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A B S T R A C T

Salient object detection has achieved great success in natural scene images, but there is big room for exploration
in steel defect images (SDIs). Moreover, the unique characteristic of SDIs makes salient object detection
in SDIs (SDI-SOD) a challenging task, and many representative methods for natural scene images struggle
to get satisfactory results in SDI-SOD. Existing SDI-SOD methods usually ignore the edge information, and
focus only on enhancing the feature interaction of different layers. To this end, we propose a specialized
Cross-Scale Edge Purification Network (CSEPNet) to explore the correlations of features at different scales
for SDI-SOD. To be specific, our CSEPNet is based on the general encoder–decoder architecture. First, we
adopt a generic Convolutional Block Attention Module (CBAM) to refine and enhance the features from the
encoder. Then, we propose the Cross-Scale Calibration Module (CSCM) and Cross-Scale Feature Interweaving
Module (CSFIM) to capture the relationship of inter-layer features and intra-layer features, respectively. In
CSCM, adjacent features of different scales are effectively calibrated by each other and are re-calibrated by
their collective weight map to generate informative features. In CSFIM, two branches of features interweave
and fuse with their corresponding edge information purified to generate robust features. Besides, we employ
deep supervision and use a hybrid loss to guide the training process. We perform comprehensive experiments
on the public SD-saliency-900 dataset, and demonstrate that our method is superior to 26 state-of-the-art
methods, including both traditional and CNN-based ones. The code and results of our method are available at
https://github.com/showmaker369/CSEPNet.
. Introduction

Visual attention is a unique signal processing mechanism of human
ision and can automatically capture the regions that attract humans
ttention most. The salient object detection (SOD) task in computer
ision aims to model this procedure. SOD has been widely used in other
ields, such as image and video segmentation [1–3], object tracking [4],
mage quality assessment [5,6], etc. With the fast development of deep
earning [7,8], CNN-based methods [9–12] meet the demand of fast
nspection of steel defect for both accuracy and efficiency, and begin to
eplace the manual inspection operation. In this paper, we focus on SOD
n steel defect images. Specifically, steel defect images (SDIs) refer to
mages of steel with some defects such as scratches, inclusion, patches,
tc. As shown in Fig. 1, most of SDIs have a dark background and are
ften accompanied by noise interference. At the same time, the defect
reas are rich in structural information.
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Recently, SOD in steel defect images (SDI-SOD) [13–15] receive
more attention, which benefits for accurately locating defects. Deep-
learning based methods have significantly boosted the accuracy of SOD
in nature scene images (NSI-SOD). Many meaningful strategies, such as
multi-scale/layer feature aggregation [16,17], FPN based structure [18,
19], self-attention mechanism [20], and global contextual information
guided structure [21,22] have been proposed. However, directly using
these NSI-SOD methods for steel defect images cannot get satisfactory
results due to the unique characteristics of SDIs. As shown in Fig. 2,
two representative CNN-based NSI-SOD methods, i.e., PA-KRN [19] and
R3Net [23], fail to highlight the salient defects.

As a result of the achievements in NSI-SOD, NSI-SOD methods
largely inspire effective deep learning based solutions for SDIs, and
some representative methods for SDI-SOD emerge. For example, Song
et al. [14] proposed a residual network based on encoder–decoder
framework and used the refinement module to refine the feature from
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Fig. 1. Representative examples in steel defect images. GT is the ground truth.

the decoder network. Zhou et al. [15] used the cascaded feature in-
tegration module to fuse multi-branch features, and then exploited
the decoder to progressively integrate multi-level deep features with
the guidance of the dense attention structure. Although the above
CNN-based SDI-SOD methods have made some progress, they cannot
generate clear saliency maps when dealing with some challenging
scenes. As shown in Fig. 2, EDRNet [14] and DACNet [15] fail to
produce saliency maps with fine-grained detail and structural informa-
tion. Inspired by above observations, we propose a novel Cross-Scale
Edge Purification Network (CSEPNet) to highlight salient defects and
maintain the edge information in SDIs. Our CSEPNet is based on
the encoder–decoder architecture, and consists of one generic feature
enhancement module CBAM [24] and our two proposed modules,
i.e., Cross-Scale Calibration Module (CSCM) and the Cross-Scale Feature
Interweaving Module (CSFIM). To be specific, CSCM is proposed for
inter-layer features, and CSFIM is proposed for intra-layer features. The
former one focuses on calibrating the cross-scale features via attention
mechanism. The latter one interweave the intra-layer features of two
scales accompanied by an edge purification process, and then explores
the complementarity between them.

Concretely, for each layer of our backbone, the basic features are
firstly refined by CBAM. Features of two adjacent layers (i.e., inter-
layer features) are then fused in the CSCM, where features of two
adjacent layers are calibrated by each other and re-calibrated by their
concatenated mode. Then, the output features of CSCM are fed to
the CSFIM to highlight salient defects in a cross-scale manner with
the edge information purified by the contrast enhancement unit, and
the two-scale refined features will be calibrated by each other in the
variant of CSCM. In this way, we aggregate adjacent and intra-layer
features in our CSEPNet to progressively infer the final saliency map.
Notably, we take the deep supervision strategy and a comprehensive
loss for network training. Experiments on SD-saliency-900 dataset [13]
show that our specialized CNN-based SDI-SOD method achieves the
best performance as compared with 26 state-of-the-art methods, and
generates accurate saliency maps, as shown in Fig. 2.

Our main contributions are summarized as follows:

• We propose a novel Cross-Scale Edge Purification Network (CSEP-
Net) for SDI-SOD based on the encoder–decoder architecture.
Our CSEPNet explores the complementarity of inter-layer and
intra-layer features to progressively produce a precise saliency
map.

• We propose a Cross-Scale Calibration Module to effectively capture
the relationship of features from different layers so as to calibrate
cross-scale inter-layer features flexibly and produce informative
features.

• We propose a Cross-Scale Feature Interweaving Module to explore
the complementarity of the intra-layer features. In this mod-
ule, we present two-scale representation of the intra-layer fea-
tures, and interweave them with the purified edge information
in a cross-scale manner. Then, the refined two-scale intra-layer
features are effectively aggregated by the cross-scale weighting
module (a variant of CSCM).
2

Fig. 2. Saliency maps generated by our method and four state-of-the-art methods,
including DACNet [15], EDRNet [14], PA-KRN [19], and R3Net [23], on three
challenging SDI scenes, i.e., inclusion, patches, and scratches.

