]. However, it is invalid in practice when
viewers are unknown in advance. How to quickly learn an
unknown viewer’s observation behavior is challenging due to lim-
ited samples. Meta-learning approaches [10–12] provide a possible
paradigm for solving the problem of learning from a few samples.
Meta-learning, also known as learning-to-learn, was first studied
in [13] and has regained attention after entering the deep learning
era. It aims to learn on a bunch of similar tasks to maximize its
adaptation performance to all tasks. The key to meta-learning is
to train a meta-learner as a learned optimizer, which can offer flex-
ible learning rules to adapt quickly from a few task-specific train-
ing samples and apply the rules to new and similar test samples.
For example, [10] trained a meta-learner long short-term memory
(LSTM) component [14] to learn the update rule for training a
model; Ref. [11,12] focused on learning model initialization and
proposed fairly general optimization algorithms that were compat-
ible with any model that learns through gradient descent. There-
fore, we seek to take advantage of meta-learning to learn an
unknown viewer’s observation behavior by only one sample.

In this paper, we involve personalized image observation
behavior learning by integrating meta-learning into fixation based
personalized salient object segmentation. Compared with previous
related works, the main contributions of our work are summarized
as follows:

1. Personalized image observation behavior learning is involved in
our segmentation method so that one viewer’s similar observa-
tion behaviors in similar scenes can be transmitted to assist this
viewer’s salient object segmentation.

2. We interpret features of the observation behavior as a compro-
mise of features of the fixation distribution and features of the
fixation depending on the image.
Fig. 2. Examples of two different viewers’ fixation distributions. Each row shows one view
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3. We design three branches and take advantage of the property of
the convolutional long short-term memory component to
extract the observation behavior features and fuse them with
features of the image.

4. To handle a possible unsuitable transmission of the observation
behavior, we consider weighted samples and a measure of the
reliability of the meta adaptation in the meta-training stage
and additionally design a fusion network.

This paper is organized as follows. Section 2 describes our person-
alized image observation behavior learning in details. The imple-
mentation of fixation based personalized salient object
segmentation is introduced in Section 3. Experimental results are
presented in Section 4. We conclude our paper in Section 5.
2. Related work

From the perspective of underlying mechanisms to obtain
attention, attention models can be classified into two types: one
is driven by target-object goals, and the other is inspired by stimuli
of visual input [15–18]. Thus, the fixation as a kind of representa-
tion of the attention also has different characteristics accordingly,
which are applied in different tasks. For the former, the distribu-
tion of fixations is highly correlated with the target-object goals
[18]. Many works [18–24] attempt to predict target-object goal
directed fixations to assist the object visual searching task. [19]
bridged fixations with the searching tasks of specific object cate-
gories, i.e., a microwave and a clock. [20] predicted fixation’ direc-
tions of several individuals within social scenes to infer their one
common target-object goal. For more general object categories,
[21,22] used computational models that treated target spatial rela-
tionships [21] and global scene context [22] as important factors
affecting visual searching. Some deep network models simulated
eye movement theories or learning techniques to predict searching
fixations, such as biologically plausible mechanisms of inhibition
er’s fixations indicated as red dots in two images and corresponding fixation maps.
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of return [23] and biased-competition theory [24]. In [18], the
viewer’s dynamic contextual belief maps of object locations were
learned by inverse reinforcement learning and then used to predict
behavioral scan paths for multiple categories. In [25,26], fixations
driven by target-object goals were also used to guide interactive
segmentation. [25] collected fixations of radiologists when they
diagnosed lesions in lung CT images. These fixations are treated
as seeds of lesion. Then, background seeds can be further found
by using gradient information of the CT image. Thus, lesions can
be segmented by any seed-based interactive segmentation
method. [26] developed a new graphical interactive segmentation
interface controlled by fixations. It requests users to look at their
target objects and the background respectively so that these col-
lected fixations can be automatically labeled as object seeds and
background seeds.

