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Abstract— As a natural way for human-computer interaction,
fixation provides a promising solution for interactive image
segmentation. In this paper, we focus on Personal Fixations-based
Object Segmentation (PFOS) to address issues in previous studies,
such as the lack of appropriate dataset and the ambiguity
in fixations-based interaction. In particular, we first construct
a new PFOS dataset by carefully collecting pixel-level binary
annotation data over an existing fixation prediction dataset,
such dataset is expected to greatly facilitate the study along
the line. Then, considering characteristics of personal fixations,
we propose a novel network based on Object Localization and
Boundary Preservation (OLBP) to segment the gazed objects.
Specifically, the OLBP network utilizes an Object Localization
Module (OLM) to analyze personal fixations and locates the
gazed objects based on the interpretation. Then, a Boundary
Preservation Module (BPM) is designed to introduce additional
boundary information to guard the completeness of the gazed
objects. Moreover, OLBP is organized in the mixed bottom-up
and top-down manner with multiple types of deep supervision.
Extensive experiments on the constructed PFOS dataset show
the superiority of the proposed OLBP network over 17 state-
of-the-art methods, and demonstrate the effectiveness of the
proposed OLM and BPM components. The constructed PFOS
dataset and the proposed OLBP network are available at
https://github.com/MathLee/OLBPNet4PFOS.

Index Terms— Personal fixations, interactive image segmenta-
tion, object localization, boundary preservation.

I. INTRODUCTION

F IXATION is a flexible interaction mechanism of the
human visual system. Compared with scribble, click and

bounding box, fixation provides the most convenient inter-
action for patients with hand disability, amyotrophic lateral
sclerosis (ALS) and polio. This kind of eye control interaction,
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Fig. 1. Examples of image with ambiguous fixations. Green dots in each
image indicate fixations. Some fixations fall in the background.

i.e. fixation, can greatly improve the interaction efficiency of
these patients. In addition, fixation is closely related to per-
sonal information such as age [1], [2] and gender [3], [4]. This
means that different individuals may have different perceptions
and preferences of a scene [5], [6]. Thus motivated, in this
paper, we pay close attention to personal fixations-based object
segmentation, which is a more natural manner for interactive
image segmentation.

The typical manners of interaction, such as scribbles
[7]–[11], clicks [12]–[17] and bounding boxes [18]–[21] for
interactive image segmentation, are explicit behaviors without
interference. By contrast, fixations are implicit [22]–[25],
and their convenience comes with interaction ambiguity.
Concretely, the positive and negative labels of scribbles and
clicks are deterministic. However, fixations are unlabeled when
collected. They do not distinguish between positive labels and
negative labels (i.e. some fixations may fall in the background
as shown in Fig. 1), resulting in a few noise in the fixations.
Such ambiguous interaction makes the fixations-based
object segmentation task difficult. Recently, with the rise
of convolutional neural networks (CNNs), the clicks-based
interactive image segmentation has been greatly developed.
Even though fixation points and clicking points are similar to
some extent, clicks-based methods [12]–[14], [16], [17] cannot
be directly applied to fixations-based object segmentation.

The above observations suggest that there are two main
reasons that limit the development of fixations-based object
segmentation. First, there is not a suitable dataset for the
fixations-based object segmentation task, let alone dataset
based on the personal fixations. Second, as aforementioned,
the ambiguous representation of fixations makes this type of
interaction difficult to handle by other methods which are
based on clicks and scribbles.

To address the first crucial issue, we construct a Personal
Fixations-based Object Segmentation (PFOS) dataset, which
is extended from the fixation prediction dataset OSIE [26].
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The PFOS dataset contains 700 images, and each image has
15 personal fixation maps collected from 15 subjects with
corresponding pixel-level annotations of objects. To overcome
the ambiguity of fixations, we propose an effective network
based on Object Localization and Boundary Preservation
(OLBP). The key idea of OLBP is to locate the gazed objects
based on the analysis of fixations, and then the boundary
information is introduced to guard the completeness of the
gazed objects and to filter the background.

In particular, the overall structure of OLBP network is a
mixture of bottom-up and top-down architectures. To narrow
the gap between fixations and objects, we propose the Object
Localization Module (OLM) to analyze personal fixations in
detail and grasp location information of the gazed objects of
different individuals. Based on the interpretation of location
information, OLM modulates CNN features of image in a
bottom-up way. Moreover, considering that the object loca-
tion information may involve confusing noise, we propose a
Boundary Preservation Module (BPM) to exploit boundary
information to enforce object completeness and filter the
background of erroneous localization. BPM is integrated into
the top-down prediction. Both OLMs and BPMs employ
deep supervision to further improve the capabilities of feature
representation. In this way, the scheme of object localiza-
tion and boundary preservation is successfully applied to the
bottom-up and top-down structure, and the proposed OLBP
network greatly promotes the performance of the personal
fixations-based object segmentation task. Experimental results
on the challenging PFOS dataset demonstrate that OLBP out-
performs 17 state-of-the-art methods under various evaluation
metrics.

The contributions of this work are summarized as follows:
• We construct a new dataset for Personal Fixations-based

Object Segmentation (PFOS), which focuses on the
natural interaction (i.e. fixation). This dataset con-
tains free-view personal fixations without any con-
straints, expanding its applicability. We believe that the
PFOS dataset will boost the research of fixations-based
human-computer interaction.

• We propose a novel Object Localization and Bound-
ary Preservation (OLBP) network to segment the gazed
objects based on personal fixations. The OLBP network,
equipped with the Object Localization Module and the
Boundary Preservation Module, effectively overcomes
the difficulties from ambiguous fixations.

• We conduct extensive experiments to evaluate our OLBP
network and other state-of-the-art methods on the PFOS
dataset. Comprehensive results demonstrate the superior-
ity of our OLBP network, and also reveal the difficulties
and challenges of the constructed PFOS dataset.

The rest of the paper is organized as follows: Sec. II reviews
related previous works. Then, we formulate the PFOS task
in Sec. III. After that, in Sec. IV, we construct the PFOS
dataset. Sec. V presents the proposed OLBP network in detail.
In Sec. VI, we evaluate the performance of the proposed OLBP
network and other methods on the constructed PFOS dataset.
Finally, the conclusion is drawn in Sec. VII.

II. RELATED WORK

In this section, we first give an overview of previous
works of interactive image segmentation in Sec. II-A. Then,
we introduce related works of fixations-based object segmen-
tation in Sec. II-B. Finally, we review some related works on
boundary-aware segmentation in Sec. II-C.