2. Related work

In this section, we introduce the SOD methods for NSIs and steel
defect images. For the former one, we introduce both traditional and
CNN-based methods and for the latter, we mainly focus on CNN-based
methods.

2.1. Salient object detection in NSIs

(1) Traditional methods. As an early enlightening work, Itti et al. [25]
proposed a model based on biologically-plausible architecture which
parallelly uses human visual perception related factors like color, in-
tensity and orientation to obtain the saliency maps. Similar to [25],
Valenti et al. [26] used saliency features like isophotes, color distinc-
tiveness and curvedness to produce initial saliency maps, and then
linearly combined three initial saliency maps to produce the final result.
Some methods [27,28] used matrix recovery to detect salient regions.
For example, in [27], Shen et al. represented the image as a low-rank
matrix added with sparse noise in a learned space, where saliency
regions are represented by the sparse noise, and used the robust PCA
method [29] to identify salient regions. In [30], a novel superpixel gen-
eration algorithm adapted self-adjustable distance measures to detect
the amount of dissimilarity between the data points and performed well
on the benchmark. Wei et al. [31] proposed a novel intuitive geodesic
saliency measure method based on the contrast and two background
priors (i.e., boundary and connectivity) to produce the precise saliency
map. Later, in [32], Ding et al. integrated the advantages of cellilar and
Gauss filtering to calculate the background-based saliency map, and
then fused it with another refined saliency map to get the final salieny
map. In [33], Zhou et al. obtained two complementary maps based on
the foreground and background seeds, and then generated the salieny
map by the diffusion process. To some extent, traditional methods do
not achieve satisfactory performance, but provide some inspiring ideas
and experiences for CNN-based methods.

(2) CNN-based methods. With a better representation ability, CNN-
based methods [34–36] break through the limitations of traditional
methods [37,38] and push the performance to a higher level. For
instance, Wu et al. [39] designed an partial decoder and a holistic at-
tention module for features from higher layers to progressively produce
initial saliency map and the final saliency map. Besides, to counter the
problem of scale variation, a large number of CNN-based methods [16–
18,21,39–42] take different strategies. For instance, Gupta et al. [43]
used an attention-based module to integrate features from adjacent lay-
ers in a rational way, and then fused multiscale features in a top-down
manner. Pang et al. [17] integrated multi-level features from adjacent
layers and used a self-interaction module for better feature interaction.
Zhao et al. [40] used features from the present encoder block and the
previous decoder block to generate a gate so as to guide the two-stream
feature fusion, extracting stabler features. Liu et al. [18] proposed a
module based on FPN structure and used the feature aggregation mod-
ule to allow the global guidance information to be delivered to feature

maps at different pyramid levels, enlarging the receptive field of the
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whole network. Hybrid loss is widely used in NSI-SOD. Qin et al. [44]
proposed a U-Net [45] like densely supervised prediction module and
use a hybrid loss function that consists of three different losses for the
network training process. Moreover, to address the dependency of SOD
models on high quality images, Zhou et al. [20] designed a multi-type
self-attention module and proposed a network to detect salient object in
the degraded images. Zhao et al. [35] introduced the edge information
to guide the saliency map prediction process. In [36], a gate-based
contextual information extraction model was proposed to control the
information flows between different branches. For more details, please
refer to the survey [46].

Although directly using NSI-SOD methods on steel defect images
cannot produce satisfactory results, these methods still provide some
worthwhile sights for SOD in steel defect images.

2.2. Camouflaged object detection

The characteristic of industrial images is that the foreground salient
regions have a high similarity with their background and are always
accompanied by ambiguous boundaries, which is similar to the char-
acteristic of the camouflaged object detection (COD) images. Here, we
introduce some classic COD methods. In [47], Fan et al. proposed a
two-stage network for COD. In [48], Ji et al. designed an effective
network, which incorporates diverse priors and produced comprehen-
sive information on the basis of reversible re-calibration unit for COD.
Mei et al. [49] designed a network based on a positioning module and
a focus module to locate and identify target objects. To better analyze
the attribute of the camouflage, Lv [50] proposed the first ranking
based network which can simultaneously locate, segment, and rank
camouflaged objects. Li [51] proposed an effective module to model
the contradicting attributes of both COD and SOD tasks, and used an
adversarial learning strategy for robust model training.

2.3. Salient object detection in steel defect images

Recently, some efforts are made on SOD in steel defect images.
To address this task, Song et al. [13] constructed the first dataset,
termed SD-saliency-900, for SOD in steel defect images, and proposed
a saliency propagation algorithm which uses the generated label ma-
trix and the results of multiple constraints to obtain a local diffusion
function for defects detection. Moreover, influenced by deep learning,
Song et al. [14] introduced the attention mechanism [24] into the
encoder–decoder network to locate salient defect regions more effi-
ciently. They adopted the prediction and refinement strategy, that is,
first predicted a saliency map in an encoder–decoder network, and then
refined the saliency map in a refinement network. However, they did
not consider edge information, which is important for SOD of steel de-
fect images. Therefore, the boundaries of the generated saliency maps
are vague. Zhou et al. [15] employed three convolutional branches to
extract multi-resolution features, and directly adopted the concatena-
tion operation to aggregate them in a cascaded feature integration unit.
Then, they exploited the decoder to progressively integrate multi-level
deep features with the guidance of the dense attention structure. We
believe the feature fusion strategy of [15] is rough and simple, and
cannot effectively explore the feature interaction and generate valuable
features. In addition, Zhou et al. also ignored the edge information.
Besides, the above two CNN-based methods only focused on enhancing
the feature interaction of different layers (i.e., inter-layer features), and
ignored the feature interaction of intra-layer features.

Similar to SOD, some researchers focus on segmentation and object
detection in steel defect images. Huang et al. [52] proposed a U-shape
network to segment steel defects, which uses the depth-wise separable
convolution to reduce parameters and the multi-scale module to extract
multi-scale context information. To address the problem of big differ-
ences between intra-class surface defects, Dong et al. [53] proposed a
network based on pyramid feature fusion and global context attention,
3

Fig. 3. The architecture of our CSEPNet, which is based on the general encoder–
decoder architecture. We use the classic VGG-16 [65] as the feature extractor, and
its input is a SDI with a size of 256 × 256 × 3. Features from five encoder blocks are
elaborately refined by the CBAM. CSFIM is in charge of enhancing features with the
edge information, and CSCM is in charge of coordinating features from adjacent layers
to progressively aggregate multi-scale features. For the training phase, we employ deep
supervision to the predicted saliency maps from CSFIM, and we adopt a hybrid loss,
including BCE loss, IOU loss, CEL loss, and SSIM loss.

termed PGA-Net, for surface defect segmentation. He et al. [54] first
fused features from baseline into multi-level features and then fed the
more representative features into a region proposal network to deter-
mine the location and class of defects. In [55], Tang et al. proposed an
end-to-end network for defect detection. The network first embeds the
attention mechanism module into the backbone to reduce interference
of image noise in features, and then uses the multi-scale max-pooling
module to increase the receptive field of the network before generating
proposals.