If there are no target-object goals for viewers, free-viewing fix-
ation is inspired by stimuli that is visual information of interest. In
images and videos, the visual information of interest is generally
represented as the salient object that can draw more attention
from viewers compared with other regions. Many works focus on
either the free-viewing fixation or the salient object [27–30]. For
the fixation, [28] captured hierarchical saliency information by a
skip-layer based network structure to predict human eye fixation
with view-free scenes. In [29], a DHF1K benchmark predicting fix-
ations during dynamic scene free-viewing was reported and an
attentive CNN-LSTM architecture was proposed that leveraged
both static and dynamic fixation data to encode static attention
into dynamic saliency representation learning. For the salient
object, [27] presented a salient object detection method that inte-
grated both top-down and bottom-up saliency inference iteratively
and cooperatively. Ref. [30] provided a comprehensive survey of
deep learning based salient object detection methods in terms of
network architecture, level of supervision, learning paradigm,
object-/instance-level detection and performance under different
datasets and attribute settings. In this paper, we focus on the rela-
tionship between fixations and the salient object. In [31,32], it
leveraged fixation prediction for detecting salient objects by an
attentive saliency network. The fixation map was learned from
the upper layers of the attentive saliency network and further uti-
lized for teaching the network to detect the salient object. In [17], a
biologically-inspired dynamic visual attention prediction module
was developed and used to guide its attention-guided object seg-
mentation module for fine-grained unsupervised video object seg-
mentation. Actually, the salient object focused by these works in
different scenes are universal salient objects, which are common
salient objects of major viewers. This means that the fixations/at-
tention predicted by these methods are also universal. However,
[7] claimed that heterogeneity in the saliency preference of differ-
ent viewers has been widely recognized in psychology [6]. This
verified that individuals exhibit heterogeneous fixation patterns
when viewing an identical scene containing multiple salient
objects and presented a multi-task convolutional neural network
framework for predicting the discrepancy between personalized
saliency maps and one universal saliency map. Inspired by [7],
our work can be treated as a personalized, fixation-driven salient
object segmentation method. One intuitive method is to collect
one viewer’s own fixations by the eye tracker and directly use
them as input to direct the segmentation, similar to [25,26]. How-
ever, free-viewing fixations induce indicative ambiguity because
they are unlabeled and cannot be used to directly distinguish their
belonging regions. Some methods attempt to infer object and back-
ground information from the fixations [4,33,34] in some simple
scenes. In [4], one image was segmented into several superpixels
which can be further divided into ‘‘object seed”, ‘‘background seed”
and ‘‘unknown region” depending on the distribution of the fixa-
tions on them. In [34], the centroid of fixations and the mean dis-
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tance of all fixations from this centroid were used to choose the
segmentation seeds. [33] took advantage of saliency maps as aux-
iliary information. Following the above ideas, once the object and
background cues can be estimated, object and background models
can be constructed. Alternatively, Ref. [3,35] proposed selection-
aware methods that utilize object proposals to generate several
candidate segmentation results. Then, they extracted some hand-
crafted features of the fixation distributions on each candidate
result and estimated a score to indicate the possibility that it
belongs to salient objects. Thus, the score ranking can be used to
‘‘select” the final segmentation result. In addition, Li et al. [36] con-
catenated the image and personalized fixation map as the input
and proposed a convolutional neural network based model to sim-
ulate the human visual system to segment the objects. However, it
is still difficult to design a uniform model for all viewers to seg-
ment their salient objects. None of the above mentioned methods
consider the role played by one viewer’s own observation behavior
in the personalized salient object segmentation.

3. Personalized image observation behavior learning

Our proposed personalized observation behavior learning
depends on a fixation-driving segmentation network and a meta-
learning method. Therefore, we first introduce the architecture of
our segmentation network and the meta-learning method in this
section.

3.1. Input representation

Since our network services to fixation based salient object seg-
mentation, the image and the fixation as the input of our neural
network are necessary. Although the eye tracker records fixations’
durations and their positions as points, it does not mean that the
viewer merely looks at these points in an image. It should be a cer-
tain attention extent induced by one fixation. Therefore, we con-
vert the fixations’ information into an fixation map FM to
estimate an attention degree of each pixel. For one pixel x in the
FM, its attention degree FMðxÞ is:

FMðxÞ ¼ max
y2Xfix

TðyÞ=Tmax

1þ expðDðx; yÞ=rÞ
� �

ð1Þ

where y is one fixation in the fixation set Xfix. According to the dis-
tance Dðx; yÞ from x to y and the duration TðyÞ of y, if Dðx; yÞ is
shorter and TðyÞ is longer, it means that x also draws much atten-
tion. Tmax indicates the longest duration of all fixations and r con-
trols the attention extent stimulated by the exponential function.
r is set to 20 in our experiments. FMðxÞ is the maximum value
among all pairs of x and y. After normalization and scaling the
attention degree into ½0;255�, the FM can be generated. Meanwhile,
we also introduce a semantic map (SM) as another input because
semantic information is an important factor to analyze images’ sce-
nes and influence the viewer’s fixations. We derive the feature maps
‘‘conv5 3” from the pre-trained VGG-16 network [37], which
involve high level semantic information as disclosed in [38]. Since
there are 512 channels of ‘‘conv5 3”, we select the maximum value
of each channel and normalize them to compose our SM. Thus, it
can indicate rough location distribution of all high semantic regions
in an image. One example of an original image and its semantic map
is illustrated in Fig. 3.

3.2. Neural network architecture

There are two parts in our neural network as illustrated in Fig. 4.
The former part extracts image features and the viewer’s observa-
tion behavior, and then fuses them. The latter part is designed for



Fig. 3. One example of an original image and its semantic map. (a) Original image,
(b) Semantic map.
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fulfilling the segmentation task. For the former part, since the
viewer’s observation behavior is dependent on the image, as dis-
cussed before, it cannot be merely learned from the fixation map
only. Features extracted from the fixation map alone merely
describe characteristics of the distribution of the fixations. This
means that they cannot well reflect the relationship between fixa-
tions and the corresponding image. Therefore, the fixation features
should not be extracted without the accompaniment of the image.
However, if the viewer’s observation behavior is learned from a
combination of the image and the fixation map, extracted features
may excessively focus on the relationship between fixations and
image specific details. This results in limitations on the generality
of observation behavior learning. In our opinion, the observation
behavior features that we pursue should be a compromise of fixa-
tion distribution features and image dependent features. Therefore,
we design two branches for the observation behavior feature
extraction: one is a ‘‘high” branch whose input Xh is the fixation
map FM only and the other is a ‘‘low” branch whose input Xl is a
five-channel tensor by concatenating the image I, the fixation
map FM and the semantic map SM. Meanwhile, we also add
another ‘‘image” branch whose input Ximg is a four-channel tensor
with image I and semantic map SM to extract features of the image.
For each branch, we design the same structure which is composed
of several standard convolutional layers and dilated convolutional
layers as shown in Fig. 4. The dilated convolutional is used to
enlarge the network’s receptive filed and maintain the input reso-
lution [39]. These three branches can be formulated as:

Yh ¼ CNNhðXhÞ ð2Þ
Yl ¼ CNNlðXlÞ ð3Þ
Yimg ¼ CNNimgðXimgÞ ð4Þ

where CNNh; CNNl and CNNimage are the convolutional layers of high
branch, low branch and image branch. Y indicates the correspond-
ing output of each branch.
Fig. 4. The architecture of our fixation based personalized salie
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Then, we adopt a convolutional long short-term memory
(ConvLSTM) component [40] to extract the feature of observation
behavior and further fuse them with image features. The fused fea-
tures as output is fed to the latter segmentation part. Similar to tra-
ditional gated LSTM [14], the ConvLSTM uses the memory cells
including the Cell state (C state) and the Hidden state (H state),
and four gates i; f; c; o to control information flow. It extends tra-
ditional fully connected LSTM by substituting dot products with
convolutional operations in the LSTM equations, which can pre-
serve the spatial information of features. Besides the input of the
ConvLSTM, the Cell state and the Hidden state can also be treated
as two hidden inputs. So, these three inputs can exactly correspond
to the outputs of our three feature extraction branches. Especially,
according to the inside structure of the ConvLSTM shown in Fig. 4,
the hidden state is firstly concatenated with the input to further
extract features. Then, they are fused with the cell state to generate
the output. Therefore, features extracted by our low branch and
high branch are fed to the input and the hidden state of the
ConvLSTM respectively. Thus, the observation behavior features
can be further extracted and fused with image features provided
by the cell state. The whole procedure mentioned above can be for-
mulated as below:

i ¼ rðWYimg

i � Yimg þWYh
i � Yh þ biÞ ð5Þ

f ¼ rðWYimg

f � Yimg þWYh
f � Yh þ bfÞ ð6Þ

o ¼ rðWYimg
o � Yimg þWYh

o � Yh þ boÞ ð7Þ
Co ¼ f � Yl þ i � tanhðWYimg

c � Yimg þWYh
c � Yh þ boÞ ð8Þ

Ho ¼ o � tanhðCoÞ ð9Þ

where ‘‘�” denotes the convolution operator and ‘‘�” represents
Hadamard product. r and tanh are the activation functions of logis-
tic sigmoid and hyperbolic tangent. Ws and bs are the learned
weights and biases. Ho is also the output of the ConvLSTM.