A. Interactive Image Segmentation

1) Scribbles-Based Interactive Image Segmentation:
Scribble is a traditional manner of interaction. Most of
scribbles-based methods are built on graph structures. Graph-
Cut [7] is one of the most representative methods. It uses the
max-flow/min-cut theorem to minimize energy function with
hard constraints (i.e. labeled scribbles) and soft constraints.
Grady et al. [8] adopted the random walk algorithm to assign
a label to each unlabeled pixel based on the predefined seed
pixels in discrete space. In [9], Bai et al. proposed a weighted
geodesic distance based framework, which is fast for image
and video segmentation and matting. Nguyen et al. [10]
proposed a convex active contour model to segment
objects, and their results were with smooth and accurate
boundary contour. Spina et al. [11] presented a live markers
methodology to reduce the user intervention for effective
segmentation of target objects. Following the seed propagation
strategy, Jian et al. [27] employed the adaptive constraint
propagation to adaptively propagate the scribbles information
into the whole image. Recently, Wang et al. [28] changed their
view on interactive image segmentation and formulated it as a
probabilistic estimation problem, proposing a pairwise likeli-
hood learning based framework. These methods are friendly to
clearly defined scribbles, but they cannot solve the ambiguity
of fixations and their inference speed is usually slow.

2) Clicks-Based Interactive Image Segmentation: Click is
a classical manner of interaction. It has been deeply studied
in the deep learning era. The positive and negative clicks
are transformed into two separate Euclidean distance maps
for network input. Xu et al. [12] directly sent RGB image
and two distance maps into a fully convolutional network.
Liew et al. [13] proposed a two-branch fusion network with
global prediction and local regional refinement. In addition to
the RGB image and distance maps, Li et al. [14] included
clicks in their network input and proposed an end-to-end
segmentation-selection network. In [16], Jang et al. introduced
the backpropagating refinement scheme to correct mislabeled
locations in the initial segmentation map. Different from the
direct concatenation of RGB image and interaction maps of the
above methods, Hu et al. [17] separately input RGB image and
interaction maps into two networks, and designed a fusion net-
work for feature interactions. CNNs have greatly improved the
performance of clicks-based interactive image segmentation,
but when these methods are applied to fixations-based object
segmentation, some background regions will be mistakenly
segmented. To address the problem of erroneous localization,
we explore the boundary information in our BPM to filter
redundant background regions and guard the gazed object.

3) Bounding Boxes-Based Interactive Image Segmentation:
In a bounding box, the target object and background coexist,
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which is different from scribble and click. Rother et al. [18]
extended the graph-cut approach, and segmented object with a
rectangle, namely GrabCut. To overcome the looseness of the
bounding box, Lempitsky et al. [19] incorporated the tightness
prior into the global energy minimization function as hard con-
straints to further completed target object. Shi et al. [21] pro-
posed a coarse-to-fine method with region-level and pixel-level
segmentation. Similar to [12], Xu et al. [20] transformed the
bounding box to a distance map and concatenated it with
the RGB image to input into an encoder-decoder network.
Although bounding box and fixation are similar (i.e. tar-
get object and background coexist in both interactions),
the bounding box-based methods are difficult to transfer to
fixations-based object segmentation.

B. Fixations-Based Object Segmentation

Fixation plays an integral role in the human visual sys-
tem and it is convenient for interaction. In an early study,
Sadeghi et al. [29] constructed an eyegaze-based interactive
segmentation system which adopts random walker to segment
objects. Meanwhile, Mishra et al. [22] gave the definition
of fixations-based object segmentation, that is, segmenting
regions containing fixation points. They transformed the image
to polar coordinate system, and found the optimal contour
to fit the target object. Based on the interpretation of visual
receptive field, Kootstra et al. [30] used symmetry to select
fixations closer to the center of the object to obtain more
complete segmentation. Differently, Li et al. [23] focused
on selecting the most salient objects, and they ranked object
proposals based on fixations. Similar to [23], Shi et al. [24]
analyzed the fixation distribution and proposed three metrics
to evaluate the score of each candidate region. In [31], Tian
et al. first determined the uninterested regions, and then used
superpixel-based random walk model to segment the gazed
objects. Khosravan et al. [32] integrated fixations into the
medical image segmentation and proposed a Gaze2Segment
system. Li et al. [25] constructed a dataset where all fixations
fall in objects (i.e. constrained fixations), and proposed a
CNN-based model to simulate the human visual system to
segment objects based on fixations.

These studies have promoted the development of
fixations-based object segmentation. However, all the
fixations in [22], [25], [30], [31] fall in objects, which are
hardly guaranteed in practice. These methods [22], [25],
[30], [31] will get stuck in the ambiguity of unconstrained
fixations, especially of personal fixations. For [23], [24], they
are based on region proposal and cannot obtain accurate
results. In summary, the above methods cannot solve the
problem of ambiguous fixations, as shown in Fig. 1. In this
paper, we take advantage of CNNs, and propose a bottom-up
and top-down network to locate objects and preserve objects’
boundaries. Moreover, we construct a dataset to promote
this special direction of interactive image segmentation,
i.e. personal fixations-based object segmentation.

C. Boundary-Aware Segmentation

The boundary/edge-aware segmentation idea is widely-used
in salient object detection [33]–[36] and semantic

segmentation [37]. In [33], Wang et al. modeled the
boundary information as an edge-preserving constraint, and
included it as an additional supervision in loss function.
In [34], Wang et al. proposed a two-branch network, including
boundary and mask sub-networks, for jointly predicting masks
of salient objects and detecting object boundaries. In [35],
Wu et al. explored the logical interrelations between binary
segmentation and edge maps in a multi-task network, and
proposed a cross refinement unit in which the segmentation
features and edge features are fused in a cross-task manner.
In [36], Zhao et al. focused on the complementarity between
salient edge information and salient object information. They
integrated the local edge information of shallow layers and
global location information of deep layers to obtain the salient
edge features, and then the edge features were fed to the
one-to-one guidance module to fuse the complementary region
and edge information. In [37], Ding et al. first introduced
the boundary information as an additional semantic class to
enable the network to be aware of the boundary layout, and
then proposed a boundary-aware feature propagation network
to control the feature propagation based on the learned
boundary information.

In our method, we use the boundary information in
two aspects: the multi-task structure (i.e. segmentation and
boundary predictions) and the Boundary Preservation Module.
Different from [34], [35], we integrate the learned boundary
map into the prediction network in BPMs to preserve the
completeness of the gazed objects, rather than fuse the
segmentation features and boundary features. Compared
with [36], our segmentation prediction is accompanied by the
boundary prediction in a uniform prediction network, and the
boundary supervision is employed at multiple scales. Different
from [37], which uses the boundary map to control the region
of feature propagation, our method uses the boundary map
to filter the background of erroneous localization in features.
In short, our use of boundary information is diverse and
in-depth, which is suitable for the personal fixations-based
object segmentation task.

III. PERSONAL FIXATIONS-BASED OBJECT

SEGMENTATION

A. Problem Statement

Given an image I and a fixation map FM of a person,
personal fixations-based object segmentation aims to segment
the gazed objects of this person according to his/her per-
sonal FM, producing a binary segmentation map. In gen-
eral, different individuals generate different fixation maps
when observing the same image, which means that individ-
uals may be interested in different objects. In other words,
segmentation results of different individuals on the same
image vary with the observer. So, the special characteristic
of this task is that an image has multiple binary segmentation
maps due to multiple fixation maps. Although the ambiguity
of fixations makes this task difficulty, the personal fixation
map is the only information that can determine the gazed
objects.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 19,2022 at 08:14:58 UTC from IEEE Xplore.  Restrictions apply. 