The above models are oriented in steel defects, however, there
are defects in diverse materials in different industrial environments.
Therefore, many works target on locating surface defects on other
materials [56–59]. For example, in [60], Wei et al. used semantic-aware
network and texture-aware network to capture semantic information
and texture information, respectively, and then the diverse features are
integrated for tire defects detection. In [61], Zhang et al. effectively re-
solved three difficulties in no-service rail surface defects segmentation.
In [62], Wang et al. designed a self-attention module to coordinate the
dependencies between side-output features to generate detail-enriched
fabric defect detection results. Aslam et al. [63] designed a U-Net
based encoder–decoder network for metal defect detection, which uses
a combination of binary cross-entropy loss and dice loss as the loss
function. Tabernik et al. [64] used a two-stage network for plastic
surface detection. At the first stage, a segmentation network performs
the pixel-wise localization of surface defects, and then an additional
network that is built on top of the segmentation network uses both
the segmentation output and the features of the segmentation network
to generate the result. Similar to steel defect images, fabric defect
images are always with interference of background noise while tire
defect images are captured in insufficient illumination environments.
For images of the plastic embedding in electrical commutators, the
defects are also with dark background and have abundant structural
information.

Inspired by the above works, our CSEPNet adopts the encoder–
decoder structure as the backbone, and uses the popular attention mod-
ule [24] for straightforward feature enhancement on different backbone
layers. Moreover, we elaborately design the Cross-Scale Calibration
Module to coordinate the dependencies between features of differ-
ent backbone layers, and design the Cross-Scale Feature Interweaving
Module to balance features within one backbone layer.
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3. Proposed model

In this section, we elaborate our CSEPNet. We first introduce the
overview of our CSEPNet in Section 3.1. In Sections 3.2 and 3.3, we give
a detailed introduction of our Cross-Scale Calibration Module (CSCM)
and Cross-Scale Feature Interweaving Module (CSFIM), respectively. At
the end of this section, we clarify the loss function in Section 3.4.

3.1. Network overview

Many representative SOD methods [14,66–69] are based on the
encoder–decoder architecture. Therefore, we build our CSEPNet on
this popular architecture, as shown in Fig. 3. The backbone of our
CSEPNet is the popular VGG-16 [65] pre-trained on ImageNet [70], and
we remove the last four layers (i.e., one max-pooling layer and three
fully connected layers) of VGG-16 for feature extraction. Taking a SDI
𝑰 ∈ R256×256×3 as input, we denote the five blocks in feature extractor
as R-FE𝑖 and their output basic features as 𝒇 𝑖

e, where 𝑖 ∈ {1, 2, 3, 4, 5} is
the block index. Then, 𝒇 𝑖

e is refined by the CBAM to obtain the refined
feature 𝒇 𝑖

r. Specifically, 𝒇 5
r is fed to a CSFIM, generating the output

feature of CSFIM, 𝒇 5
csfi. Then, 𝒇 5

csfi is integrated with the previous 𝒇 4
r in

a CSCM to calibrate them by each other, generating the output feature
of CSCM, 𝒇 4

csc. As shown in Fig. 3, following such a data flow, we
can accurately locate the salient defects and generate the predicted
saliency maps. Notably, we employ five deconvolutional layers in our
CSEPNet to upsample the predicted saliency maps to the resolution
of GT for supervision. We choose classic binary cross-entropy (BCE)
loss, intersection-over-union (IoU) loss, consistency-enhanced (CEL)
loss, and patch-level structural similarity (SSIM) loss as the total loss
to highlight the foreground region and improve structural information
of salient objects for effective network training.

3.2. Cross-scale calibration module

The interaction between features of different scales plays an impor-
tant role in the field of SOD. Since features from low layers have more
detail information and features from high layers have more semantic
information, the coordination of features at diverse scale is meaningful.
Different from the previous SOD work [21] that simply upsamples low-
scale features and multiply it with high-scale features, we propose a
Cross-Scale Calibration Module to fuse features of different scales more
effectively. Our CSCM can integrate features from adjacent layers and
enhance the representation of salient defects in its output features. We
illustrate the structure of CSCM in Fig. 4.

In CSCM, the input features are 𝒇 𝑖
r from low-level layer and 𝒇 𝑖+1

csfi
from high-level layer. First, we upsample 𝒇 𝑖+1

csfi to the size of 𝒇 𝑖
r, and

then apply a convolutional layer with 3 × 3 kernel size on 𝒇 𝑖+1
csfi for

channel adjustment, causing the two input features have the same size.
After that, we perform the spatial attention [24] on them to get two
distinctive attention maps 𝑨𝑖

low and 𝑨𝑖
high as follows:

𝑨𝑖
low = SA(𝒇 𝑖

r), (1)

𝑨𝑖
high = SA(𝒇 𝑖+1

csfi), (2)

where SA(⋅) means spatial attention, which is implemented by a global
average-pooling and global max pooling along channel axis, a convo-
lutional layer and a sigmoid activation function.

To obtain more comprehensive features, we perform the cross-scale
calibration operation on 𝒇 𝑖

r from low-level layer and 𝒇 𝑖+1
csfi from high-

level layer. Concretely, we adopt 𝑨𝑖
high to calibrate 𝒇 𝑖

r, and then add
𝒇 𝑖

r. Similarly, we also adopt 𝑨𝑖
low to calibrate 𝒇 𝑖+1

csfi, and then add 𝒇 𝑖+1
csfi.

Based on the above operations, we can obtain 𝒇 𝑖
low and 𝒇 𝑖

high, which
can be computed as:

𝒇 𝑖 = 𝑨𝑖 ⊗ 𝒇 𝑖 ⊕ 𝒇 𝑖 , (3)
4

low high r r s
Fig. 4. Illustration of the Cross-Scale Calibration Module.