For the segmentation part, it utilizes the output Ho from
ConvLSTM to fulfill the fixation based salient object segmentation
task. We simply use three standard convolution layers CNNseg

where the last layer adopts the sigmoid activation function to
map the segmentation result R into ½0;1�. The segmentation part
can be formulated as:

R ¼ CNNsegðHoÞ ð10Þ
The details of the parameters of each layer in our segmentation net-
work is also listed in the Fig. 4.

3.3. Meta-learning

As the network architecture described above, our segmentation
network can be used as a ‘‘base segmentation network” (BSN) by
nt object segmentation network. M is the NO. of the layer.
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training accordingly. In order to convert this BSN into meta-
segmentation network (MSN) which can quickly learn one viewer’s
observation behavior and then generates this viewer’s segmenta-
tion network, MSN is initialized by BSN and trained by Model-
Agnostic Meta-Learning (MAML) [11]. In the meta-training process,
one task T of one viewer is denoted as fSm; S1; . . . SKg, where S rep-
resents a sample. This viewer’s own segmentation network is
derived from MSN by learning his own observation behavior from
Sm. This process is also called meta-adaptation. Then, the segmen-
tation network is utilized to handle the viewer’s other K samples in
the meta-test process and the average loss is accumulated. The
accumulated loss of several viewers’ tasks is used to update MSN
for enhancing its generalization. Since MSN focuses on learning
the viewer’s observation behavior, we merely update the parame-
ters of the high branch, the low branch and the ConvLSTM which
are related to the extraction of the observation behavior features
and their fusion with image features. It means that other parame-
ters in MSN are frozen during the whole meta-training.
4. Implementation of the fixation based personalized salient
object segmentation

By the personalized observation behavior learning, our segmen-
tation method attempts to utilize similar observation behaviors in
similar scenes to detour the fixation’s indicative ambiguity prob-
lem and enhance the segmentation quality. However, in real prac-
tice, our method should overcome an unsuitable transmission
problem in the meta-training and the final segmentation result
generation.

4.1. Unsuitable transmission problem

In real practice, if scenes of images are not similar, one potential
problem is that one viewer’s observation behavior learned from his
one sample may not always be suitably transmitted to other sam-
ples due to rich diversity of image contents. For example, if there
are multiple toys in an image, the learned observation behavior
is not suitably transmitted to another image containing only one
deer as shown in Fig. 5. The unsuitable transmission may severely
degrade the segmentation result. In order to alleviate this problem,
we additionally design another fusion network. This network is
used to fuse the segmentation results of the base segmentation
network and the meta-segmentation network for inferring a good
final result. We concatenate the original image with the segmenta-
tion results of the base segmentation network and the meta-
segmentation network as the input of the fusion network. The
structure of the fusion network is similar to that of each branch
in our segmentation network. The slight difference is that we add
three standard convolutional layers (whose kernel sizes are all
3� 3� 64) followed six dilated convolutional layers. Its final result
is also generated by the sigmoid activation function.
Fig. 5. One example of unsuitable transmission problem. (a) Fixations on the
multiple objects, (b) Fixations on the single object.
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4.2. Training

Our whole training procedure can be divided into three stages:
the base segmentation network training, the meta-segmentation
network training, and a fusion network training. In the first stage,
we train our neural network as the base segmentation network
without distinguishing viewers and their samples. This segmenta-
tion network can generate segmentation results as references and
initialize the meta-segmentation network.

