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With the supplement of texture and geometry cues in depth maps, some difficult scenes of salient object
detection (SOD) in 2D images can be overcome. However, some distractors in the depth maps with rel-
atively poor quality may interfere with SOD. Thus, how to suppress the interference of depth maps and
extract valuable depth cues, is a critical issue to serve as effective complements to RGB cues. Aiming at
addressing this issue, we propose a predict-refine scheme based Circular Complement Network (CCNet),
which consists of a prediction subnetwork and a refinement subnetwork. On one hand, since RGB images
generally contain more essential information for SOD, we propose a strategy which employs higher-level
RGB feature maps to suppress the interference of depth feature maps. With this strategy, a novel Circular
Feature Complement (CFC) module is specifically designed to enhance depth feature maps as well as to
promote mutual complementarity between RGB feature maps and depth feature maps. The CFC modules
are embedded into two subnetworks to achieve the cross-modal interactions at three levels. On the other
hand, for the sake of the integration of two subnetworks, a Transmission Bridge (TB) module is proposed
to effectively transfer the feature maps of the prediction subnetwork to the refinement subnetwork. The
non-salient regions are thus further suppressed in the TB module. Comprehensive experiments on six
benchmark datasets show that the proposed CCNet outperforms 13 state-of-the-art models.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Salient object detection (SOD) is stimulated by human visual
attention mechanism to highlight the most attractive and distinc-
tive objects/regions in a scene. It has been successfully applied in a
variety of applications such as image retrieval [1], image compres-
sion [2] and image segmentation [3–7]. With the development of
distance sensing technology in the field of computer vision, 3D
data dedicated to depicting 3D scenes of real life fills our lives.
With this situation, SOD has also extended from 2D images to
RGB-D images. The RGB SOD task [8,9] has come of age with the
earlier lots of research attentions. However, due to low contrasts
and disturbing background regions in some complex RGB images,
the detection quality of RGB SOD for some intricate scenes
degrades significantly. Compared with RGB images, depth maps
are not easy to be interfered by light changes [10–12]. Thus, adding
depth maps can improve the structural integrity of salient objects
with the complements of geometry and texture cues of objects
[13–15], which have been consistently demonstrated in some
studies [10,14,16].

RGB images and depth maps belong to different modalities, thus
in the past decade, a large number of models [10–12,15,17–32]
focused on exploring the cross-modal complementarity of RGB
images and depth maps. With the success of convolutional neural
network (CNN) in learning discriminative features [33], most of
RGB-D SOD models proposed in recent years are based on CNN
[20–30,34]. These models generally followed a two-stream archi-
tecture [35,36] and combined RGB feature maps with depth feature
maps at multiple levels to improve the saliency detection
performance.

However, these models are not robust for the scenes with rela-
tively poor-quality depth maps, as shown in the results of DMRA
[20] in Fig. 1, the generated saliency maps are contaminated as a
result of some interferences (shown in red bounding-boxes) of
poor-quality depth maps. The two-stream models usually directly
introduced the depth maps/feature maps without any effective
enhancement processes [20–30], which leads to that the interfer-
ence of depth maps/feature maps can not be effectively suppressed
in the cross-modal complementary processes. Zhao et al. [29] tried
to employ contrast-enhanced network to enhance the contrast of
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Fig. 1. Some results of the proposed model and one state-of-the-art model.
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depth map, but there is no direct mapping relationship between
depth map and saliency map. This network can only work for the
depth map where salient regions obviously discriminate from
non-salient regions, but it fails to act on the depth map with low
contrasts. To prevent contamination from unreliable depth infor-
mation, Fan et al. [37] designed a model which discards the poor-
quality depth maps automatically through a depth depurator unit.
However, removing the poor-quality depth map indicates that the
discriminative depth information for SOD is also discarded. There-
fore, how to extract valuable depth features to complement RGB
features more effectively, even from poor-quality depth maps, is
still a challenging issue to be solved.

To solve this issue, we propose a predict-refine scheme based
Circular Complement Network (CCNet), which mainly consists of
a prediction subnetwork and a refinement subnetwork, with the
proposed Circular Feature Complement (CFC) module and Trans-
mission Bridge (TB) module. The CFC module integrates two-
modal feature maps in a circular complement manner, i.e. RGB-
to-depth direction and depth-to-RGB direction. These two opposite
directions of integration work together for the mutually cross-
modal complementarity. To promote the integrity of CCNet, the
TB module is proposed as a bridge to transmit the output of the
prediction subnetwork to the refinement subnetwork and to nar-
row the gap between them.

