
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 5614513

Multi-Content Complementation Network for
Salient Object Detection in Optical Remote Sensing

Images
Gongyang Li , Zhi Liu , Senior Member, IEEE, Weisi Lin , Fellow, IEEE,

and Haibin Ling , Senior Member, IEEE

Abstract— In the computer vision community, great progresses
have been achieved in salient object detection from natural
scene images (NSI-SOD); by contrast, salient object detection
in optical remote sensing images (RSI-SOD) remains to be a
challenging emerging topic. The unique characteristics of optical
RSIs, such as scales, illuminations, and imaging orientations,
bring significant differences between NSI-SOD and RSI-SOD.
In this article, we propose a novel multi-content complementation
network (MCCNet) to explore the complementarity of multiple
content for RSI-SOD. Specifically, MCCNet is based on the
general encoder–decoder architecture, and contains a novel
key component named multi-content complementation module
(MCCM), which bridges the encoder and the decoder. In MCCM,
we consider multiple types of features that are critical to RSI-
SOD, including foreground features, edge features, background
features, and global image-level features, and exploit the content
complementarity between them to highlight salient regions over
various scales in RSI features through the attention mechanism.
Besides, we comprehensively introduce pixel-level, map-level, and
metric-aware losses in the training phase. Extensive experiments
on two popular datasets demonstrate that the proposed MCCNet
outperforms 23 state-of-the-art methods, including both NSI-SOD
and RSI-SOD methods. The code and results of our method are
available at https://github.com/MathLee/MCCNet.

Index Terms— Background, edge, multi-content complemen-
tation, optical remote sensing images, salient object detection
(SOD).

I. INTRODUCTION

V ISUAL attention mechanism aims to capture the most
attractive regions in a scene, and plays an important role
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Fig. 1. Representative example scenes in the RSI-SOD task. “None” means
there is no salient object in this scene. GT is the ground truth.

in the human visual system. In computer vision, efforts have
been devoted to model this mechanism and can be generally
divided into two important topics: fixation prediction and
salient object detection. The former predicts visual saliency
degree of regions, while the latter highlights salient object
regions. In this article, we focus on salient object detection
(SOD) [1]–[4], which has shown successful applications in
various computer vision tasks, such as object segmentation [5],
[6], image quality assessment [7], [8], image retargeting [9],
etc. And different from the classic SOD in natural scene
images (NSI-SOD), we are dedicated to SOD in optical remote
sensing images (RSI-SOD) [10], [11]. Specifically, the optical
RSIs refer to color images photographed by satellites and
aerial sensors in the range of 400–760 nm [10], [12], and
have only three optical bands (RGB), which are different
from hyperspectral images that include more spectral bands
information [13]. RSI-SOD aims at highlighting airplanes,
islands, ships, buildings, and rivers, which attract humans’
attention, at the pixel level in the optical RSI.

Convolutional neural networks (CNNs) [14] significantly
stimulate NSI-SOD [2] and greatly improve the detection
accuracy. Recently, as many thought-provoking ideas and
techniques, such as multilevel/scale fusion [15], edge guid-
ance/preservation [16], [17], attention [18], [19], complemen-
tary losses [20], [21], etc., are introduced into NSI-SOD;
NSI-SOD has become more mature. However, there are big
differences between the acquisition of NSIs and optical RSIs.
Optical RSIs are photographed by satellite and aerial sensors,
so the object types, scales, illuminations, imaging orientations,
and backgrounds of optical RSIs are fundamentally different
from NSIs. Some representative scenes in RSI-SOD task are
shown in Fig. 1. The last scene of Fig. 1 is special, there is
no salient object. Thus, directly applying NSI-SOD methods
to optical RSIs may be inappropriate.
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However, as an emerging topic of saliency detection,
RSI-SOD solutions are heavily inspired by NSI-SOD ones,
especially the CNN-based ones. Concretely, as a pioneer
work in RSI-SOD, LVNet [10] fuses multiresolution inputs
in a nested structure to perceive objects of different sizes.
PDFNet [22] integrates five-scale features from five branches
for comprehensive detection. DAFNet [11] not only employs
the salient edge map as the additional supervision, but also
performs attention in a dense fluid manner. Similar to [10],
EMFINet [23] adopts optical RSIs with three different res-
olutions as inputs, but different from [11], it employs edge
supervision to generate features with edge-aware constraint
and introduces a hybrid loss to infer salient objects with shape
boundaries. These specialized CNN-based RSI-SOD methods
are based on the characteristics of optical RSI to propose
effective solutions and obtain promising performance.