𝒇 𝑖
high = 𝑨𝑖

low ⊗ 𝒇 𝑖+1
csfi ⊕ 𝒇 𝑖+1

csfi, (4)

where ⊗ is element-wise multiplication, and ⊕ is element-wise summa-
tion.

To further enhance the interaction between the low-level and high-
level features, we explore the useful information from them together.
We concatenate 𝒇 𝑖

low and 𝒇 𝑖
high, and employ two convolutional layers

to fuse them, generating the collective weight map 𝑾 𝑖 as follows:

𝑾 𝑖 = 𝑠(conv(BConv(𝒇 𝑖
low ⊚ 𝒇 𝑖

high))), (5)

where 𝑠(⋅) is the sigmoid activation function, conv(⋅) is the convolutional
layer, BConv(⋅) consists of a convolutional layer with a batch normal-
ization layer and ReLU activation function, and ⊚ is the cross-channel
concatenation.

Finally, we adopt 𝑾 𝑖 to re-calibrate 𝒇 𝑖
r and 𝒇 𝑖+1

csfi, and fuse them
hrough a convolutional layer, generating the output feature of CSCM
enoted to 𝒇 𝑖

csc, as follows:

𝑖
csc = (𝑾 𝑖 ⊗ 𝒇 𝑖

r)⊕ (𝑾 𝑖 ⊗ 𝒇 𝑖+1
csfi). (6)

In this way, our CSCM uses features from adjacent layers to produce
daptive attention maps under the benefit of attention mechanism, and
hen calibrates each other in a cross-scale manner. At the same time, the
ollective weight map 𝑾 𝑖 is also generated through adaptive learning
ith two convolutional layers, which ensure that the module can re-
ptimize the input features in a more appropriate way to generate the
utput feature 𝒇 𝑖

csc.

.3. Cross-scale feature interweaving module

Cross-Scale Feature Interweaving Module plays a vital part in our
SEPNet. It generates two-scale representations from the input feature,
nd effectively enhances two branches of features in an interleaved
anner. As illustrated in Fig. 5, our CSFIM can be divided into two

tages, including the edge-based cross-scale feature interweaving stage
nd the cross-scale weighting stage. Specifically, in these two stages,
here are two major components, termed contrast enhancement unit
nd cross-scale weighting module, and the latter one is a variant of
SCM. In the following, we elaborate CSFIM based on the above two

tages.
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Fig. 5. Illustration of the Cross-Scale Feature Interweaving Module.

(1) Edge-based cross-scale feature interweaving stage. The input of
CSFIM is 𝒇 𝑖

csc (𝑖 ∈ {1, 2, 3, 4}) or 𝒇 𝑖
r (𝑖 =5). For simplicity, we define the

input as 𝒇 𝑖
csfi-in. First, we generate a multi-scale representation of the

input feature, that is, we downsample the input feature by the average
pooling operation to obtain a low-resolution feature, and meanwhile
keep the original-resolution feature. Subsequently, the two features are
improved based on the edge information in the Contrast Enhancement
(CE) unit, generating the low-resolution enhanced features 𝒇 𝑖

ls and the
original-resolution enhanced features 𝒇 𝑖

os as follows:

𝒇 𝑖
ls = CE(Avg(𝒇 𝑖

csfi-in)), (7)

𝒇 𝑖
os = CE(𝒇 𝑖

csfi-in), (8)

where Avg(⋅) is the average pooling operation, and CE(⋅) is the CE unit.
Specifically, the fusion of features with different scales by upsampling
or downsampling followed by element-wise addition can easily cause
the information of salient defects to be diluted [19], resulting in blurry
edge. Hence, we adopt the CE unit to effectively purify the boundary
part of the feature map thus maintaining more desired features. The
contrast operation is the core of CE unit, and is in charge of extract-
ing the edge features contained in the two-scale features for better
highlighting the edge regions. CE(⋅) can be computed as:

CE(𝒇 ) = conv(Contrast(BConv(𝒇 ))), (9)

Contrast(𝒇 ) = 𝑠(conv(𝒇 ⊖ Avg(𝒇 )))⊗ 𝒇 ⊕ 𝒇 , (10)

where ⊖ is element-wise subtraction.
Next, the two-scale enhanced features are integrated in an inter-

leaved manner as follows:

𝒇 𝑖
los = 𝒇 𝑖

ls ⊕ Avg(𝒇 𝑖
os), (11)

𝒇 𝑖
ols = 𝒇 𝑖

os ⊕ Up(𝒇 𝑖
ls), (12)

where Up(⋅) is the unsampling operation implemented by bilinear
interpolation. Furthermore, we adopt the CE unit to enhance 𝒇 𝑖

ls and
𝒇 𝑖 again based on the edge information, generating �̂� 𝑖 and �̂� 𝑖 .
5

os los ols
(2) Cross-scale weighting stage. At the second stage, we use Cross-
Scale Weighting Module (CSWM) to fuse features of different sizes,
which is similar to the CSCM. CSWM is a variant of CSCM, and
the difference between them is that in the re-calibration process, the
collective weight map weights the two groups of features differently.
Therefore, based on Eq. (6) of CSCM, the last operation of CSWM can
be computed as follows:

𝒇 𝑖
csw = (𝑾 𝑖 ⊗ �̂� 𝑖

los)⊕ ((𝟏⊖𝑾 𝑖)⊗ �̂� 𝑖
ols). (13)

in which we adopt two different weights to emphasize the two forms of
intra-layer feature. Finally, we adopt the residual connection operation
to add the input feature of CSFIM to 𝒇 𝑖

csw, and generate the output
feature of CSFIM, 𝒇 𝑖

csfi.
In summary, the two branches of features with different resolutions

effectively complement each other and their corresponding edge infor-
mation is also purified through the CE unit. At the second fusion stage,
two branches of enhanced features are fused by CSWM to generate
more robust features in an appropriate way.