The CFC module is the key to address the challenging issue of
cross-modal complementarity. RGB images differentiate from
depth maps as they are more informative and generally contribute
more to SOD. Inspired by this observation, we propose a strategy
that utilizes the RGB feature maps to enhance depth feature maps
for integration in the RGB-to-depth direction. Meanwhile, consid-
ering that the effectiveness of this strategy relies on the represen-
tation ability of RGB features and the CNN features at deeper layers
are more representative, the relatively higher-level RGB feature
maps are employed to suppress the interference of non-salient
regions of relatively lower-level depth feature maps in the RGB-
to-depth direction. This boosts the representation ability of depth
feature maps. For the depth-to-RGB direction, with the supplement
of the boosted depth feature maps, the RGB feature maps can be
exploited to successfully highlight salient objects, benefiting from
salient object continuity in cross-modal features. In TB module,
the preliminary saliency map generated from the prediction sub-
network makes available for focusing on the salient regions in
the middle-level feature maps extracted from the prediction sub-
network. In this way, more valuable RGB and depth information
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are leveraged by the refinement subnetwork to better locate sali-
ent objects and sharpen the preliminary results. Extensive experi-
ments demonstrate that the proposed CCNet outperforms
favorably against 13 state-of-the-art models.

Our main contributions can be summarized as follows:

1) We propose a predict-refine scheme based Circular Comple-
ment Network (CCNet), which is equipped with the CFC
module and the TB module. Our CCNet can progressively
suppress the interference of poor-quality depth maps and
effectively explore cross-modal complementarity to enhance
the integrity of salient objects.

2) We propose the CFC module, which first utilizes RGB fea-
tures to enhance depth feature maps (RGB-to-depth), and
then adopts the enhanced depth feature maps in turn to
assist RGB feature maps to highlight salient objects (depth-
to-RGB). The two opposite directions of feature integration
achieve the cross-modal complementarity of depth and
RGB feature maps in a circular complement manner.

3) We propose the TB module to effectively connect the predic-
tion subnetwork and the refinement subnetwork. It takes
the preliminary saliency map of the prediction subnetwork
to focus on the salient regions in feature maps. The trans-
ferred feature maps of TB module are crucial for the com-
pleteness of salient objects in the refinement subnetwork.

2. Related work

With the increasing research attention in the field of RGB-D
SOD, more and more models have been proposed. In this section,
we classify existing RGB-D SOD models into traditional RGB-D
SODmodels and CNN-based RGB-D SODmodels, and briefly review
them. Besides, we also review some landmark models of visual
attention prediction and image salient object detection tasks.

2.1. Traditional RGB-D SOD models

Lang et al. [16] and Niu et al. [10] made preliminary studies for
RGB-D SOD, they introduced depth map to SOD and proved the
validity and necessity of depth map. Subsequently, based on
multi-contextual depth contrast, Peng et al. [13] extended RGB
SOD models by incorporating depth-induced saliency results.
Cheng et al. [38] and Fan et al. [17] combined depth contrast fea-
ture with color and spatial features to detect salient object in
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RGB-D scenes. The above-mentioned Models fused RGB-induced
saliency map and depth-induced saliency map, but they lack
cross-modal complementarity. According to some observations,
visual attention of human is more easily to be paid to regions clo-
ser to them and several models have been proposed. Ju et al. [39]
took object-to-surrounding depth contrast to detect salient
objects. Ren et al. [40] depicted depth prior at first, and then fused
the depth prior, global-context surface orientation prior, back-
ground prior and region contrast to guide SOD. Feng et al. [19] con-
structed depth saliency feature based on the angular density and
size in depth distributions to quantify saliency. Liang et al. [41]
integrated color contrast, disparity contrast and depth-guided-
background priors to detect saliency of 3D stereoscopic scenes.
Though the above models [19,39–41] have promoted the progress
of traditional models, they were limited by the previous observa-
tions and were hard to generalize to all scenes. Song et al. [31]
measured saliency on four classes of features at three levels, and
took random forest regression to fuse saliency at multiple scales.
Wang et al. [42] proposed a multistage-based model by using the
minimum barrier distance transformation and multilayer cellular
automata-based saliency fusion. Wang et al. [43] focused on
addressing the stereoscopic image SOD, which is similar to the
RGB-D SOD, and they employed the disparity of pairs of images
taken from different angles to detect salient objects in stereo
scenes. In summary, the performance of these traditional RGB-D
SOD models is limited by the hand-crafted feature.