1464 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

B. Applications

This task has several meaningful applications. First, such a
convenient manner of interaction is conducive to the devel-
opment of special eye-control devices for patients with hand
disability, ALS and polio, facilitating their lives and improving
their quality of life. Second, fixation is advantageous to
diagnose certain mental illnesses, such as autism spectrum dis-
order (ASD) [38], [39] and schizophrenia spectrum disorders
(SSD) [40], [41]. This task understands personal fixations at
the object level, which is helpful to improve the accuracy of
disease diagnosis. For example, patients with ASD prefer to
pay attention to background rather than foreground, so the
proportion of foreground in their segmentation results will be
less than that of healthy people.

IV. DATASET CONSTRUCTION

AND TRANSFORMATION

Currently, there are many prevalently used datasets for
fixation prediction, such as MIT1003 [42], OSIE [26] and
SALICON [43], and for interactive image segmentation, such
as GrabCut [18], Berkeley [44] and PASCAL VOC [45]. How-
ever, there is no dataset for the personal fixations-based object
segmentation task. Considering that it is time-consuming for
dataset annotations, we propose a convenient way to collect
suitable data from existing datasets for this task.

Obviously, the PFOS dataset must contain fixation data
and pixel-level annotations for objects. Among the exist-
ing datasets, some datasets, such as DUTS-OMRON [46],
PASCAL-S [23] and OSIE [26], are potential candidates. The
pixel-level annotations of DUTS-OMRON and PASCAL-S are
for salient object detection [47]–[49], that is, these annotations
only focus on the most visually attractive objects but ignore
other objects, which could be fixated by different individuals,
in a scene. Therefore, they are not perfect for constructing a
PFOS dataset. Fortunately, the pixel-level annotations of OSIE
have semantic attributes. This means that we can select objects,
which the user is interested in, based on personal fixations.
In other words, we can create the pixel-level binary ground
truths (GTs) for personal fixations-based object segmentation.
So, we transform the fixation prediction dataset OSIE to our
PFOS dataset.

For each image in the OSIE dataset, it has corresponding
fixation maps and semantic GTs of different subjects. The
detailed steps for dataset transformation are as follows:

1) Semantic labels collection. We get the position of each
fixation point from the fixation map, and we collect the seman-
tic label of each position in the corresponding semantic GT.

2) Semantic labels distillation. As mentioned in Sec. I and
shown in Fig. 1, some fixation points fall in the background
or the same object. For semantic labels collected from
Step 1, we discard the semantic label “0” which indicates
background. Then, if there are several same semantic labels,
we keep only one.

3) Binary GT creation. Based on the distilled semantic
labels from Step 2, we can determine the gazed objects
and create the binary GT. We reserve the regions with the
distilled semantic labels in the semantic GT, and set them

TABLE I

CATEGORIES OF FIXATION MAP (FM) IN THE PFOS DATASET.
CONSTRAINED FM MEANS THAT ALL FIXATIONS FALL IN THE

OBJECTS/FOREGROUND. UNCONSTRAINED FM REPRESENTS THAT

SOME FIXATIONS FALL IN THE BACKGROUND

as foreground. We set the regions with the other unrelated
semantic labels as background.

In this convenient way, we efficiently create the binary
GTs and successfully construct the PFOS dataset. The PFOS
dataset retains all 700 images and 10,500 free-view personal
fixation maps from the OSIE dataset. In the PFOS dataset,
the image resolution is 800×600. Each image has 15 personal
fixation maps from 15 subjects and the transformed binary
GTs. In the constructed PFOS dataset, there are two categories
of fixation maps. The first category is that all fixations fall
in the objects/foreground, i.e. the constrained fixation map
in [25]. The second category is that some fixations fall in
the background, namely the unconstrained fixation map. We
present the details of them in Tab. I. In our PFOS dataset,
the unconstrained fixation maps account for 64.9% and the
constrained fixation maps hold 35.1%. The large proportion
of unconstrained fixation maps increase the ambiguity of our
PFOS dataset and make this dataset challenging.

V. METHODOLOGY

In this section, we first conduct data preprocessing which
transforms the fixation points into fixation density maps in
Sec. V-A. Then, we present the overview and motivation of
the proposed Object Localization and Boundary Preservation
(OLBP) network in Sec. V-B. Next, we give the detailed
formulas of the Object Localization Module (OLM) and
the Boundary Preservation Module (BPM) in Sec. V-C and
Sec. V-D, respectively. Finally, we clarify the implementation
details of OLBP network in Sec. V-E.

A. Data Preprocessing

The fixation points in each fixation map are sparse. With
only a few pixels per fixation map, there is too little valuable
information to supply. The similar problem arises in the
clicks-based interactive image segmentation. Xu et al. [12]
transformed the clicks into Euclidean distance maps. Inspired
by this, we employ the Gaussian blur to transform the sparse
fixation map (i.e. FM) into the fixation density map (i.e. FDM):

FDM = normin−max(FM � Gσ (x, y; σ)), (1)

where normin−max(·) is the min-max normalization, � denotes
convolution operator, and Gσ (·) is a Gaussian filter with para-
meter σ which is the standard deviation. σ is set corresponding
to 1◦ visual angle in the OSIE dataset [26]. It is 24 pixels of
an 800 × 600 image by default.

The effect of Gaussian blur is similar to the receptive field of
eye, that is, the center of fixation is with a high resolution and
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Fig. 2. Examples of the PFOS dataset. Green dots in each image indicate
fixations, FDM is fixation density map, and GT represents ground truth.

the surrounding of fixation is with a low resolution. Thus, after
performing Gaussian blur and linear transformation on FM, the
dense FDM contains more prior information of objects. In this
paper, we adopt the dense FDM rather than the raw FM. We
present an image with the personal fixations of three subjects
of the PFOS dataset in Fig. 2. The fixation maps of Subject A
and Subject B are constrained fixation maps, while the fixation
map of Subject C is an unconstrained fixation map.

B. Network Overview and Motivation

The proposed OLBP network has three critical components:
the feature extractor, the object locator and the prediction
network with boundary preservation. The overall architecture
of OLBP network is illustrated in Fig. 3.

1) Feature Extractor: In the OLBP network, we adopt
the modified VGG-16 [50], from which the last three
fully connected layers have been removed, as the feature
extractor. We denote its input image as I ∈ R

H×W×C ,
and initialize its parameters by the image classification
model [50]. The feature extractor has five convolutional
blocks, as shown in Fig. 3. We operate on the feature map
of the last convolutional layer in each block, i.e. conv1-2,
conv2-2, conv3-3, conv4-3 and conv5-3, which are denoted
as {F(i)r : F(i)r ∈R

hi×wi×ci , i = 1, 2, . . . , 5}. Notably, the feature
resolution at the i-th block, i.e. [hi ,wi ], is [ H

2i−1 ,
W

2i−1 ] and
ci∈{1,2,3,4,5} = {64, 128, 256, 512, 512}. In reality, the input
resolution [H,W,C] of I is set to 288 × 288 × 3.