3.4. Loss function

The decoder network produces the predicted saliency maps 𝐒𝑖 (𝑖 ∈
{1, 2, 3, 4, 5}) with increased resolutions, and the structural details of
salient defects gradually appear with the effect of CSCM and CSFIM. In
addition to the above well-designed modules, we adopt the widely used
deep supervision [71,72] in the training phase to supervise the decoder
layers and to let them learn the characteristics of diverse-scale defects.
Since using the hybrid loss achieves success in some representative
SOD works [44,68,73,74], we adopt not only the classic pixel-level BCE
loss and the map-level IoU loss, but also the CEL loss and the SSIM
loss [75] in our loss function. We believe that the SSIM loss [75] can
facilitate learning of structure details in our CSEPNet. Therefore, our
loss function can be formulated as:

Ltotal =
5
∑

𝑖=1

(

𝓁𝑏𝑐𝑒(𝐒𝑖,𝐆) + 𝓁𝑖𝑜𝑢(𝐒𝑖,𝐆)

+𝓁𝑐𝑒𝑙(𝐒𝑖,𝐆) + 𝓁𝑠𝑠𝑖𝑚(𝐒𝑖,𝐆)
)

,

(14)

where 𝐆 is the ground truth, and 𝓁𝑏𝑐𝑒(⋅), 𝓁𝑖𝑜𝑢(⋅), 𝓁𝑐𝑒𝑙(⋅), and 𝓁𝑠𝑠𝑖𝑚(⋅) are
BCE loss, IoU loss, CEL loss, and SSIM loss, respectively. The use of such
a hybrid loss function helps our CSEPNet better adapt to the special
scenes in SDIs.

4. Experiments

In this section, we first introduce the dataset, implementation de-
tails and evaluation metrics. Then, we compare our method with state-
of-the-art methods and present ablation studies to comprehensively
demonstrate the effectiveness of our method. Finally, we conduct ex-
tension experiments on two optical remote sensing images datasets to
demonstrate the robustness of our method and discuss some failure
cases.

4.1. Experimental setup

(1) Datasets. The detailed and convincing experiments are con-
ducted on the public SD-saliency-900 [13] dataset which contains 900
SDIs and corresponding pixel-level annotations. To be specific, the
dataset contains three defect categories, and each one includes 300
images.

(2) Implementation Details. Our proposed CSEPNet is implemented
on the pytorch framework [85] with one NVIDIA Titan XP GPU (12 GB
memory) and the input size of network is 256 × 256 × 3. During
the training phase, we adopt several data augmentation operations
(i.e., random horizontal flipping, random rotating, random color jitter-
ing, and salt and pepper noise) to avoid overfitting. The parameters
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Table 1
Quantitative performance comparisons with a total of 26 state-of-the-art methods across four categories on the SD-saliency-900 [13] dataset. The best three results for each metric
are marked in red, blue and green, respectively. ↑ and ↓ mean larger and smaller are better, respectively.

Model Type #Param(M)↓ FLOPs(G)↓ 𝑆𝛼 ↑ max 𝐹𝛽 ↑ mean𝐹𝛽 ↑ adp 𝐹𝛽 ↑ max 𝐸𝜉 ↑ mean 𝐸𝜉 ↑ adp 𝐸𝜉 ↑  ↓

BC14 [76] TN. – – .592 .470 .426 .470 .675 .637 .730 .156
SMD17 [77] TN. – – .582 .466 .415 .439 .648 .588 .716 .209
2LSG17 [78] TN. – – .554 .435 .385 .416 .630 .559 .710 .246
RCRR18 [79] TN. – – .533 .392 .335 .328 .628 .546 .644 .242

DSS17 [72] CN. 62.2 104.4 .775 .786 .747 .804 .893 .814 .893 .032
NLDF17 [80] CN. 35.5 115.5 .811 .784 .723 .738 .904 .826 .884 .047
PiCANet18 [81] CN. 47.2 108.1 .873 .865 .807 .749 .958 .916 .895 .031
BMPM18 [82] CN. 22.1 724.3 .822 .827 .809 .805 .924 .891 .926 .037
R3Net18 [23] CN. 56.7 47.5 .824 .816 .809 .820 .927 .899 .927 .030
CPD19 [39] CN. 29.2 59.5 .858 .853 .821 .794 .953 .915 .926 .031
BASNet19 [44] CN. 87.1 127.3 .866 .858 .841 .821 .957 .947 .948 .027
PoolNet19 [18] CN. 53.6 123.4 .866 .852 .815 .779 .954 .921 .920 .029
EGNet19 [35] CN. 108.1 291.9 .867 .858 .821 .781 .959 .928 .924 .028
PFANet19 [83] CN. 37.3 – .742 .704 .593 .552 .855 .752 .725 .081
GCPANet20 [21] CN. 67.1 54.3 .876 .871 .830 .786 .956 .926 .925 .027
MINet20 [17] CN. 47.6 146.3 .868 .857 .836 .818 .948 .935 .942 .025
SAMNet21 [84] CN. 1.3 0.5 .830 .820 .764 .742 .933 .856 .900 .038
SUCANet21 [42] CN. 117.7 56.4 .869 .860 .834 .812 .956 .934 .939 .027
PA-KRN21 [19] CN. 141.1 617.7 .872 .865 .833 .807 .963 .947 .941 .027

EDRNet20 [14] CS. 39.3 42.0 .877 .872 .854 .834 .964 .956 .953 .024
DACNet21 [15] CS. 98.4 35.3 .875 .870 .855 .836 .964 .957 .956 .024

SINet21 [47] CC. 27.0 12.3 .871 .870 .836 .811 .960 .948 .937 .026
PFNet21 [49] CC. 46.5 26.5 .873 .861 .842 .822 .958 .948 .946 .026
UJSC21 [51] CC. 218.0 56.3 .874 .872 .847 .835 .961 .954 .952 .024
SLSR21 [50] CC. 50.9 32.4 .870 .867 .833 .805 .960 .946 .935 .027
ERRNet22 [48] CC. 69.8 20.1 .867 .862 .829 .806 .958 .946 .937 .026

Ours CS. 18.8 59.3 .884 .882 .859 .846 .966 .959 .959 .023

TN.: Traditional NSI-SOD method, CN.: CNN-based NSI-SOD method, CS.: CNN-based SDI-SOD method, CC.: CNN-based COD method.
of the backbone network are initialized by the pre-trained parameters
on the ImageNet. To make the network converge better, we use the
momentum SGD optimizer with a weight decay of 5𝑒−4, and set the
orresponding parameters like initial learning rate and momentum to
𝑒−3 and 0.9, respectively. We apply the poly strategy [86] with a factor
f 0.9 to train our CSEPNet for 100 epochs. The training set contains
40 noise-free images (i.e., 180 images from per defect category).
otably, taking into account the overlap of images between the test

et and the training set in [14,15], we strictly distinguish between the
raining set and the test set, and use the remaining 360 images as our
est set, rather than the total 900 images as the test set like [14,15].
(3) Evaluation Metrics. We use four evaluation metrics including