Motivated by the above observations, we expand the advan-
tages of NSI-SOD methods [16], [17], [19] and propose
a novel multi-content complementation module (MCCM) to
adapt to the characteristics of optical RSIs. Specifically,
we first integrate the foreground content into our MCCM.
Similar to [11], [16], [17], [23], we introduce edge content,
but the difference is that we employ edge supervision to
produce an edge attention map for edge activation in features.
For RSI-SOD, we believe that in addition to foreground and
edge, the background [19] is also important. Here, we con-
sider the complex background content of optical RSIs. The
above three kinds of content cover local information in detail.
Inspired by [24], we incorporate global image-level content
for comprehensive content complementation. In this way, our
MCCM captures both local and global content simultaneously,
which is effective for accurately perceiving salient regions and
distinguishing cluttered background regions.

Moreover, to improve the robustness of our MCCM,
we implement MCCM at multiple feature scales. We deploy
MCCM in an encoder–decoder network, which is a general
backbone for NSI-SOD, and propose a simple yet effective
multi-content complementation network (MCCNet) for RSI-
SOD. Benefiting from the progressive inference procedure
in the backbone, our MCCNet can highlight salient regions
with various scales and object types and flexibly adapt to the
challenging scenes of optical RSIs. In addition, following [20],
[21], we construct a comprehensive loss function to efficiently
train our MCCNet.

Our main contributions are summarized as follows.

1) We propose a MCCM to explore the complementarity
of multiple content in features of optical RSIs for
salient regions perception. In MCCM, the local content,
ı.e., foreground, edge, and background, and the global
image-level content are simultaneously exploited.

2) We embed MCCM on multiple feature scales in an
encoder–decoder network, and propose an effective and
efficient MCCNet for RSI-SOD, which runs at a fast
inference speed of 95 frames/s on a single GPU. MCC-
Net perfectly combines the feature complementation
ability of MCCM and the inference ability of the basic
network.

3) We conduct comprehensive experiments on two bench-
mark RSI-SOD datasets. The experimental results
demonstrate that the proposed MCCNet is superior to
23 state-of-the-art methods under various evaluation
metrics, and the effectiveness of the proposed MCCM
is also verified.

The rest of this article is organized as follows. Section II
reviews the related work of NSI-SOD and RSI-SOD,
Section III presents our MCCNet in detail, Section IV elabo-
rates experiments and ablation studies, and Section V draws
the conclusion.

II. RELATED WORK

In this section, we first summarize the works of NSI-
SOD, and then elaborate RSI-SOD methods. For each topic,
we introduce both traditional and CNN-based methods.

A. Salient Object Detection in Natural Scene Images

As a pioneer in saliency detection, Itti et al. [25] proposed
the first computational visual attention model for NSIs, which
is the cornerstone of other traditional work. Liu et al. [26]
proposed an unsupervised method based on kernel density esti-
mation. Liu et al. [27] proposed the saliency tree framework
based on salient region merging and salient node selection. The
regularized random walks ranking was proposed in [28], and
Yuan et al. [29] further combined it with reversion correction.
Meanwhile, Zou et al. [30] jointly handled the SOD and object
segmentation, effectively exploring the complementary cues of
the two tasks. Kim et al. [31] extended the high-dimensional
color transform-based SOD method with a local learning-
based method. Zhou et al. [32] integrated the diffusion results
of foreground and background into the final saliency map.
Peng et al. [33] applied the structured matrix decomposition
to NSI-SOD. Although traditional methods do not achieve
impressive performance, they provide numerous valuable and
thought-provoking solutions to NSI-SOD.

The CNN-based NSI-SOD methods [2] break through the
performance bottleneck of traditional methods [1] and pro-
mote NSI-SOD to a new era. For instance, Hou et al. [34]
implemented the deep supervision at multiple side-output
layers for NSI-SOD. Many subsequent methods [16], [19],
[35]–[39] have applied the deep supervision scheme to NSI-
SOD. Zhang et al. [15] fused features over different scales
to extract multiscale information, while Pang et al. [40]
integrated features of three adjacent levels. Zhao et al. [41]
proposed a gated dual branch control interference between
different levels of features. Edge/boundary cues were maturely
used in NSI-SOD in various ways. Wang et al. [17] directly
extracted edge region from image, and sent it into the back-
bone network together with the image and superpixel region.
Differently, Wu et al. [42] used the Sobel operator to obtain
the edge label as additional edge supervision. Zhao et al.
[16] captured the salient edge from the ground truth and
used it to force network learn edge features for one-to-one
guidance. Moreover, Liu et al. [18] learned pixel-wise local
and global attention to facilitate detection. Chen et al. [19]
introduced the background information through the proposed
reverse attention. For supervision, in addition to the popular
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BCE loss, Ma et al. [43] introduced the IoU loss, Qin et al.
[20] further introduced the SSIM loss, and Xu et al. [39]
introduced common losses of fixation prediction to NSI-SOD.
Zhao et al. [21] further proposed a metric-aware F-measure
loss based on the popular evaluation metric F-measure [44].
Besides, the global context-aware aggregation [36], [45] and
the recurrent mechanism [46], [47] have also been widely
explored.