In the second stage, the base segmentation network is con-
verted into the meta-segmentation network by the meta-
training. Thus, our meta-segmentation network can generate one
viewer’s own segmentation network by learning the viewer’s
observation behavior. In the meta-segmentation network training,
as mentioned above, one viewer’s one task T includes one Sm and
other K samples. We compose one viewer’s various tasks by ran-
domly combing the viewer’s different samples. All tasks of n view-
ers in the training consist of a task distribution pðTÞ. The training
process of one epoch is illustrated in Table 1. hm is the parameters
of the meta-segmentation network which is initialized by those of
the base segmentation network hb. In one epoch, we first sample
one batch of n tasks from pðTÞ where n corresponds to those n
viewers. For ith viewer’s task, we utilize the viewer’s Sm to generate
the viewer’s segmentation network whose parameters hi are ini-
tialized by hm and then are updated g steps. L represents the loss
function i.e. the dice coefficient. Then the viewer’s segmentation
network is to segment other K samples, the average loss are calcu-
lated and corresponding gradients are accumulated. Finally, hm is
updated by the accumulative gradients of the batch. Notice that
the updating of hi and hm are only valid on the parameters of the
fixations related branches and the ConvLSTM as discussed before.
Moreover, due to the unsuitable transmission problem, when
LðSk; hiÞ is large, we cannot tell the reason is that our meta-
segmentation network is not trained well or the transmission itself
is not unsuitable. Therefore, if LðSk; hiÞ < LðSk; hbÞ, it means that
this transmission indeed improve the segmentation quality com-
pared against the reference result, we introduce a coefficient c to
increase this sample’s impact on the gradient accumulation. c cor-
relates to a relative loss gain between LðSk; hiÞ and LðSk; hbÞ. So,
when we gradually strengthen our meta-segmentation network’s
ability, the updating of our meta-segmentation network more
depends on those transmittable samples. Meanwhile, we also con-
sider the quality of the meta-adaptation step. If Sm itself cannot be
learned well in the meta-adaptation, the subsequent transmission
and the induced loss make no sense. Therefore, we treat
1�LðSm; hiÞ as a weight to measure the reliability of the meta-
adaptation using Sm.

The fusion network is trained in the third stage. We perform the
meta-training stage again to obtain the segmentation result by the
trained meta-segmentation network without updating. Each sam-
ple is also segmented by the base segmentation network to get a
referable result. Then, we concatenate the original image with
these two segmentation results as one training sample and feed
to our fusion network for training.
5. Experiments

5.1. Dataset

To the best of our knowledge, there is no public dataset specif-
ically designed for the fixation based personalized salient object
segmentation. Therefore, we re-forge a related public dataset OSIE
[41] to produce an OSIE-Personalized Salient Object Segmentation
dataset (OSIE-P). OSIE dataset provides 15 viewers’ fixation infor-
mation of 700 images recorded by the eye tracker device (Eyelink



Table 1
Meta-training for the fixation based personalized salient object segmentation in one epoch.

Input: task distribution pðTÞ, learning rate a ¼ 10�4, b ¼ 10�4

Output: hm
1: while not done do
2: Sample one batch of tasks fTigni¼1 from pðTÞ;
3: rhm  0
4: for i 1;n do
5: hi  hm

6: rhi  0
7: for j 1;g do
8: hi  hm � a � rLðSm; hiÞ
9: end for
10: for k 1;K do
11: if LðSk; hiÞ < LðSk; hbÞ
12: c 2 � LðSk ;hbÞ

LðSk ;hbÞþLðSk ;hiÞ
13: else
14: c 1
15: end if
16: rhi  rhi þ c � rLðSk; hiÞ
17: end for

18: rhm  rhm þ ð1�LðSm; hiÞÞ rhi
K

19: end for
20: hm  hm � b � rhm

21: end while
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1000) and manual labeled masks of all objects in these images. In
the OSIE-P, if one object in an image v can obtain more than Thuv

fixations of one viewer u, this object is chosen as this viewer’s sali-
ent object. The threshold Thuv is calculate as ½Nuv n NR�, where Nuv is
the number of one user u’s all fixations in the image v. If Nuv is less
than a reference number NR, the threshold is set to 1. By analyzing
the numbers and the distributions of the fixations of all users in the
whole dataset, we deliberately set NR to 10, which is a proper
trade-off between the numbers of one user’s fixations and salient
objects. After the thresholding, we can generate a viewer u’s
ground truth of salient object mask map for image v. Correspond-
ingly, there are 15 different ground truths for one image according
to different viewers’ fixations. A tuple of one image, one viewer’s
fixation map and corresponding ground truth is treated as one
sample.