2.2. CNN-based RGB-D SOD models

The fast development of deep learning and the proliferation of
RGB-D labeled data greatly promote the study of RGB-D SOD.
Numerous CNN-based RGB-D SOD models have been proposed in
recent years. At first, Qu et al. [32] extracted the hand-craft feature
from the RGB images and paired depth maps, and then took these
features as the input of a CNN. Finally, the outputted classification
probability values were defined as the saliency values in region
level. Han et al. [22] constructed a two-stream framework which
lately fuses CNN features of RGB and depth to predict saliency
map. Since then, the two-stream framework has been the main-
stream in the study of CNN-based RGB-D SOD [20–24,28–30,44].
Zhu et al. [30] extracted depth feature from a designed subnetwork,
and combined depth feature with RGB feature in a middle stage
through cascade. The result fusion strategy was employed in
[18], Wang et al. designed an adaptive fusion module to adaptively
fuse the saliency maps of two streams. Considering the above mod-
els lack the effect use of complementary information of the two
modalities, Chen et al. [23] proposed cross-modal complementarity
modules to fuse two-modal features at multiple levels to progres-
sively enhance saliency predictions. Whereafter, the cross-modal
complement modules with complementarity-aware supervisions
are explored by Chen et al. [21] across all levels. Chen et al. [24]
later integrated attention-aware cross-level fusion modules to
select discriminative feature from two modalities. Piao et al. [20]
combined depth cues with multi-scale context features, and
designed a recurrent attention module to boost the performance
of SOD. Li et al. [28] employed discriminative operations for fea-
tures from RGB images and depth maps and achieved cross-
modal complementary at each level. Along with the thorough
research for RGB-D saliency detection, it is found that the poor-
quality depth map imposes negative impacts on RGB-D SOD, and
this situation has been taken account into some models [29,44].
Zhou et al. [44] extracted paired modal features from RGB stream
and depth stream, and fused them under the guidance of
contrast-enhanced depth maps at multiple levels, Zhao et al. [29]
designed a fluid pyramid integration framework which took
enhanced depth map to enhance RGB features at multiple levels.
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However, the contrast-enhanced strategy adopted for depth map/
feature lacks generality in the real scenes. In addition to the two-
stream based models, Chen et al. [12] expanded two-stream archi-
tecture to three-stream architecture by integrating a cross-modal
distillation stream which accompanies the RGB and depth streams.

The proposed CCNet inherits the two-stream style and further
detects more accurate salient objects with the predict-refine
scheme. Moreover, the CFC module employs RGB feature maps to
enhance depth feature maps before achieving cross-modal comple-
mentarity between them. Equipped with the CFC module, the pro-
posed CCNet is robust when confronting poor-quality depth maps.

2.3. Visual attention prediction models

Visual attention prediction (i.e., fixation prediction) simulates
attentional capability of human perception to predict scene loca-
tions where humans may fixate at first glance. Most traditional
visual attention prediction models are based on the bottom-up
mechanism. Classically, Itti et al. [45] combined the contrasts in
intensity, color, and orientation to identify the fixation point. Judd
et al. [46] proposed a bottom-up and top-down visual attention
prediction model based on low, middle and high-level image fea-
tures. Based on decision theory, Ngo et al. [47] developed the
multi-scale discriminant saliency technique for visual attention
prediction. Harel et al. [48] introduced the graphical model into
visual attention prediction. More details could be found in [49],
which is a comprehensive summary of traditional models.

With the promotion of CNN in many tasks of computer visual
[50], Vig et al. [51] made the first attempt to leverage CNNs for
visual attention prediction in an end-to-end manner. They first
extracted representative features from image, and then fed them
into a classifier for visual attention prediction. Wang et al. [52]
incorporated multi-scale features trained in a multi-scale super-
vised manner to infer attention. These models effectively formu-
lated saliency as a regression problem, and outperformed the
traditional attention prediction models. Based on the encoder-
decoder architecture, Wang et al. [53] proposed a pithy method
to sense the local and global features for visual attention predic-
tion. More works of CNN-based visual attention prediction could
be found in the recent review [54].

2.4. Image salient object detection models

Image salient object detection aims at segmenting out the most
attractive objects from an RGB image. Similar to visual attention
prediction, most of the traditional image SOD models are based
on hand-crafted features and classic technologies, such as cogni-
tive assumptions [55], the over segmentation method [56], super-
pixels [57], object proposals [6], graph cuts [58] and random walks
[59]. Shen et al. [60] proposed a higher order binary energy func-
tion to achieve binary image segmentation. In [61], Shen et al.
solved the SOD task through maximizing the proposed knapsack
constrained submodular energy function. Wang et al. [62] took
superpixels as computing units, and transferred the saliency scores
from labeled images onto the detected images through matching
the similarity of labeled image and detected images. Ren et al.
[63] promoted the image SOD performance based on similar
images. More traditional image SODmodels could be found in [64].

CNN-based image SOD models refresh the previous records. Li
et al. [65] aggregated multi-scale features to infer saliency. Wang
et al. [66] captured fixation map from high-level CNN features,
and then progressively segmented out salient objects with the
guidance of the fixation map in a top-down manner. Wang et al.
[67] proposed a top-down and bottom-up saliency inference model
in a joint and iterative way. In [68], to obtain complete salient
objects with more precise object boundaries, Zhao et al. [68] pro-
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posed the two-branch network to generate the boundary map and
the preliminary saliency map, respectively, and then they com-
bined these two maps to generate the final saliency map. Qin
et al. [69] attempted to add boundary loss into an U-Net based
model to boost the ability of boundary capture. Wang et al. [70]
specifically designed a salient edge module to refine the boundary
of detected salient objects. In [8], Huang et al. proposed a multi-
level integration and multi-scale fusion neural network. Wu et al.
[9] introduced the adversarial learning into image SOD. At present,
a plenty of image SOD models reached promising performance in
most of scenes. More works of CNN-based image SOD could be
found in the recent survey [71].

3. The proposed approach

This section starts with the overall architecture of the proposed
CCNet in Section 3.1. Then, the description of the CFC module is
presented in Section 3.2, and the detailed formula of the TB module
is given in Section 3.3. Finally, the implementation details of CCNet
are presented in Section 3.4.