-measure, F-measure, E-measure and Mean Absolute Error (MAE)
o compare our method with other state-of-the-art methods. Besides,
e present Precision-Recall (PR) curve to compare the statistic result
f different methods. For F-measure and E-measure, we report their
aximum, mean and adaptive values to deeply assess the perfor-
ance of methods. 𝐒 −𝐦𝐞𝐚𝐬𝐮𝐫𝐞 (𝑆𝛼 , 𝛼 = 0.5) [87] is a metric based

n the characteristics of human visual system and can effectively
valuate structural similarity between the saliency map and the GT.
−𝐦𝐞𝐚𝐬𝐮𝐫𝐞 (𝐹𝛽) [88] balances precision and recall, and we set 𝛽2 to
.3. 𝐄 −𝐦𝐞𝐚𝐬𝐮𝐫𝐞 (𝐸𝜉) [89] is inspired by human visual characteris-
ics and gets insight of the limitations of traditional metrics, jointly
apturing image-level statistics and local pixel matching information.
𝐀𝐄 () is a basic metric used to evaluates the average pixel-level

ifference between the saliency map and the GT. 𝐏𝐑𝐜𝐮𝐫𝐯𝐞 shows the
overall statistic result of recall and precision.

4.2. Comparison with state-of-the-arts

For the comprehensive comparison, we compare with a total of
26 state-of-the-arts which can be divided into four categories. Tradi-
tional NSI-SOD method is the first category, and it includes BC [76],
6

SMD [77], 2LSG [78], and RCRR [79]. CNN-based NSI-SOD method
Fig. 6. Quantitative comparison in terms of PR curve on SD-saliency-90 [13] dataset.
We show the top five methods in color.

is the second category, and it includes DSS [72], NLDF [80], Pi-
CANet [81], BMPM [82], R3Net [23], CPD [39], BASNet [44], Pool-
Net [18], EGNet [35], PFANet [83], GCPANet [21], MINet [17], SAM-
Net [84], SUCANet [42], and PA-KRN [19]. SDI-SOD method is the
third category, and includes EDRNet [14] and DACNet [15]. For the
last one, we also compare with five SOTA COD methods, including
SINet [47], PFNet [49], UJSC [51] SLSR [50], and ERRNet [48].
To ensure a fair comparison, we use the saliency maps of sixteen
methods provided by the representative DACNet [15] and EDRNet [14],
and retrain ten CNN-based methods (i.e., EGNet, GCPANet, SUCANet,
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Fig. 7. Visual comparisons with sixteen representative methods on three categories of defects, including inclusion, scratches, and patches. These methods include CNN-based SDI-SOD
methods (i.e., DACNet [15] and EDRNet [14]), COD methods (i.e., PFNet [49] and SINet [47]), CNN-based NSI-SOD methods (i.e., PA-KRN [19], SUCANet [42], SAMNet [84],
GCPANet [21], EGNet [35], PoolNet [18], BASNet [44], CPD [39], PiCANet [81], and DSS [72]), and traditional NSI-SOD method (i.e., RCRR [79] and BC [76]). Specifically, we
simplify the names of some methods, for example, we represent ‘GCPANet’ as ‘GCPA.’.
PA-KRN, MINet, SINet, PFNet, UJSC, SLSR and ERRNet) on SD-saliency-
900 [13] using the default parameters setting to generate their saliency
maps.

4.2.1. Quantitative comparison
Table 1 shows the performance of our method and other 26 methods

on eight metrics denoted as 𝑆𝛼 , 𝐹max
𝛽 , 𝐹mean

𝛽 , 𝐹 adp
𝛽 , 𝐸max

𝜉 , 𝐸mean
𝜉 , 𝐸adp

𝜉 ,
and . Briefly speaking, our method performs best on all metrics as
compared with the other 26 methods on the SD-saliency-900 dataset,
and DACNet and EDRNet rank second and third, respectively. Specifi-
cally, our method outperforms the second best model by 0.7%, 1.0%,
0.4%, 1.0%, 0.2%, 0.2%, 0.3%, and 0.001 on 𝑆𝛼 , 𝐹max

𝛽 , 𝐹mean
𝛽 , 𝐹 adp

𝛽 ,
𝐸max
𝜉 , 𝐸mean

𝜉 , 𝐸adp
𝜉 , and , respectively. In comparison to the four

traditional methods, our method is a lot ahead of them. Compared
with the latest CNN-based SDI-SOD method DACNet, our method con-
sistently outperforms it on all metrics, e.g., 1.2% better than it on
𝐹max
𝛽 and 0.1% lower than it on . Besides, we observe that the

dedicated SDI-SOD methods generally perform better than the NSI-SOD
methods, which proves the importance of development of dedicated
SDI-SOD methods. The five COD methods perform better than most of
NSI-SOD methods. However, when compared with the latest two SDI-
SOD methods, they perform moderately. Our CSEPNet still outperforms
these five COD methods on all metrics. In addition, we present PR
curves of all compared methods in Fig. 6. It is obvious that the balance
point of our PR curve is more towards the upper right corner and
our curve wraps the other curves nicely, which demonstrates that our
method outperforms other methods. Concurrently, the data shown in
Table 1 also strongly supports this conclusion.

4.2.2. Computational complexity comparison
To further evaluate different methods, we provide the computa-

tional complexity performance, including the amount of parameters
(#Param) and FLOPs, in Table 1. All data is calculated base on the
source code released. Notably, #Param of our method is smaller than
most of compared methods except SAMNet which is a lightweight
model for SOD. For FLOPs, our method is 59.3G which is in the
middle level of all compared methods. Therefore, the computational
complexity of our method is competitive among all compared methods.

4.2.3. Visual comparison
To intuitively compare differences in the saliency maps of different

methods, we provide the visual results of sixteen representative meth-
ods and our method in Fig. 7. For each category of defect (i.e., inclusion,
scratches and patches), we provides two representative cases. We sum-
marize the characteristic of these three defect categories as follows:
(1) inclusion is usually with tiny or relatively large area; (2) patches
usually appears in center areas with close distance or appears in edge
area; (3) scratches is usually in large coherent areas or in scattered
areas. The above cases include the challenging scenes in SDIs, such as
7

defects with fine structure, defects in large connected areas, scattered
tiny defects, defects with low color contrast.