In order to verify the heterogeneity of different viewers in terms
of their salient objects in the OSIE-P, each viewer’s ground truth is
compared with other 14 viewers’ ground truths one by one for one
same image. Therefore, for one viewer and 700 images, there are
Fig. 6. The percentage of comparison pairs with different ground truths indicated by th
given by the red bar of each viewer ‘‘v” in the OSIE-P.
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9800 comparison pairs. We count the number of comparison pairs
whose salient objects are not identical. If two viewers have same
salient objects, we also assess the similarity of their fixations’ dis-
tributions by calculating the dice coefficient of their fixation maps.
A larger dice coefficient indicates higher similarity. The evaluation
results of all 15 viewers are shown in Fig. 6. We can see that each
viewer has about 70% comparison pairs including different salient
objects. For the rest comparison pairs, the average dice coefficient
is round 0.39 which indicates relatively low similarity of their fix-
ation maps. On the one hand, for most comparison pairs including
the same salient object, the reason is that there is one dominant
object in the image. On the other hand, for similar fixation maps
of different viewers, their fixations mostly concentrate on certain
special semantic regions (e.g. face) which has been concluded in
[7] but fixations’ distributions on other regions are various. The
lowest percentage and the highest average dice coefficient is
0.683 and 0.405 respectively. The evaluation results demonstrate
the heterogeneity of different viewers in terms of their salient
objects and fixations’ distributions in the OSIE-P.
e blue bar and the average dice coefficient of rest comparison pairs’ fixation maps
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5.2. Implementation details

In the OSIE-P, we randomly select 550 images of 10 viewers
with 5500 samples as a training set, 40 images of 2 viewers with
80 samples as a cross validation set and 110 images of 3 viewers
with 330 samples as a test set. For the base segmentation network
training stage, the original image, the feature map and the seman-
tic map are resized to 200� 150. We use the dice coefficient as the
loss function. Our base segmentation network is trained using
Adam [42], with single sample and learning rate 0.0001. The train-
ing proceeds for 20 epochs. In the meta-segmentation network
training, K which represents the number of samples in one task
is set to 20. n is 10 to correspond to those 10 viewers in the training
set. The updating time g in the meta-adaptation is set to 10. The
training process iterates for 20 epochs. For the fusion network
training, it is also trained using the dice coefficient and Adam,
and proceeds for 40 epochs. The final binary segmentation result
is generated by a threshold as 0.5.

5.3. Overall performance

In order to evaluate our proposed method’s performance, we
tested it on the OSIE-P test set. We randomly selected 10 original
images with each viewer’s fixation maps in the test set as candi-
date meta-adaptation samples. Using one viewer’s one meta adap-
tation sample, the remaining 100 samples can be accordingly
segmented for the test. To evaluate the reliability of our method,
we performed this procedure 10 times corresponding to 10 candi-
date meta -adaptation samples for a total of three viewers. Thus,
the average Jaccard Index (i.e., IoU) of all 3,000 segmentation
results was used to indicate our method’s overall accuracy. In addi-
tion, to further analyze the contributions of our three networks to
the overall performance, we evaluated the accuracies of the base
segmentation network only (BSN) and the meta-segmentation net-
work (MSN) without the fusion network (FN). For MSN, we also
assessed its performance when the regular MAML was used in
the meta-training step without the weighted samples and the mea-
sure of the reliability of the meta-adaptation.

As shown in Table 2, the accuracy of the base segmentation net-
work can be treated as a baseline. Without the fusion network, all
samples are segmented by the meta-segmentation network after
corresponding meta-adaptations. Its worse performance demon-
strates that observation behavior transmission cannot always be
done for all samples. Compared with the regular MAML, which
enforces the network to fit the unsuitable transmission samples
in the meta-training stage, our strategy of the weighted samples
and the measure of the reliability of the meta -adaptation can
screen the unsuitable transmission samples and decrease their
negative influence in the meta-training stage to some extent.
Therefore, the performance of our modified MAML is better than
that of the regular MAML. However, unsuitable transmission can
still distort segmentation quality. Therefore, the fusion network
is important to take advantage of the results from BSN and MSN
to compensate for possible unsuitable transmissions. Fig. 7 shows
some segmentation results of our method. In these examples, sim-
ilar observation behaviors in the meta -adaptation sample and the
Table 2
The overall performance of our method and the ablation study.