3.1. Overall architecture

As shown in Fig. 2, with three CFC modules and one TB module,
the prediction subnetwork and the refinement subnetwork are
combined to form the CCNet. The adopted predict-refine scheme
in CCNet is generally used to promote the performance of models
[69,72], which is well-tried for RGB image SOD. Based on the
predict-refine scheme, we extract RGB feature maps and depth fea-
ture maps with two streams and employ VGG16 [73] as the back-
bone of CCNet.

The prediction subnetwork is in charge of predicting the prelim-
inary saliency map from the input RGB image I and the paired
depth map D. In this subnetwork, the RGB stream adopts the first
five convolution blocks of VGG16 to extract RGB feature maps
f i;j; i ¼ 1; j ¼ 1;2;3;4;5

� �
, and the depth stream abstracts depth

feature maps d1;d2;d3f g via three convolution blocks of VGG16.
We feed f1;2;d1

� �
and f1;3;d2

� �
into two CFC modules to achieve

the cross-modal fusion of RGB and depth feature maps in the pre-
diction subnetwork at low- and middle-levels, and renamed these
CFC modules as CFC-L and CFC-M, respectively. Afterwards, a cas-
caded partial decoder [74] subsequently integrates three-layer
RGB feature maps into the RGB stream to output the preliminary
saliency map Spre with the size of 88� 88.
Fig. 2. The overall architecture of the proposed CCNet. The proposed CCNet is const
subnetwork, a RGB image and a paired depth map are passed over multiple convolutio
features and depth features are mutually complemented in CFCmodules. The TB module p
subnetwork. The refinement subnetwork employs convolution blocks and CFC-H module
and CFC-L have the same structure, and work for low-, middle-, and high-level features
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The prediction subnetwork provides the basis for the following
refinement subnetwork. The TB module acts as a bridge between
the prediction subnetwork and refinement subnetwork, which uti-
lizes Spre to boost middle-level feature maps and transmits them to
the refinement subnetwork. The refinement subnetwork subse-
quently makes further abstractions for imported feature maps,
boosting the performance of CCNet. The fourth and fifth convolu-
tion blocks of VGG16 are employed in the RGB stream to extract
high-level RGB feature maps f i;j; i ¼ 2; j ¼ 4;5

� �
. In the depth

stream, another fourth convolution block of VGG16 is used to
extract high-level depth feature maps d4. Through CFC-H module,
we achieve the cross-modal feature complementarity at high level
in the refinement subnetwork. The decoding operation in the
refinement subnetwork is performed in the same way as that in
the prediction subnetwork, and the final saliency map Sfinal with
the size of 88� 88 is generated.

More recently, the commonly used models are multi-scale pre-
diction models [28], which are generally constructed with multiple
prediction subnetworks. In multi-scale prediction models, the
same scale features of decoder and encoder are concatenated,
and then they are fed into the corresponding subnetwork to predict
saliency map. The final result is generated by the fusion of multiple
predictions or gradually predicted by employing the multi-scale
features in a coarse-to-fine fashion. The proposed CCNet, which
adopts a predict-refine scheme, is essentially different from
multi-scale prediction models. The two decoders in the prediction
subnetwork and the refinement subnetwork all integrate middle-
and high-level RGB features for detection. For subsequent refine-
ment, the prediction subnetwork plays the role of preliminary pre-
diction and extraction of middle-level feature. After the process of
purifying middle-level features in the TB module, the enhanced
features flow into the refinement subnetwork. The refinement sub-
network makes further feature extractions, and achieves mutual
cross-modal complementarity again at high level. With the puri-
fied middle-level features and further complemented high-level
features, the final results generated by the refinement subnetwork
are finer than the preliminary results.
3.2. Circular Feature Complement module

How to extract valuable depth feature maps to complement
RGB feature maps effectively, even from poor-quality depth maps,
is the key focus of this paper. Aiming at solving this challenging
issue, we specifically design a CFC module, as shown in Fig. 3.
ructed based on the predict-refine scheme with two streams. In the prediction
n blocks, CFC-L and CFC-M modules and a decoder for preliminary prediction. RGB
rocesses the outputs of prediction subnetwork and transfers them to the refinement
at high level to generate final saliency map through another decoder. CFC-L, CFC-M,
, respectively.



Fig. 3. The structure of CFC module.
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Before transferring depth information to RGB stream through the
general depth-to-RGB [23,29,30] integration, our CFC module
adopts an opposite direction integration which is RGB-to-depth.
The RGB-to-depth integration boosts the quality of depth feature
maps, and then it works with depth-to-RGB integration to achieve
the mutual cross-modal complementarity in a circular comple-
ment manner.