For all the above cases, we can observe that two traditional NSI-SOD
methods get fuzzy localizations of defect regions or even miss them.
In a word, these methods are always confused by the special scenes
of SDIs. The ten CNN-based NSI-SOD methods can get the locations
of main defects but still make some mistakes in case of multiple
tiny defects, such as DSS, R3Net, BASNet and PA-KRN. Besides, the
structural information of salient defects detected by these methods is
still not refined enough. Similar to CNN-based NSI-SOD methods, the
two COD methods can precisely locate the defect regions, but for the
small targets they fail to detect certain regions. Moreover, the latest two
SDI-SOD methods, i.e., EDRNet and DACNet, are better than the above
methods, and they can detect defects accurately and produce saliency
maps with fine structures. In contrast, our CSEPNet generates clear
saliency maps, which accurately locate salient defects and overcome
the above problems, and shows strong adaptability in these scenes.

4.3. Ablation study

In order to demonstrate the effectiveness of each component of
our CSEPNet, we provide some variants of our CSEPNet, and train
them on SD-saliency-900 dataset with the same setting of our original
CSEPNet as in Section 4.1. To be specific, our experiments include:
(1) the contribution of each module in CSEPNet, (2) the robustness of
our CSEPNet on different backbones, (3) the rationality of cross-scale
calibration and re-calibration in CSCM, (4) the effectiveness of CE unit
and CSWM in CSFIM.

1. The contribution of each module in CSEPNet. To evaluate the
contribution of CBAM, CSCM, and CSFIM, we offer four variants: (1) the
encoder–decoder network (i.e., ‘‘Baseline’’), (2) the baseline network
with CBAM (i.e., ‘‘Baseline+CBAM’’), (3) the baseline network with
CBAM and CSCM (i.e., ‘‘Baseline+CBAM+CSCM’’), and (4) the base-
line network with CBAM and CSFIM (i.e., ‘‘Baseline+CBAM+CSFIM’’).
We report the performance of the above variants and our complete
CSEPNet in Table 2.

With a basic encoder–decoder structure, ‘‘Baseline’’ only achieves
86.39% on 𝑆𝑚, 0.0255 on , 94.76% on max 𝐸𝜉 and 85.7% on
max 𝐹𝛽 . After embedding the general CBAM [24] into ‘‘Baseline’’, the
performance increases by 0.09%, 0.01%, 0.2% and 0.12% on these four
metrics, respectively. CBAM together with CSCM increases ‘‘Baseline’’
by 0.79%, 0.03%, 1.12% and 1.23% on these four metrics, respec-
tively. Besides, CBAM together with CSFIM increases ‘‘Baseline’’ by
1.03%, 0.12%, 1.58% and 1.77% on these four metrics, respectively.
The combination of CBAM, CSCM, and CSFIM increases ‘‘Baseline’’ by
1.96%, 0.25%, 1.79% and 2.5% on these four metrics, respectively. In
summary, our method performs better with continuously adding main
components, which demonstrates the effectiveness of each module.

2. The robustness of our CSEPNet on different backbones. We
replace the backbone of our CSEPNet with a different backbone to
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Table 2
Ablation study on evaluating the contribution of each module in CSEPNet. Baseline removes all modules from CSEPNet, and it directly obtains features from each layer and fuses
features of adjacent layers through upsampling and element-wise addition operations. The best result in each column is in red.

Dataset Model 𝑆𝛼 ↑  ↓ max 𝐸𝜉 ↑ max 𝐹𝛽 ↑

SD-saliency-900

Baseline .8639 .0255 .9476 .8570
Baseline + CBAM .8648 .0254 .9496 .8582
Baseline + CBAM + CSCM .8718 .0252 .9588 .8693
Baseline + CBAM + CSFIM .8742 .0243 .9634 .8747
Baseline + CBAM + CSCM + CSFIM .8835 .0230 .9655 .8820
Table 3
Performance on ResNet-50 backbone and VGG-16 backbone with our CSEPNet.

Model SD-saliency-900 [13]

𝑆𝛼 ↑  ↓ max 𝐸𝜉 ↑ max 𝐹𝛽 ↑

CSEPNet-VGG .8835 .0230 .9655 .8820
CSEPNet-ResNet .8798 .0239 .9651 .8807

Table 4
Performance of variants of CSCM and CSFIM. The best result in each column is bold.

Dataset Model 𝑆𝛼 ↑  ↓ max 𝐸𝜉 ↑ max 𝐹𝛽 ↑

SD-saliency-900

w/o CS .8786 .0234 .9646 .8813
w/o re-calibration .8768 .0237 .9640 .8795

w/o CSWM .8776 .0239 .9632 .8788
w/o top-CE .8788 .0238 .9633 .8777
w/o bottom-CE .8810 .0238 .9638 .8785
CSFIM with CSCM .8794 .0234 .9644 .8788

Ours .8835 .0230 .9655 .8820

Fig. 8. Illustration of two CSCM variants. Please zoom-in to view details.

illustrate the robustness of our CSEPNet. As shown in Table 3, CSEPNet-
VGG denotes using VGG-16 [65] as the backbone of our CSEPNet, while
CSEPNet-ResNet means using ResNet-50 [97] as the backbone of our
CSEPNet. With the effective ResNet-50 backbone, CSEPNet-ResNet still
achieves good performance, which demonstrates the robustness of our
CSEPNet on different backbones.

3. The rationality of cross-scale calibration and re-calibration
in CSCM. To evaluate the rationality of cross-scale calibration and re-
calibration in CSCM, we present two variants. For the first one, we
modify the cross-scale calibration to same-scale calibration, termed w/o
CS. For the second one, we remove the re-calibration operation, termed
w/o re-calibration. We show the structure of the above two variants in
Fig. 8, and report their performance in the top part of Table 4.

We can observe that the performance degradation of w/o CS,
e.g., 𝑆𝑚: 88.35% → 87.86%, : 0.0230 → 0.0234, max 𝐸𝜉 : 96.55%
→ 96.46%, and max 𝐹𝛽 : 88.20% → 88.13%. This demonstrates that
the cross-scale calibration operation can produce more comprehensive
features. At the same time, we also observe the performance degrada-
tion of w/o re-calibration, e.g., 𝑆𝑚: 88.35% → 87.68%, : 0.0230 →

0.0237, max 𝐸𝜉 : 96.55% → 96.40%, and max 𝐹𝛽 : 88.20% → 87.95%.
In summary, we verify the rationality of two main components in our
CSCM.
8

Fig. 9. Illustration of four CSFIM variants. Please zoom-in to view details.

4. The effectiveness of CE unit and CSWM in CSFIM. To demon-
strate the effectiveness of several important components in CSFIM, we
present four variants, as shown in Fig. 9. We report their performance
in the bottom part of Table 4.