2) Object Localization Module: Although FDM is a proba-
bility map, it is a critical interaction that reflects the intention
of the user. It is important to effectively explore the object
location information of FDM. However, when we construct
a CNN-based model for the personal fixations-based object
segmentation task, it is natural to directly concatenate FDM
and the input image for the network input. Since there are three
channels for image and only one channel for FDM, the direct
concatenation operation may drown out the critical interaction
information of FDM. Based on the above analysis, we propose
the Object Localization Module to process FDM.

The parallel convolution structure is effective to explore
meaningful information in CNN features [51], especially with
the dilated convolution [52]. Thus, in OLM, we employ several
parallel dilated convolutions with different dilation rates to
profoundly analyze the personal FDM to obtain object location
information, which are a group of response maps. These
response maps belong to [0, 1]hi×wi×ci , which shows they have
the same number of channels as the features of image at the
i-th block. They are applied to re-weight features of image
to highlight the gazed objects at channel-wise and spatial-
wise. To enhance the location presentation of the response
maps, we apply deep supervision [53] in OLM. As presented
in Fig. 3, the OLM is performed in a bottom-up manner,
and it is assembled after each block of feature extractor for
strong object localization. The detailed description of OLM is
presented in Sec. V-C. We show the ablation study of OLM
in Sec. VI-C, including a variant of direct concatenation of
image and FDM.

3) Boundary Preservation Module and Prediction Network:
Since some fixations fall in the background, there may
be some noise on the re-weighted feature of OLM. The
ambiguity over the fixations causes great disturbance to the
segmentation result. Fortunately, there is a priori knowledge
that the background usually does not have a regular boundary.
Thus, we introduce the boundary information into the
prediction network, and propose the Boundary Preservation
Module to filter the background of erroneous localization
and preserve the completeness of the gazed objects. BPM is
a momentous component to purify the segmentation result.
We also attach the pixel-level segmentation supervision and
boundary supervision to BPM. As shown in Fig. 3, BPMs
are equipped between convolutional blocks in the prediction
network from top to down. To make full use of the boundary
information, we also construct a multi-task structure in
the prediction network. We elaborate the formulation
and ablation study of BPM in Sec. V-D and Sec. VI-C,
respectively.

C. Object Localization Module

As the OLM-5 shown in Fig. 3, there are three main parts
in the Object Localization Module: location analysis unit,
feature re-weighting (i.e. Re-wei) and segmentation supervi-
sion (i.e. Seg sup). Its objective is to extract object location
information of personal FDM and to highlight objects in
feature of image F(i)r . OLM is the most indispensable part
of the whole OLBP network.

Concretely, in OLM-i, the FDM∈R
H×W×1 is first downsam-

pled to fit the resolution of F(i)r and to generate F(i)f dm ∈R
hi×wi×1

which is formulated as:
F(i)f dm = MaxPool(FDM; W (i)

ks ), (2)

where MaxPool(·) is the max pooling with parameters W (i)
ks ,

which are 2i−1 × 2i−1 kernel with 2i−1 stride.
Then, we design the location analysis unit, which contains

four parallel dilated convolutions [52] with different dilation
rates, to analyze F(i)f dm , and obtain the multi-interpretation
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Fig. 3. The overall architecture of the proposed OLBP network. OLBP network is organized in the mixed bottom-up and top-down manner. We employ the
modified VGG-16 to extract five blocks of features from an input image. Then in each OLM, FDM is analyzed by several dilated and normal convolutional
layers to determine the location of objects in the corresponding block features. Based on the object localization in each feature block, the top-down prediction
is established. During the prediction process, the boundary information is introduced into BPMs to guard the completeness of objects and to filter background
of erroneous localization. We also construct a multi-task prediction structure, which contains object segmentation branch and boundary prediction branch,
to exploit the complementarity between regions and boundaries.

feature F(i)mi . The process in this unit can be formulated as:
F(i)mi = concat

(
Cd(F

(i)
f dm; W (i1)

d ),Cd (F
(i)
f dm; W (i2)

d ),

Cd (F
(i)
f dm; W (i3)

d ),Cd (F
(i)
f dm; W (i4)

d )
)
, (3)

where concat(·) is the cross-channel concatenation, and
Cd (·; W (in )

d ) is the dilated convolution with parameters W (in )
d

for n ∈ {1, 2, 3, 4}. Notably, W (in )
d are comprised of kernel

size, channel number and dilation rate. Considering the reso-
lution difference of each F(i)r , the dilation rates of each unit
are different and the details are presented in Tab. II. In this
unit, the dilated convolutions large the receptive field without
increasing the computation. They are performed in a parallel
manner, which makes F(i)mi effectively capture the local and
global location information of the gazed objects.

The multi-scale features in F(i)mi are complementary to each
other. They are blended to produce the location response maps
r(i)loc ∈[0, 1]hi×wi×ci via:

F(i)int = 2C(F(i)mi ; W (i)
2c ), (4)

r(i)loc = ψ(C(F(i)int ; W (i)
c )), (5)

where F(i)int is the interim feature, 2C(∗; W (i)
2c ) are two con-

volutional layers with the same parameters W (i)
2c , ψ(·) is the

sigmoid function, and C(∗; W (i)
c ) is the convolutional layer

with parameters W (i)
c which are 3×3 kernel with ci channels.

W (i)
2c contain kernel size and channel number, which are

different in different OLMs. Their details are shown in the
column with “2×Conv” of Tab. II.

TABLE II

DETAILED PARAMETERS OF EACH OLM. WE PRESENT THE KERNEL

SIZE AND CHANNEL NUMBER OF EACH DILATED/NORMAL CONVO-
LUTIONS. BESIDES, WE ALSO PRESENT THE DILATION RATES AND

THE SIZE OF OUTPUT FEATURE. FOR INSTANCE, (3 × 3, 32)
DENOTES THAT THE KERNEL SIZE IS 3 × 3 AND THE CHAN-

NEL NUMBER IS 32

After completing the FDM interpretation in location analy-
sis unit, we successfully obtain r(i)loc, which are the protagonists
of the feature re-weighting (i.e. Re-wei) part. We employ
r(i)loc to re-weight F(i)r at channel-wise and spatial-wise, and
receive the location-enhanced feature F(i)loc ∈ R

hi×wi×ci , which
is computed as:

F(i)loc = F(i)r ⊗ r(i)loc, (6)

where ⊗ is element-wise multiplication. Besides, in Re-wei,
to balance the information of image and location, we con-
catenate F(i)r to F(i)loc and obtain the output feature F(i)olm
of OLM. The size of F(i)olm is shown in Tab. II. Notably,
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Fig. 4. Feature visualization in OLM-2. r(2)loc is the location response map,

and F(2)loc is the location-enhanced feature.

at the training phase, we apply the pixel-level segmentation
supervision (i.e. Seg sup) to each OLM.