The detailed formula of RGB-to-depth integration is designed
according to the differences between RGB images and depth maps.
Depth maps differentiate from RGB images as they provide more
meaningful information about the shape and distance of objects,
while RGB images usually focus more on the textures and colors
to stimulate eyes. Thus, the mapping relationship between RGB
images and saliency maps is relatively clearer than that between
depth maps and saliency maps. Based on this observation, we pro-
pose a strategy that utilizes relatively discriminative RGB feature
maps f i;j to enhance depth feature maps dj�1 via an element-wise
multiplication. We preserve the original depth information by pil-
ing the dj�1 onto the initial enhanced depth features by a residual
connection, i.e. element-wise summation. Considering that the
effectiveness of this strategy relies on the representation ability
of RGB features and the CNN features at deeper layers are more
representative, we employ the RGB feature maps f i;j, which are rel-
atively deeper than the depth feature maps, to enhance depth fea-
ture maps dj�1. The RGB-to-depth integration in the CFC module is
formulated as follows:

dj ¼ Convðdj�1 � convðupðf i;jÞÞ � dj�1Þ; ð1Þ
where up �ð Þ, conv �ð Þ, and Conv �ð Þ are up-sampling operation,

1� 1 convolution layer and VGG convolution block, respectively.
� and � denote element-wise multiplication and element-wise
addition, respectively. We adopt up-sampling operation and
1� 1 convolution operation to resize f i;j to fit the resolution of
Fig. 4. Feature visualization in CFC-M. f1;3 and d2 are the input RGB feature and depth fea
of CFC-M, respectively.
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dj - 1. For the depth-to-RGB integration, enhanced dj are transferred
to RGB stream by concatenating with f i;j, then f i;j is piled onto the
composite features via element-wise summation to generate f 0i;j.
The depth-to-RGB integration is expressed as follows:

f 0i;j ¼ convðCatðf i;j;djÞÞ � f i;j; ð2Þ
where Cat �; �ð Þ represents cross-channel concatenation opera-

tion. The 1� 1 convolution layer is used to compress the channel
number of the concatenated feature maps to match f i;j.

In Fig. 4, we show the visualized features in CFC-M module to
verify the rationality of RGB-to-depth and depth-to-RGB integra-
tions. Concretely, f1;3 enhances d2 in the RGB-to-depth integration
to generate d3, and d3 reversely supplements f1;3 in the depth-to-
RGB integration to generate f 01;3. The salient objects in f1;3 are con-
fused with non-salient regions, and some interferences exist in d2.
After two integrations, the interferences are suppressed in d3, and
the salient objects are effectively highlighted in f 01;3. The examples
in Fig. 4 demonstrate that the two integrations of CFC are reason-
able and effective. With the two integrations combining in a circu-
lar complement manner, the CFC module can purify the
interferences of depth map and improve the discriminability of
features to promote the accuracy of salient object prediction (see
Fig. 4).

Through stacking three CFC modules into CCNet, the cross-
modal complementarity of RGB and depth feature maps is
achieved at three different levels with weakening the contamina-
tion from the poor-quality depth maps, which progressively pro-
motes SOD.
3.3. Transmission Bridge module

As described in Section 3.1, on the basis of the adopted predict-
refine scheme in CCNet, the effectiveness of the refinement subnet-
work is prone to be affected by the representation ability of
inputted feature maps. To this end, a TB module is added before
the refinement subnetwork to enhance the discrimination of
imported feature maps. Meanwhile, the TB module can serve as a
bridge of the prediction subnetwork and the refinement subnet-
work to improve the integrity of the CCNet.

Although the preliminary predictions can provide localization
cues to suppress the background regions in original RGB and depth
feature maps, they are relatively coarse and some boundary infor-
mation of salient objects may be filtered out. This situation will
wrongly suppress the boundary features in the boosted feature
maps. To further purify the preliminary predictions, we introduce
ture of CFC-M, respectively. d3 and f 01;3 are the output RGB feature and depth feature



Fig. 5. The structure of TB module.
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the Holistic Attention (HA) block [74] before feature-enhanced
process, as shown in Fig. 5. This block refines boundary regions
in Spre by enlarging the foreground coverage area, and produces
the blurred map Sopt of Spre. The process in HA can be formulated
as follow:

Sopt ¼ MAXðPmin maxðconvgðSpre; kÞÞ; SpreÞ; ð3Þ
where convg �ð Þ is the Gaussian convolution operation to blur Spre
with size 32 and standard deviation k which is set to 4, Pmin maxð�Þ
is a normalization operation, and MAX �ð Þ is a maximum function.
Subsequently, we conduct feature-enhanced process for the
middle-level features, i.e. f 01;3 and d3, utilizing Sopt to suppress the

distractors of f 01;3 and d3 via element-wise multiplication. Then,

we achieve residual connection with original f 01;3 and d3 via
element-wise summation. A channel weighting process (CW) for
modulating RGB features is additionally adopted. In this way, more
discriminative channel-feature maps will be strengthened adap-
tively. Considering depth maps are less informative, the channel-
wise self-weighed operation is just adopted for RGB feature maps.
These operations in TB module are formulated as follow:

foe ¼ f 01;3 � Sopt � f 01;3; ð4Þ

d0
3 ¼ d3 � Sopt � d3; ð5Þ

f2;3 ¼ foe � GðfoeÞ � foe; ð6Þ
where foe and G �ð Þ denote RGB feature maps enhanced by Sopt and a
global pooling layer, respectively. Notably, there are no parameters
to learn in TB module. Therefore, TB module does not cost addi-
tional computation consumption.