Method IoU "
BSN 0.584
MSN(regular MAML) w/o FN 0.421
MSN w/o FN 0.543
Our (BSN + MSN + FN) 0.622
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test sample are represented in diverse scenes, including one single
person, two separate objects and multiple objects. We can see that
suitable transmission of the observation behaviors can make our
meta segmentation network generate better segmentation results.
However, once an unsuitable transmission occurs due to the differ-
ent observation behaviors of objects of various sizes as illustrated
in the last row, the results generated by MSN can be considerably
degraded. Therefore, the fusion network plays a role in exploring
the final result as well as possible.

Moreover, we further enumerate the average accuracies of each
viewer’s 100 test samples under each meta-adaptation sample as
shown in Fig. 8. The numbers along the horizontal axis represent
those 10 candidate meta adaptation samples. In detail, the accu-
racy interval achieved by our complete method ranges from
0.592 to 0.652 while MSN without FN ranges from 0.494 to
0.593. This figure reflects the viewer’s individual difference and
the influence of the meta-adaptation sample on the segmentation
quality. For one viewer, the performances of MSNs are quite differ-
ent due to different candidate meta-adaptation samples. However,
since the results generated by BSN are the same for one viewer, the
variances in the accuracies of the fused results become small. Fur-
thermore, we calculate the average accuracy over 10 candidate
meta-adaptation samples for each viewer, the IoUs of MSN without
FN/our complete method are 0.525/0.593, 0.542/0.625, and
0.561/0.647. The comparisons also reveal that better results of
MSN can possibly promote the accuracies of the final results.
Examples of four groups of different viewers’ salient object seg-
mentation are shown in Fig. 9. We can see that MSN can learn dif-
ferent viewers’ observation behaviors from the meta-adaptation
samples accordingly. Although the segmentation results generated
by MSN may have some noise, FN can improve the segmentation
results by fusing the results generated by BSN so that our method
can segment different viewers’ salient objects according to their
fixations’ indications.

5.4. Ablation study

In order to analyze the effectiveness of proposed MSN’s archi-
tecture, we performed an ablation study with three configurations:
first one is to preserve the high branch and the low branch; second
one is to preserve the high branch and the image branch; third one
is to preserve the low branch and the image branch. These three
configurations are illustrated in Fig. 10.

These three networks are re-trained by the same training proce-
dure of the proposed MSN. Since the unsuitable transmission prob-
lem exists, the overall performance of all test samples cannot
clearly demonstrate the performance of MSN. The analysis should
focus on valid test samples which are indeed improved by MSN.
According to the comparison of results generated by BSN and
MSN, the result with higher accuracy using MSN can be treated
as the valid sample. We count the number of the valid samples
in the 3,000 test samples as same as those in the previous evalua-
tion, and calculate their average IoU and average gained IoU as
shown in Table 3. MSN without the image branch achieves the
smallest number of the valid samples and the lowest accuracy.
We can see that image features are very important which cannot
be discarded. An improved segmentation result relies on the
proper fusion of the features of image and observation behavior,
which is learned by the ConvLSTM component. Although the num-
ber of the valid samples is the smallest, the high and the low
branches guarantee this network to better extract the valid sam-
ples’ observation behavior features so that it obtains higher gained
IoU value. MSN without the low branch generates smaller number
of the valid samples with lower accuracy and lower gained IoU
value. The main reason is that the features of observation behavior
extracted by the high branch are dependent on the fixation map



Fig. 7. Some segmentation results of our method. The fixations are indicated by the red dots. For one row, its columns from the left to the right represent one viewer’s meta-
adaptation sample with fixations, the test image with fixations, the ground truth, the result of BSN, the result of MSN and the result of FN.
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only. It does not consider the influence of image content to obser-
vation behavior. The low branch focus on fixations’ features depen-
dent on the image. Therefore, many scenes with local similarity can
benefit from the transmission by the low branch. However, this
branch cannot well exploit the general features of the observation
behavior. Therefore, MSNwithout the high branch can generate the
most valid samples but the improvement is the smallest. Our pro-
posed MSN utilizes the high branch and the low branch to com-
prise the features of the observation behavior. So, in the similar
scenes, our proposed MSN can better learn observation behavior
and achieves the largest improvement of the segmentation accu-
racy. It demonstrates that the network architecture of proposed
MSN is reasonable.
Fig. 8. The average accuracies of each viewer’s 100 test samples using different
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5.5. Comparisons

Our method cooperates with the eye tracker device which can
record the viewer’s personalized fixation information. Thus, the
meta -adaptation step performed for the viewer can be engaged
in the calibration procedure when the eye tracker device is
deployed. If segmented images are similar and can be prepared
in advance, we can perform the meta adaptation step once by only
one typical sample. Otherwise if images are diverse, in order to
pursue the most suitable observation behavior for the transmis-
sion, we can collect several meta adaptation samples of each
viewer. There are two possible strategies for segmentation. One
is that we can run all samples of one viewer in one meta-
meta-adaptation samples. (a), (b) and (c) represent three different viewers.