In Fig. 4, we visualize feature in OLM-2 to verify the effec-
tiveness of the location enhancement. Concretely, in OLM-2,
the conv2-2 is re-weighted by the location response map. As
shown in Fig. 4, the location response map r(2)loc contains rich
location information of the gazed objects. After using Eq. 6 to
perform the location enhancement operation on conv2-2, we
observe that the gazed objects are highlighted in F(2)loc (with
darker color). In summary, the location-enhanced feature F(i)loc
of OLM has strong location expression ability and contributes
to the subsequent segmentation prediction network.

D. Boundary Preservation Module

The Boundary Preservation Module is built to restrain the
falsely highlighted part of the re-weighted feature of OLM
and to preserve the completeness of the gazed objects for
the segmentation prediction. As the BPM-5 shown in Fig. 3,
the structure of BPM is succinct, but it is a key bridge to
connect convolutional blocks of the prediction network.

Let {F(i)p : F(i)p ∈ R
hi−1×wi−1×ci−1 , i = 2, 3, 4, 5} denote the

output feature of each deconvolutional layer in the prediction
network. In BMP, F(i)p is processed by a convolutional layer
to generate the boundary mask B(i), which is defined as:

B(i) = C(F(i)p ,W (i)
c ). (7)

To increase the accuracy of B(i)i∈{2,3,4,5}, we introduce the
pixel-level boundary supervision (i.e. “Bound sup” on BPM-
5 in Fig. 3) in BPM. Since that there are no pixel-level
boundary annotations in the PFOS dataset, we employ the
morphological operation on binary segmentation GT Gs to
produce the boundary GT Gb, as follow:

Gb = Dilate(Gs; θ)− Gs, (8)

where Dilate(∗; θ) is the morphological dilation operation with
dilation coefficient θ which is 2 pixels.

Then, B(i) is concatenated to F(i)p to generate the output
feature F(i)bpm of BPM. We also put the pixel-level segmentation

supervision behind F(i)bpm , such as “Seg sup” on BPM-5
in Fig. 3. The segmentation supervision and the boundary
supervision cooperate well with each other, improving the
feature representation of the gazed objects. In this way,
we novelly introduce boundary information into the BPM, and
F(i)bpm carries the feature de-noising and boundary preservation
capabilities into the prediction network.

E. Implementation Details

1) Prediction Network: The prediction network is con-
structed in the top-down manner to gradually restore resolu-
tion. It consists of five convolutional blocks, four BPMs and
four deconvolutional layers. A dropout layer [61] is placed
before each deconvolutional layer to prevent the prediction
network from overfitting. In addition, we attach the boundary
prediction branch to the prediction network to assist the
object segmentation branch. We initialize parameters of the
prediction network by xavier method [62].

2) Overall Loss: As shown in Fig. 3, there are totally
15 losses in the OLBP network, including 10 segmentation
losses and 5 boundary losses. The overall loss L can be
divided into three parts: losses of multi-task prediction, losses
on OLMs and losses on BPMs. L is calculated as:

L = [Ls(S(1),Gs)+ Ls(B(1),Gb)] +
5∑

i=1

Ls(S
(i)
olm ,Gs)

+
5∑

i=2

[Ls(S
(i)
bpm,Gs)+ Ls(B(i),Gb)], (9)

where Ls(·, ·) is the softmax loss, S(1) is the predicted
segmentation map, and B(1) is the predicted boundary map.
S(i)olm and S(i)bpm present the side output segmentation results
in OLM and BPM, respectively. B(i)i∈{2,3,4,5} is the boundary
mask in BPM. Notably, for each softmax loss, we resize
the resolutions of Gs and Gb to fit the resolutions of
corresponding S(i)olm , S(i)bpm and B(i).

3) Network Training: The PFOS dataset is separated
into training set and testing set. The training set contains
600 images with 9,000 personal fixation maps, including
3,075 constrained fixation maps and 5,925 unconstrained
fixation maps. The testing set consists of 100 images with
1,500 personal fixations, including 608 constrained fixation
maps and 892 unconstrained fixation maps.

The OLBP network is implemented on Caffe [63] and
experimented using a NVIDIA Titan X GPU. The data of
training set and testing set are resized to 288 × 288 for
training and inference. We adopt the standard stochastic
gradient descent (SGD) method [64] to optimize our OLBP
network for 30,000 iterations. The learning rate is set to
8 × 10−8, and it will be divided by 10 after 14,000 itera-
tions. The dropout ratio, batch size, iteration size, momentum
and weight decay are set to 0.5, 1, 8, 0.9 and 0.0001,
respectively.

VI. EXPERIMENTS

In this section, we present comprehensive experiments on
the proposed PFOS dataset. We introduce evaluation metrics in
Sec. VI-A. In Sec. VI-B, we compare the proposed OLBP net-
work with state-of-the-art methods. Then, we conduct ablation
studies in Sec. VI-C and show some personal segmentation
results in Sec. VI-D. Finally, we present some discussions on
the connections between fixation-based object segmentation
and salient object detection in Sec. VI-E.
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A. Evaluation Metrics

We use five evaluation metrics, i.e. Jaccard index (J ),
S-measure (Sλ) [65], F-measure (Fβ ), weighted F-measure
(wFβ ) [66], and E-measure (Eξ ) [67], to evaluate the per-
formance of different methods.

1) Jaccard Index J : Jaccard index is also called
intersection-over-union (IoU), which can compare similarities
and differences between two binary maps. It is defined as:

J = |S ∩ Gs |
|S ∪ Gs | , (10)

where S is the predicted segmentation map, and Gs is the
binary segmentation GT.

2) S-Measure Sλ: S-measure focuses on the structural
similarity between the predicted segmentation map and the
binary segmentation GT. It evaluates the structural similarity
of region-aware (Sr ) and object-aware (So) simultaneously.
S-measure is defined as:

Sλ = λ ∗ So + (1 − λ) ∗ Sr , (11)

where λ is set to 0.5 by default.
3) F-Measure Fβ : F-measure is a weighted harmonic mean

of precision and recall, which considers precision and recall
comprehensively. It is defined as:

Fβ = (1 + β2)× Precision × Recall

β2 × Precision + Recall
, (12)

where β2 is set to 0.3 following previous studies [47], [48].
4) Weighted F-Measure wFβ : Weighted F-measure has the

ability to evaluate the non-binary and binary map. It focuses
on evaluating the weights errors of predicted pixels according
to their location and their neighborhood, which is formulated
as:

wFβ = (1 + β2)× Precisionw × Recallw

β2 × Precisionw + Recallw
, (13)

where β2 is set to 1 following previous studies [68], [69].
5) E-Measure Eξ : E-measure is based on cognitive vision

studies. It evaluates the local errors (i.e. pixel-level) and
the global errors (i.e. image-level) together. We introduce
it to provide a more comprehensive evaluation. It could be
computed as:

Eξ = 1

W × H

W∑
x=1

H∑
y=1

f
( 2ϕGs ◦ ϕs

ϕGs ◦ ϕGs + ϕs ◦ ϕs

)
, (14)

where ϕGs and ϕs are distance bias matrices for binary seg-
mentation GT and predicted segmentation map, respectively,
◦ is the Hadamard product, and f (·) is the quadratic form.