The features of TB module are shown in Fig. 6. Compared with
the original middle-level features f 01;3 and d3, the refined features

f2;3 and d0
3 focus more on the salient regions and have less
Fig. 6. Feature visualization in TB module. f 01;3 and d3 are the input RGB feature and depth
output RGB feature and depth feature of TB module, respectively.
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distractors. The salient objects in f2;3 are rendered more evenly
and have fewer cavities compared to foe. These visually prove that
the combination of HA block and CW process is reasonable and
effective. Therefore, TB module can purify features to boost the
detection ability of refinement subnetwork to better locate salient
objects and sharpen the preliminary results.

3.4. Implementation details

Total Training Loss: The overall framework is trained end-to-
end with pixel-level ground truths, and the total training loss
LTotal is defined as the sum of two subnetworks’ losses:

LTotal ¼ LceðSpre;GTÞ þ LceðSfinal;GTÞ; ð7Þ
where GT is ground truth and Lce is the cross-entropy loss. It is
worth noting that the size of two subnetworks’ outputs are both
88� 88, thus they need to be resized to 352� 352 for loss
evaluation.

Training Data Setting: Intending for a fair comparison with
state-of-the-art models, following [28,29,37], we take 1400 image
pairs and 650 image pairs from NJU2K [39] and NLPR [13], respec-
tively, as training data. And limited by the scale of training data,
the training data is augmented by mirror flipping and rotation
operations. All image pairs are resized to 352� 352 for training
and testing.

Network Training: The experiments are implemented on
Pytorch 1.2.0 framework [75] by adapting a NVIDIA GTX 2080TI
GPU (11G memory). We utilize Adam [76] optimizer for training,
and set the batch size to 10, the initial learning rate to 10�4, the
decay rate for learning rate to 0.1, and the number of epoch to
59. The parameters of the CNN blocks are initialized by VGG16
[73], and the parameters of other convolution layers are initialized
through the default setting of the Pytorch. The parameters of RGB
stream and depth stream are not shared, and the parameters of the
prediction subnetwork and the refinement subnetwork are also not
shared. The training loss converges after 55 epochs, taking about
10 h.
4. Experimental results

4.1. Datasets

To verify the effectiveness and robustness of the proposed
CCNet, we carry out comparison experiments on six benchmark
datasets, NJU2K [39], NLPR [13], STEREO [16], DES [38], SIP [37],
and LFSD [77]. STEREO is the first proposed dataset in this field
with 1000 image pairs totally, while the quality of depth map is
poor. Its gray distributions cannot match the object shape of corre-
feature of TB module, respectively. foe is produced by CW process. f2;3 and d0
3 are the
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sponding RGB image. LFSD and DES are small datasets, and the
images of each have uniform resolutions. LFSD includes 60 pairs
of indoor and 40 pairs of outdoor images. DES includes 135 pairs
of indoor images. Compared with DES, the scenarios of LFSD are
more complex and challenging. NJU2K and NLPR consist of 1985
and 1000 pairs of images, respectively. SIP dataset is built for sali-
ent person detection in the wild with 1000 pairs of images.

4.2. Evaluation metrics

To conduct a comprehensive performance evaluation, six evalu-
ation metrics are employed in this paper, including Precision-
Recall (P-R) curve, S-measure (Sa) [78], maximum F-measure (Fb)
[79], weighted F-measure [80], maximum E-measure (Ee) [81]
and mean absolute error (MAE) [82]. P-R curve is plotted by 256
pairs of precision and recall which come from the comparison
between GT and binary maps generated by thresholding pixels of
a saliency map with a series of fixed integers from 0 to 255. S-
measure is used to evaluate region-aware and object-aware struc-
tural similarity between a saliency map and a GT. E-measure cap-
tures matching information of image-level statistics and local pixel
jointly. F-measure is defined to measure the overall performance of
the saliency map:

Fb ¼ ð1þ b2Þ � Precision � Recall
b2 � Precisionþ Recall

; ð8Þ

where b2 ¼ 0:3, as the same as [20].
The direct estimation between GT and saliency map is given by

MAE:

MAE ¼ 1
N
jSM � GTj; ð9Þ

where N represents a total number of pixels in an image, and SM
denotes saliency map.
Table 1
Ablation studies for CFC module on STEREO, LFSD a

. The variants are described in detail in Section

Fig. 7. Visual comparisons of CCNet w
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4.3. Ablation study

To demonstrate the impact of CFC module and TB module on
our CCNet network, we conduct detailed experiments on STEREO
[16], LFSD [77] and SIP [37] datasets. All the variants are trained
with the same setting as the complete CCNet.

4.3.1. CFC module
We evaluate contributions of the CFC module, the prediction

subnetwork, and the refinement subnetwork in this section. Addi-
tionally, we evaluate the rationality of suppressing the interference
of depth features in CFC module, and compare the effect of differ-
ent numbers and levels of CFC module.