We first verify the effectiveness of CSWM and replace it with up-
sampling and element-wise addition operation, named w/o CSWM. We
observe that the performance of w/o CSWM get worse, e.g., 𝑆𝑚: 88.35%
→ 87.76%, : 0.0230 → 0.0239, max 𝐸𝜉 : 96.55% → 96.32%, and max
𝐹𝛽 : 88.20% → 87.88%. Then we verify the effectiveness of CE units at
the top position and bottom position, respectively, and provide w/o top-
CE and w/o bottom-CE. As a result, the performance of w/o top-CE also
degrades, e.g., 𝑆𝑚: 88.35% → 87.88%, : 0.0230 → 0.0238, max 𝐸𝜉 :
96.55% → 96.33%, and max 𝐹𝛽 : 88.20% → 87.77%. It is obvious that
the performance of w/o bottom-CE drops slightly, e.g., 𝑆𝑚: 88.35% →
88.10%, : 0.0230 → 0.0238, max 𝐸𝜉 : 96.55% → 96.38%, and max
𝐹𝛽 : 88.20% → 87.85%. Moreover, considering that CSCM is a variant
of CSWM, we also conduct the experiment of replacing the CSWM
in CSFIM with CSCM to further illustrate the effectiveness of CSWM,
named CSFIM with CSCM. We can find out that the performance of
CSFIM with CSCM also drops slightly. Therefore, we can conclude that
it is a good manner to fuse the intra-layer features using the collective
weight map as that in CSFIM. Therefore, we can conclude that each
component in CSFIM is of great significance.

4.4. Extension experiment on optical remote sensing images datasets

To further demonstrate the compatibility and robustness of the
proposed CSEPNet, we conduct experiments on two datasets for SOD
in optical remote sensing images (ORSI-SOD), i.e., EORSSD [90] and
ORSSD [91]. The EORSSD dataset contains 1400 images for train-
ing and 600 images for testing, while the ORSSD dataset contains
600 images for training and 200 images for testing. We compare our
method with seven SOTA ORSI-SOD methods, including LVNet [91],
DAFNet [90], SARNet [92], MJRBM [93], EMFINet [94], ERPNet [95],
and CorrNet [96]. As is shown in Table 5, our method dominates 6 out
of 8 metrics on the EORSSD dataset and dominates 3 out of 8 metrics
on the ORSSD dataset, which strongly proves the compatibility and
robustness of our method. Besides, our CSEPNet also has advantages
over most ORSI-SOD methods in terms of the amount of parameters
and FLOPs.
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Table 5
Quantitative and computational complexity comparisons with state-of-the-art ORSI-SOD methods on EORSSD and ORSSD datasets. The top three results are marked in red, blue,
and green, respectively.

Methods #Param FLOPs EORSSD [90] ORSSD [91]

(M)↓ (G)↓ 𝑆𝛼 ↑ 𝐹max
𝛽 ↑ 𝐹mean

𝛽 ↑ 𝐹 adp
𝛽 ↑ 𝐸max

𝜉 ↑ 𝐸mean
𝜉 ↑ 𝐸adp

𝜉 ↑  ↓ 𝑆𝛼 ↑ 𝐹max
𝛽 ↑ 𝐹mean

𝛽 ↑ 𝐹 adp
𝛽 ↑ 𝐸max

𝜉 ↑ 𝐸mean
𝜉 ↑ 𝐸adp

𝜉 ↑  ↓

LVNet19 [91] - - .8630 .7794 .7328 .6284 .9254 .8801 .8445 .0146 .8815 .8263 .7995 .7506 .9456 .9259 .9195 .0207
DAFNet21 [90] 29.35 68.5 .9166 .8614 .7845 .6427 .9861 .9291 .8446 .0060 .9191 .8928 .8511 .7876 .9771 .9539 .9360 .0113
SARNet21 [92] 25.91 129.7 .9240 .8719 .8541 .8304 .9620 .9555 .9536 .0099 .9134 .8850 .8619 .8512 .9557 .9477 .9464 .0187
MJRBM22 [93] 43.54 95.7 .9197 .8656 .8239 .7066 .9646 .9350 .8897 .0099 .9204 .8842 .8566 .8022 .9623 .9415 .9328 .0163
EMFINet22 [94] 107.26 480.9 .9290 .8720 .8486 .7984 .9711 .9604 .9501 .0084 .9366 .9002 .8856 .8617 .9737 .9671 .9663 .0109
ERPNet22 [95] 56.48 87.2 .9210 .8632 .8304 .7554 .9603 .9401 .9228 .0089 .9254 .8974 .8745 .8356 .9710 .9566 .9520 .0135
CorrNet22 [96] 4.09 21.1 .9289 .8778 .8620 .8311 .9696 .9646 .9593 .0083 .9380 .9129 .9002 .8875 .9790 .9746 .9721 .0098

Ours 18.78 59.3 .9305 .8799 .8620 .8497 .9734 .9686 .9675 .0068 .9387 .9081 .8933 .8905 .9743 .9692 .9697 .0093
Fig. 10. Failure cases of our CSEPNet on challenging SDI images.

4.5. Failure cases on challenging SDI images

We present some failure cases of the proposed CSEPNet in Fig. 10.
The challenging scenes include three kinds of defects including patches,
inclusion, and scratches. As is shown in Fig. 10, the first column shows
a typical tiny object scene of inclusion defect. Our CSEPNet fails to
locate the most salient region and makes some errors. For the second
column of Fig. 10, our method cannot distinguish the small area closed
to the salient defect region. For the third column, the scene involves
multiple defect regions. Our method locates all the defect regions, but
the result is not precise for the bottom-right defect region. The last
scene of Fig. 10 contains a long scratch with a fine structure. Our
method fails to detect the whole area.

5. Conclusion

In this paper, we propose a CSEPNet for SDI-SOD, which adopts
the CSCM to properly aggregate features from adjacent layers, and the
CSFIM to model the complementarity of intra-layer features. In CSCM,
adjacent features are first calibrated via the cross-scale attention map,
and then re-calibrated via the collective weight map. In CSFIM, the two
branches of features of different scales interweave, and meanwhile are
enhanced by CE units. Then, the two branches of features are effectively
fused by CSWM to generate the output features. Further, we adopt
deep supervision with a hybrid loss function to guide five-scale saliency
maps produced by our CSEPNet, making the training process stable and
efficient. Experimental results on the public SD-saliency-900 dataset
demonstrates our CSEPNet outperforms 26 state-of-the-art methods as
well as the effectiveness of the proposed modules.
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