B. Comparison With the State-of-the-Arts

1) Comparison Methods: We compare our OLBP network
against three types of state-of-the-art methods, including
semantic segmentation-based methods, clicks-based interac-
tive image segmentation methods and fixations-based object
segmentation methods. For a reasonable comparison of the
first type of method, we follow [12], [25], which con-
vert the segmentation problem into the selection problem.

Concretely, we first apply semantic segmentation methods,
i.e. PSPNet [54], SegNet [55], DeepLab [51], EncNet [56],
DeepLabV3+ [57], and HRNetV2 [58], to image, and then use
the fixations to select the gazed objects. The second type of
method includes ISLD [14], FCTSFN [17], and BRS [16]. The
last type of method includes AVS [22], SOS [23], GBOS [24]
and CFPS [25]. For all the above compared methods, we use
the implementations with recommend parameter settings for a
fair comparison.

In addition, we modify several semantic segmentation
methods (i.e. DeepLabV3+ [57] and HRNetV2 [58]) and
recent salient object detection methods (i.e. CPD [59] and
GCPA [60]) by embedding FDM in them to guide object
segmentation. Two types of comparison methods are thus
generated, namely FDM-guided semantic segmentation and
FDM-guided salient object detection, respectively. Specif-
ically, for DeepLabV3+, we embed FDM into features
(i.e. low-level features and features generated from the ASPP)
to bridge the encoder and decoder; for HRNetV2, we embed
FDM between the second stage and the third stage; for
CPD, we embed FDM into two partial decoders; and, for
GCPA, we embed FDM into four self refinement modules.
We retrain these modified methods with the same training
dataset as our method, and their parameters are adjusted for
better convergence. Notably, we use the well-known OTSU
method [70] to binarize the generated probability map of our
method and other CNNs-based methods.

2) Quantitative Performance Evaluation: We evaluate our
OLBP network and other 17 state-of-the-art methods on the
PFOS dataset using above five evaluation metrics. The quan-
titative results are presented in Table III. Our OLBP network
favorably outperforms all the compared methods in terms of
different metrics. Concretely, compared with the best method
CFPS [25] in fixations-based object segmentation methods,
the performance of our method is improved by 3.2%, 2.2%
and 3.0% in J , Sλ and wFβ , respectively. The performance
of our method is 5.9% better than FCTSFN [17] in Eξ ,
and is 6.4% better than ISLD [14] in Fβ . Note that the
performance of our method is far better than that of three
traditional methods AVS [22], SOS [24] and GBOS [24]. We
attribute the performance superiority of the proposed OLBP
network to the scheme of object localization and boundary
preservation.

In addition, semantic segmentation-based methods get an
average of 51.6% in J . This may be due to the fact that
semantic segmentation methods cannot accurately segment all
objects, resulting in the failure of the object selection process.
Clicks-based interactive image segmentation methods achieve
an average of 61.9% in J , while our OLBP network obtains
73.7% in J . This demonstrates that our method is more
robust than clicks-based interactive image segmentation meth-
ods in adapting the ambiguity of fixations. Fixations-based
object segmentation methods contain three traditional meth-
ods and one CNN-based method, obtaining an average of
48.0% in J .

Specifically, we present the results of the FDM-guided
semantic segmentation methods, including the modified
DeepLabV3+ and HRNetV2, in Table III. The modified
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TABLE III

QUANTITATIVE RESULTS INCLUDING JACCARD INDEX, S-MEASURE, WEIGHTED F-MEASURE, E-MEASURE AND F-MEASURE ON THE PFOS DATASET
(IN PERCENTAGE %). Semantic Segmentation MEANS SEMANTIC SEGMENTATION-BASED METHOD. Clicks MEANS CLICKS-BASED INTERACTIVE

IMAGE SEGMENTATION METHOD. Fixations MEANS FIXATIONS-BASED OBJECT SEGMENTATION METHOD. FDM-Guided Semantic Seg-
mentation MEANS EMBEDDING FDM INTO SEMANTIC SEGMENTATION METHOD. FDM-Guided Salient Object Detection MEANS

EMBEDDING FDM INTO SALIENT OBJECT DETECTION METHOD. THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE,
AND GREEN. ↑ DENOTES LARGER IS BETTER. THE SUBSCRIPT OF EACH METHOD REPRESENTS THE PUBLICATION

YEAR. † MEANS CNNS-BASED METHOD

DeepLabV3+ achieves a promising performance, but does
not exceed our OLBP network (e.g. 71.0% vs 73.7% in
J ). Although the FDM guidance brings some advantages to
HRNetV2, but the modified HRNetV2 still does not perform
well. For the FDM-guided salient object detection, both mod-
ified CPD and GCPA perform well, though our OLBP still
outperforms them (e.g. 4.5% and 1.4% better than the modified
CPD and GCPA in J , respectively). In summary, there is
a large room for performance improvement on the proposed
PFOS dataset, suggesting that the PFOS dataset is challenging
to all compared methods including OLBP.

3) Qualitative Performance Evaluation: In Fig. 5, we show
some representative visualization results of our OLBP net-
work and other methods. Obviously, the visual segmentation
maps of three traditional methods GBOS [24], SOS [24]
and AVS [22] are rough. However, the CNN-based method
CFPS [25], which belongs to the same type as GBOS, SOS
and AVS, basically captures the gazed objects and brings in
less background regions. The gazed objects in the segmen-
tation results of clicks-based interactive image segmentation
methods BRS [16], FCTSFN [17], and ISLD [14] are partially
segmented and the details are relatively coarse. As for the
EncNet [56], DeepLab [51] and SegNet [55], the object seg-
mentation maps of them depend on the semantic segmentation
results, which are great uncertainty. This results in their
object segmentation maps that are sometimes accurate and
sometimes bad.

In contrast, our OLBP network is equipped with the scheme
of object localization and boundary preservation, which pre-
cisely analyzes the location information of fixations and com-
pletes the gazed objects. The segmentation maps of “Ours”
in Fig. 5 are very localized in the gazed objects with pretty
fine details, even under the interference of some ambiguous
fixations.

4) Robustness Evaluation: We provide a robustness evalua-
tion of our method and several representative methods, includ-
ing the modified GCPA [60], CFPS [25] and the modified
CPD [59], on the test dataset of the PFOS dataset. Concretely,
we add the noise, i.e. unconstrained fixations, to the fixation
map by random sampling on the background regions at three
levels, i.e. different percentages (15%, 30%, 45%) increase
in the number of unconstrained fixations of the total number
of fixations. The performance of above methods after adding
noise are presented in Table IV. Our method consistently
outperforms the compared methods under three challenging
situations, showing excellent robustness.