Fig. 9. Four groups of comparisons of different viewers’ salient object segmentation. The fixations are indicated by the green dots. For one row, its columns from the left to the
right represent one viewer’s meta -adaptation sample with fixations, the test image with fixations, the ground truth, the result of BSN, the result of MSN and the result of FN.

Fig. 10. Three network architectures in the ablation study. (a) MSN without the image branch (b) MSN without the low branch, (c) MSN without the high branch.
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adaptation step (S1). Then, the MSN can segment the test image
and fuse it with the result of the BSN by FN as the final result.
The other strategy is that for each meta-adaptation sample, we
perform one meta-adaptation step (S2). Thus, MSN can conse-
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quently generate multiple segmentation results of one test image.
To record these possible results, we concatenate them and form a
max-pooling result by selecting the maximum value of each pixel
in the same position. Finally, the pooling result is fused with the



Table 3
The performances of four MSN in the ablation study.

Method Number IoU " Gained IoU "
MSN w/o image branch 407 0.534 0.065
MSN w/o low branch 965 0.568 0.032
MSN w/o high branch 1227 0.580 0.021
MSN 1169 0.655 0.089

Table 4
Performances comparisons on OSIE-P test set.

Method GBOS SOS UNet CFPS

IoU " 0.375 0.411 0.586 0.631
Method Our S1 Our S1 + CFPS Our S2 Our S2 + CFPS
IoU " 0.624 0.646 0.622 0.649
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result of BSN by FN as the final result. We tested these two strate-
gies on the OSIE-P test set by 10 candidate meta -adaptation sam-
ples and 100 test samples as the same as those in the previous
subsection for each viewer. Therefore, a total of 300 samples of
three viewers are evaluated. We also compare our method against
two other selection-aware methods, SOS [3] and GBOS [35]. In
addition, we retrained CFPS [36] and the widely used segmentation
network UNet [43] as other baselines, whose inputs are also com-
posed of the image, the fixation map and the semantic map. In
Table 4, we can see that our two strategies can achieve similar seg-
mentation accuracies and their performances are better than those
of other methods except for CFPS. The reason is that CFPS outper-
forms our simple BSN. However, if we use CFPS instead of BSN in
the fusion stage, the results can be further improved by benefiting
from the cooperation of MSN and CFPS. It indeed demonstrates
that our MSN and FN are effective, and viewers’ observation behav-
ior transmission is a significant method to aid fixation based per-
sonalized salient object segmentation.
5.6. Limitation

As mentioned above, the unsuitable transmission problem
heavily affects the performance of our segmentation method.
Two failure cases induced by the unsuitable transmission problem
are illustrated in Fig. 11. The upper case shows that the learned
observation behavior for one dominant object is not suitable to
be transmitted to the scene including separated small objects,
and vice versa in the lower case. The unsuitable transmission of
learned observation behavior makes MSN mistakenly estimate
the sizes of salient objects. When results of BSN and MSN are both
terrible, the effectiveness of FN is quite limited. Therefore, the opti-
mization of the unsuitable transmission problem and the improve-
ment of BSN are possible directions for our future work.
Fig. 11. Two examples of our failure cases. The fixations are indicated by the color dot
adaptation sample with fixations, the test image with fixations, the ground truth, the re
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6. Conclusion

In this paper, we propose the fixation based personalized salient
object segmentation method by utilizing the personalized observa-
tion behavior, where the personalized observation behavior is
learned by the meta-learning. Besides the designed base segmenta-
tion network and the meta -segmentation network, we also
develop the fusion network and further consider the weighted
samples and the measure of the reliability of the meta-
adaptation in the MAML to handle the unsuitable transmission of
the observation behavior. Experimental results demonstrate that
better segmentation performance of our method and the effective-
ness of each network in our method.
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