The effectiveness of CFC module. We generate a variant by
removing three CFC modules from CCNet, named as w/o CFC. The
results of w/o CFC are shown in Table 1. Compared with the com-
plete CCNet, the performance of w/o CFC drops dramatically on
three evaluated datasets (e.g. Sa: 0.908 ? 0.881, 0.876 ? 0.801,
0.886 ? 0.846). This demonstrates the CFC module is important
for CCNet. Besides, since the CFC module contains the main inter-
actions between RGB images and depth maps, w/o CFC disables the
depth stream of the proposed network. Therefore, w/o CFC is also
known as w/o Depth. The sharp drop in performance further proofs
the validity of depth map for SOD.

The effectiveness of suppressing the interference of depth
features. Compared with the existing cross-feature complemen-
tary modules [21,23,24,28], we innovatively propose the interfer-
ence suppression operation for depth features in the RGB-to-
depth direction of the CFC module. To verify the effectiveness of
this operation, we remove the connection of RGB-to-depth from
CFC modules, and constructed the variant w/o RGB ? Depth. The
results of w/o RGB? Depth obviously worse than that of the CCNet
(e.g. Sa: 0.908 ? 0.901, 0.876 ? 0.855, 0.886 ? 0.876; M:
0.037 ? 0.045, 0.062 ? 0.072, 0.048 ? 0.059). As shown in
Fig. 7, although the salient objects are correctly highlighted by
nd SIP datasets. The best results are marked as
4.3.1.

ith variants about CFC module.



Table 2
Ablation studies for TB module on STEREO, LFSD and SIP datasets. The best results are
marked as . The variants of TB module are described in Section 4.3.2.
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w/o RGB ? Depth, the non-salient regions in saliency maps are
contaminated by the poor-quality depth maps. This observation
demonstrates the interference suppression operation indeed
improves the performance to a certain extent.

The effectiveness of CFC module in the prediction and refine-
ment subnetworks. CFC modules in the prediction and refinement
subnetworks are removed in turn to construct the variants w/o
Pre-CFC and w/o Refine-CFC, respectively. From Table 1, the perfor-
mance of w/o Pre-CFC is significantly inferior than the complete
CCNet on three datasets (e.g. Sa: 0.908 ? 0.902, 0.876 ? 0.848,
0.886 ? 0.873). The performance of w/o Refine-CFC also decreases
(e.g. Sa: 0.908 ? 0.903, 0.876 ? 0.863, 0.886 ? 0.878). The fallen
performance of both w/o Pre-CFC and w/o Refine-CFC confirms
the necessity of CFC module in two subnetworks.

The different levels and the number of CFC modules.We take
turns removing or keeping three levels of CFC module to construct
six variants, including w/o CFC-L, w/o CFC-M&H, w/o CFC-M, w/o
CFC-L&H, w/o CFC-H, and w/o CFC-L&M. As reported in Table 1,
we observe that all six variants perform worse than CCNet, which
indicates that the CFC module of each level is indispensable. Addi-
tionally, in terms of the performance degradation of each variant,
the performance degradation of w/o CFC-M is more serious than
w/o CFC-L and w/o CFC-H, and the degradation of w/o CFC-L&H
is less than w/o CFC-M&H and w/o CFC-L&M. These all prove that
CFC module plays a greater role in middle-level features than it
does in low- and high-level features.

4.3.2. TB Module
The effectiveness of TB module. We discard TB module from

CCNet and name the variant w/o TB-M, due that the interface of
TB module is the middle-level feature. Removing TB module indi-
cates the middle-level features are directly imported into refine-
ment module without any enhanced operations. As reported in
Table 2, the performance degradation of w/o TB-M (e.g. Sa:
0.908 ? 0.898, 0.876 ? 0.868, 0.886 ? 0.869; M: 0.037 ? 0.050,
0.062 ? 0.075, 0.048 ? 0.066) proves that the TB module can
effectively boost the detection accuracy. As shown in Fig. 8, the
Fig. 8. Visual comparisons of CCNet
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example saliency maps clearly show that the CCNet captures sali-
ent boundaries quite well due to the effectiveness of TB module.

The effectiveness of channel weighting operation in the TB
module. The variant w/o CW denotes the TB module without chan-
nel weighting operation. Compared with the complete CCNet, the
performance of w/o CW slightly decreases (e.g. Sa:
0.908 ? 0.904, 0.876 ? 0.870, 0.886 ? 0.881; M :
0.037 ? 0.039, 0.062 ? 0.066, 0.048 ? 0.052). Although the chan-
nel weighting operation is simple and occupies less computation
burden, it is an indispensable operation in the TB module.

The Number of TB Modules. The w/ 2 TB (w/ 2Refine) is a vari-
ant of integrating another one TB module behind the original
refinement subnetwork. Due that the function of TB module is to
bridge two subnetworks, we additionally add a refinement subnet-
work behind the second TB module. With the computation cost
increasing, the performance improvement of w/ 2 TB (w/ 2Refine)
is subtle, as reported in Table 2. Therefore, considering both perfor-
mance improvement and computation cost, one TB module is
proper for our CCNet.