C. Ablation Studies

We comprehensively evaluate the contribution of each vital
component to performance in our OLBP network. Specifically,
we assess 1) the overall contributions of OLM and BPM; 2) the
effectiveness of the three parts in OLM; and 3) the usefulness
of BPM and the top-down manner in prediction network. The
variants are retrained with the same hyper-parameters and
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Fig. 5. Visualization comparison to some representative methods on the PFOS dataset. Zoom-in for the best view.

TABLE IV

ROBUSTNESS EVALUATION OF OUR METHOD AND SEVERAL REPRESEN-
TATIVE METHODS, SUCH AS THE MODIFIED GCPA [60], CFPS [25]

AND THE MODIFIED CPD [59], ON THE TEST PART OF THE PFOS
DATASET IN TERMS OF JACCARD INDEX. THE BEST RESULT OF

EACH ROW IS SHOWN IN BOLD. NOTABLY, “+15% NOISE”
MEANS AN ADDITIONAL 15% INCREASE IN THE NUM-

BER OF UNCONSTRAINED FIXATIONS OF THE TOTAL

NUMBER OF FIXATIONS IN A FIXATION MAP.
WE ADD THE NOISE (i.e. UNCONSTRAINED

FIXATIONS) AT THREE LEVELS, i.e. 15%,
30%, AND 45%

training set as aforementioned settings in Sec. V-E, and the
experiments are conducted on the PFOS dataset.

1. Does the proposed OLM and BPM contribute to
OLBP network? To evaluate the contribution of the proposed
OLM and BPM to OLBP network, we derive three variants:
baseline network (denoted by “Ba”/“Ba∗”), baseline network
with only OLMs (“Ba+OLM”), and baseline network with
only BPMs (“Ba/Ba∗ + BPM”). In particular, we provide two
types of baseline network: the first one is an encoder-decoder
network, whose input is the concatenated image and FDM
(denoted by “Ba∗”); the second one is an encoder-decoder
network with the down-sampled FDMs being concatenated to

TABLE V

ABLATION ANALYSES FOR THE PROPOSED OLBP NETWORK ON THE

PFOS DATASET (IN PERCENTAGE %). AS CAN BE OBSERVED,
EACH COMPONENT IN OLBP NETWORK PLAYS AN IMPOR-

TANT ROLE AND CONTRIBUTES TO THE PERFORMANCE. THE

BEST RESULT IN EACH COLUMN IS BOLD. BASELINE:
ENCODER-DECODER NETWORK, OLM: OBJECT LOCAL-

IZATION MODULE, AND BPM: BOUNDARY PRESER-
VATION MODULE

each skip-layer (denoted by “Ba”), i.e. the image and FDM are
fed to network separately. We report the quantitative results in
Tab. V.

We observe that the first baseline network “Ba∗” (the 1st

line in Tab. V) only obtains 67.2% in J , and the second
baseline network “Ba” (the 3rd line in Tab. V) obtains 70.7%
in J . This confirms that direct concatenation of the image
and FDM results in the location information of FDM being
submerged by image information; by contrast, concatenat-
ing FDM with image features at each scale benefits object
location. OLM significantly improves the performance of the
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Fig. 6. Visual comparisons of different variants. “Ba∗” is the baseline
network, whose input is the concatenated image and FDM.

baseline network (e.g. J : 67.2%/70.7%→73.0% and wFβ :
72.2%/75.0% → 79.5%). This shows that the contribution
of OLM is remarkable, and OLM does capture the location
information. Comparing with OLM, the contribution of BPM
to baseline networks is slightly inferior (e.g. J : 67.2% →
68.0%; 70.7%→71.4%), but BPM also shows its effectiveness
to improve performance of “Ba+OLM” (e.g. wFβ : 79.5%→
80.0%). This demonstrates that BPM can further complete the
objects and filter background of erroneous localization. With
the cooperation between OLM and BPM, the performance
of the whole OLBP network is improved by 6.5%/3.0% in
J , 5.2%/2.8% in Sλ and 7.8%/5.0% in wFβ compared with
the baseline network “Ba∗”/“Ba”. This demonstrates that the
scheme of bottom-up object localization and top-down bound-
ary preservation is successfully embedded into the baseline
network.

Additionally, the segmentation maps of variants based on
the first baseline network “Ba∗” are shown in Fig. 6. We
observe that “Ba∗” almost segments all the objects in images.
With the assistance of OLM, “Ba∗ + OLM” determines the
location of the gazed objects, and the gazed objects on the seg-
mentation maps of “Ba+OLM” are much clearer. Finally, with
the help of BPM, the segmentation maps of ours (i.e. OLBP
network) are satisfactory.

2. How effective are the three parts in OLM? As
described in Sec. V-C, OLM consists of location analysis unit,
feature re-weighting (i.e. Re-wei) and segmentation super-
vision (i.e. Seg sup). To validate the effectiveness of the
three parts in OLM, we modify the structure of OLM and
provide four variants: a) the four dilated convolutions are
replaced by one convolutional layer in the location analysis
unit (w/o dilated convs); b) without using response maps to
re-weight image feature in Re-wei (w/o multiply); c) without
concatenating re-weighted feature and image feature in Re-wei
(w/o concat); and d) without segmentation supervision (w/o
Seg sup). The ablation results are reported in Tab. VI, and
the detailed structures of the above four OLM variants are
presented in Fig. 7.

We discover that the performances of the four variants
are worse than ours. Concretely, the performance degradation
of w/o dilated convs (e.g. J : 73.7% → 72.7%) validates
that the parallel dilated convolutions analyze FDM thoroughly
and one convolutional layer cannot mine sufficient location
information from FDM. The performance drop of w/o multiply
(e.g. Sλ : 81.1%→80.5%) confirms that the location response

TABLE VI

ABLATION RESULTS OF THE OLM ON THE PFOS DATASET (IN PER-
CENTAGE %). THE BEST RESULT IN EACH COLUMN IS BOLD. THE

CORRESPONDING STRUCTURES OF THE LISTED VARIANTS ARE

PRESENTED IN FIG. 7

Fig. 7. Structures of four OLM variants. w/o dilated convs: the four dilated
convolutions are replaced by one convolutional layer; w/o multiply: without
using response maps to re-weight image feature in Re-wei; w/o concat:
without concatenating re-weighted feature and image feature in Re-wei; w/o
Seg sup: without segmentation supervision.

maps are more suitable to highlight objects on CNN feature
of image than using them directly. The reason behind this is
that location response maps are a group of probability maps,
without rich object, texture and color information. Besides, w/o
concat brings 0.9% performance penalty in J , which shows
that the information balance between image and location is
important. w/o Seg sup carries 0.6% performance drop in
wFβ . This demonstrates that the segmentation supervision can
enhance representation of the gazed objects.

3. Is it useful to adopt BPM and the top-down manner
in prediction network? To investigate the usefulness of
the top-down manner in prediction network, we report the
performance of side output segmentation maps of BPM in
Tab. VII. Besides, we also report the side output performance
of w/o BPM in Tab. VII to evaluate the importance of BPM.

We observe that the quantitative results of side outputs
(S(5)bpm , S(4)bpm , S(3)bpm , S(2)bpm and S(1)) are incremental in terms
of both w/ BPM (e.g. wFβ : 67.8% → 75.5% → 78.9% →
79.9%→80.0%) and w/o BPM (e.g. Sλ : 70.4%→76.9%→
79.8% → 80.6% → 80.7%). This confirms that the top-down
manner is useful for the prediction network. The differences
between the performance of w/o BPM and w/ BPM are also
reported in Tab. VII. We discover that all the differences are
negative, which shows that BPM works well for each side
output of the top-down prediction network.

D. Personal Segmentation Results

Due that the personal fixations are closely related to age and
gender, different users are interested in different objects when
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TABLE VII

THE PERFORMANCE OF SIDE OUTPUT SEGMENTATION MAPS OF
WITH/WITHOUT BPM ON PFOS DATASET (IN PERCENTAGE %). THE

NUMBER IN THE LOWER RIGHT CORNER OF THE PERFORMANCE OF

W/O BPM IS THE DIFFERENCE BETWEEN IT AND THE PERFOR-
MANCE OF W/ BPM. THE BEST RESULT IN EACH COLUMN

IS BOLD

Fig. 8. Visual examples of personal segmentation results. There are two
basic properties of personal visual systems: visual individuation and visual
consistency. The value of each image is the mean JS score.

observing the same scene. We define the visual difference
of different personal visual systems as visual individuation.
Some examples of visual individuation are presented in the
first part of Fig. 8. We can observe that there are multiple
different types of objects and complex backgrounds in these
images. The personal fixations of different users are located
on different objects, which correspond to the distinctive GTs.

In addition, we discover that personal visual systems are
also consistent in some scenes, which is denoted as visual
consistency. We show some examples of visual consistency in
the second and third parts of Fig. 8. The images in the second
part contain simple backgrounds and sparse objects, and the

images in the third part contain more competitive situation,
i.e. complex background and partially selected objects. In
both parts, we observe that the locations of different per-
sonal fixations are similar, resulting in the identical GTs of
different users. Notably, in either case, our method show
the ability to segment the gazed objects consistent with the
corresponding GT.

We also provide the quantitative analysis of visual individ-
uation and visual consistency with Jensen-Shannon (JS) diver-
gence. JS divergence evaluates the similarity of two probability
distributions S1 and S2, and it is based on Kullback-Leibler
(KL) divergence. Its value belongs to [0, 1]. The closer its
value is to zero, the smaller the difference between S1 and
S2 is and the more similar they are. It can be expressed as
follows:

JS(S1,S2) = 1

2
KL(S1,

S1 + S2

2
)+ 1

2
KL(S2,

S1 + S2

2
),

(15)

KL(P,Q) =
N∑

i=1

Pilog

(
ε + Pi

ε + Qi

)
, (16)

where KL(·) is Kullback-Leibler divergence, which is often
used as an evaluation metric in fixation prediction [71]–[74], i
indicates the ith pixel in the probability distribution, N is the
total number of pixels, and ε is a regularization constant.

We introduce JS to measure the similarity of fixation points
maps of each image in Fig. 8. First, we transform the fixation
points map (green dots in each image) to FDM using Eq. 1;
then we compute the JS score of each two FDMs; finally we
report the mean JS score for each image in Fig. 8. It is obvious
that the mean JS scores (i.e. 0.222, 0.123, 0.126, and 0.219)
of images which belong to visual consistency are relatively
smaller than those (i.e. 0.341 and 0.400) of images which
belong to visual individuation. And the mean JS scores of
images which belong to visual consistency are close to zero,
which indicates that the distributions of FDMs are very similar,
i.e. people may look at the same object(s).

E. Discussions

Salient Object Detection (SOD) is widely explored in color
images [59], [60], [75]–[77], RGB-D images [78], [79] and
videos [80]–[82], and it is closely related to our fixation-based
object segmentation task. In this section, we discuss the
connections between fixation-based object segmentation and
SOD.

SOD aims to highlight the most visually attractive object(s)
in a scene, while fixation-based object segmentation aims to
segment the gazed objects according to the fixation map,
as defined in Sec. III. To illustrate the differences and con-
nections between these two tasks, we conduct experiments on
two SOD datasets, i.e. DUTS-OMRON [46] and PASCAL-
S [23], and show visual comparisons with two state-of-the-art
SOD methods, i.e. CPD [59] and GCPA [60], in Fig. 9, which
summarizes three situations. First, in the 1st and 2nd rows,
we present the differences of these two tasks: our method
not only segments the salient objects, such as the bird and
the big tent, but also segments the gazed wood stake and

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 19,2022 at 08:14:58 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PERSONAL FIXATIONS-BASED OBJECT SEGMENTATION 1473

Fig. 9. Visual comparisons between our method, which is proposed for
fixation-based object segmentation, and recent state-of-the-art salient object
detection methods, including CPD [59] and GCPA [60], on the DUTS-
OMRON [46] and PASCAL-S [23] datasets. “GT of SOD” means that the
GT is for SOD task. “CPDsod” means the original CPD method for SOD.
“GCPAsod” means the original GCPA method for SOD.

cloth that are not found in the GT of SOD and the results
of CPD and GCPA. Second, in the 3rd and 4th rows, we find
that the results of CPD and GCPA are similar to ours, but
different from the GT of SOD. This shows that to some extent,
the results of SOD methods CPD and GCPA are consistent
with the fixation maps, even if the fixation maps are not
exploited in these methods. Third, in the 5th and 6th rows,
we can clearly observe that our results are consistent with
the fixation points in images, while the other three maps are
different. This shows that different SOD methods may cause
confusion in some complicated scenes, resulting in inaccurate
saliency maps.

Furthermore, we find that the salient objects always appear
in the results of our method, while there is ambiguity among
different SOD methods, which may highlight different salient
objects. So, to improve the accuracy of different SOD methods,
we believe that the fixation-based object segmentation can be
a pre-processing operation for SOD to determine the salient
object proposals.

VII. CONCLUSION

In this paper, we propose a three-step approach to transform
the available fixation prediction dataset OSIE to the PFOS
dataset for personal fixations-based object segmentation. The
PFOS dataset is meaningful to promote the development of
fixations-based object segmentation. Moreover, we present a

novel OLBP network with the scheme of bottom-up object
localization and top-down boundary preservation to segment
the gazed objects. Our OLBP network is equipped with
two essential components: the object localization module and
the boundary preservation module. OLM is object locator,
which is in charge of location analysis of fixations and
object enhancement. BPM emphasizes erroneous localization
distillation and object completeness preservation. Besides,
we provide comprehensive experiments of our OLBP network
and other three types of methods on the PFOS dataset, which
demonstrate the excellence of our OLBP network and validate
the challenges of the PFOS dataset. In our future work, we plan
to apply the proposed OLBP network to some eye-control
devices, facilitating the lives of patients with hand disability,
ALS and polio. In addition, we plan to recruit subjects to
collect fixation points and corresponding ground truths on the
PASCAL VOC [45] and MS COCO [83] datasets for further
exploring personal fixation-based object segmentation.
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