Selection of Optimization Feature. The w/ TB-L and w/ TB-H
are constructed by replacing the optimization features of TB mod-
ule with low- and high-level features, respectively. From Table 2,
w/ TB-L performs differently on three datasets. On the whole, the
performance slightly degrades (e.g. Sa: 0.908 ? 0.909,
0.876 ? 0.867, 0.886 ? 0.884; M : 0.037 ? 0.037,
0.062 ? 0.061, 0.048 ? 0.046). The performance of w/ TB-H des-
cends on all tested datasets (e.g. Sa : 0.908 ? 0.904,
0.876 ? 0.864, 0.886 ? 0.878; M : 0.037 ? 0.039,
0.062 ? 0.069, 0.048 ? 0.053) due that the decoder in the refine-
ment subnetwork integrates middle-level features with less
discrimination.
4.4. Comparison with State-of-the-arts

To evaluate the performance of our CCNet for RGB-D SOD, we
compare it with 13 state-of-the-art models, including CDCP [34],
MDSF [31], DF [32], CTMF [22], PCF [21], AFNet [18], MMCI [23],
TANet [12], CPFP [29], DMRA [20], D3Net [37], AGSD [44] and ICNet
[28]. CDCP and MDSF are traditional models, and the rest of these
models are based on CNNs.
4.4.1. Quantitative comparisons
We summarize S-measure [78], maximum F-measure [79],

maximum E-measure [81] and MAE [82] of two predictions of
our CCNet and other state-of-the-art models on NJU2K [39], LFSD
[77], DES [38], NLPR [13], SIP [37] and STEREO [16] datasets in
Table 3. Besides, we post PR curves and the weighted F-measure
[80] of 8 advanced models, including AFNet [18], MMCI [23], TANet
[12], CPFP [29], DMRA [20], D3Net [37], AGSD [44] and ICNet [28],
in Fig. 9.
with variants about TB module.



Table 3
Quantitative comparisons on 6 public datasets. " indicates larger is better, and # denotes smaller is better. The best result is marked , the
second place is marked , and the third place is marked .

Fig. 9. Quantitative comparisons of the proposed CCNet with 8 state-of-the-art models. (a)-(f) are P-R curves.
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As can be seen from Table 3, the proposed CCNet shows supe-
rior performance, especially on the NJU2K and SIP datasets. In
addition, the preliminary prediction of CCNet (i.e. OURs-pre) pre-
sents competitive performance. The S-measure scores of the pro-
posed CCNet beyond the second place D3Net (except for
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OURs-pre) by 2.2% on NJU2K. Even on the STEREO dataset which
has lots of poor-quality depth maps, CCNet is still in the lead. This
indicates that the integrity of the detected salient objects by the
proposed CCNet is better than that of other models. As shown in
Fig. 9, on each dataset, the convex points of our CCNet are above



Fig. 10. Visual comparisons of the proposed CCNet with eight state-of-the-art models.
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other state-of-the-art models, and the weighted F-measure scores
of our CCNet are still higher than other models.

4.4.2. Visual comparisons
Some saliency map examples of eight advanced models and the

proposed CCNet are presented in Fig. 10 for visual comparison. The
saliency predictions of the proposed CCNet are superior than other
models and show three advantages: the detected salient regions
have sharper contrasts with non-salient regions; the structures of
detected objects have finer edges than other results; the generated
saliency maps have less distractors, even confronting challenging
scenarios, such as low contrast, complex scene, background distur-
bance, and confused depth map. For example, in the first row of
Fig. 10, the flowers in the RGB image and palms in depth map
are complemented to detect the complete cactus. In the fifth
row, the trees of depth map are suppressed by the RGB image
and the effective information of stone lion in the depth map is
extracted to assist RGB features in turn. These are attributed to
the circular complementary manner in the CFC modules. In the
sixth row, the tiny edge of seagull can still be detected through
the TB module even the saliency map is up-sampled from
88� 88. Compared with our preliminary results, the salient objects
in our final saliency maps are highlighted evenly with sharper
object boundaries, and some falsely highlighted regions in the pre-
liminary results are also suppressed (e.g. the 3rd, 4th and 5th
rows). These improvements all benefit from the effectiveness of
the TB module and the rational utilization of the predict-refine
scheme in our CCNet. Visual comparisons are consistent with the
quantitative results in Table 3, which further demonstrates the
superiority of our CCNet.
5. Conclusion

In this paper, we propose a predict-refine architecture based
CCNet for accurate RGB-D SOD. CCNet consists of the prediction
subnetwork and the refinement subnetwork, and it is equipped
with the novel CFC modules and a TB module. Compared with
the existing cross-modal feature complementary module, the CFC
module is embedded with additional RGB-to-depth integration to
enhance depth features, and further boosts the mutual comple-
mentary of RGB and depth features. With the TB module, the pre-
diction subnetwork and the refinement subnetwork are bridged to
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improve the integrity of CCNet and more discriminated features
are promoted to reach more accurate SOD. Ablation results of mul-
tiple variants verify the effectiveness and rationality of CFC module
and TB module. Comparison results demonstrate the proposed
CCNet outperforms 13 state-of-the-art models on six benchmark
datasets, and it is more robust to RGB image with poor-quality
depth map.
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