Though existing NSI-SOD methods cannot be directly
applied to optical RSIs, they still provide important references
for RSI-SOD. Our method incorporates some advantages of
these NSI-SOD methods, such as deep supervision, com-
plementary losses, and edge information, to adapt to the
particularity of optical RSIs.

B. Salient Object Detection in Optical Remote Sensing
Images

Remote sensing image processing has been popular in the
past decade. Hong et al. [49] proposed a general multimodal
deep learning (MDL) framework, which consists of Ex-Net
and Fu-Net, for pixel-level remote sensing image classifica-
tion. They introduced and developed five fusion architectures,
including early fusion, middle fusion, late fusion, en-de fusion,
and cross fusion, in the MDL framework. In [50], graph
convolutional networks were introduced into hyperspectral
image classification. To address the shortage of identifying
materials in cross-modality remote sensing data, X-ModalNet
[51], a semisupervised deep cross-modal framework, was
proposed for classification in remote sensing data. Moreover,
Hong et al. [52] proposed an augmented linear mixing model
to address spectral variability for hyperspectral unmixing.
More in-depth analysis can be found in [13], which elaborates
on the interpretable hyperspectral artificial intelligence.

In addition to the above popular tasks of remote sensing
image processing, there are some tasks similar to RSI-SOD,
such as airport detection [53], ship detection [54]–[56], oil
tank detection [57], [58], building extraction [59], residential
areas extraction [60], [61], and object detection from aerial
images [62]. In fact, these object detection/extraction tasks
mostly focus on specific scenes and objects, such as airport,
ship, oil tank, building, and residential area. By contrast, the
RSI-SOD task involves all these scenarios, and is hence more
general and challenging.

In particular, RSI-SOD task aims at extracting the most
attractive objects in optical RSIs, and considers the sub-
jective initiative of human more than the region-of-interest
extraction task [63]–[66]. Here, we first introduce some tradi-
tional RSI-SOD methods. Faur et al. [67] regarded RSI-SOD
as a data information compression task, and proposed a
rate-distortion measure-based method. Based on the global
and background information, Zhao et al. [68] proposed
a sparse representation-based saliency computation method.
Zhang et al. [69]–[71] proposed a series of unsupervised
methods: in [69], the saliency map was constructed based
on color information content; in [70], the statistical saliency
feature map and the information saliency feature map were
fused for final saliency map; and in [71], a low-rank matrix

recovery-based self-adaptive multiple feature fusion method
was proposed.

Compared with traditional RSI-SOD methods, CNN-based
RSI-SOD methods provide more powerful solutions for com-
plex optical RSIs. In [10] and [11], two challenging datasets of
RSI-SOD were constructed. And Li et al. [10] extracted mul-
tiscale features directly from five different resolution optical
RSIs in a two-stream pyramid module, and further perceived
objects of different sizes in a V-shaped module with nested
connections. Following NSI-SOD methods such as [16], [42],
Zhang et al. [11] constructed a multitask architecture, which
predicts saliency map and salient edge map simultaneously,
to sharpen the object boundaries. Furthermore, they proposed
a cascaded pyramid attention module to solve the problem of
object scale changes. Following [10], Zhou et al. [23] extracted
multiscale features from three different resolution optical RSIs,
and captured edge features using edge supervision for edge
preservation. And they adopted the hybrid loss, including the
pixel-level BCE loss, patch-level SSIM loss, and map-level
IoU loss [20], to facilitate the training. Different from [10],
[23], Li et al. [22] only extracted features from an optical
RSI, but efficiently captured multiresolution information by
integrating five different levels of features for inference. Due
to lack of optical RSIs data, Zhang and Ma [72] introduced
the weakly supervised learning into RSI-SOD. They first
generated pseudo labels with auxiliary images in a classifi-
cation network, and then constructed a deep but lightweight
feedback saliency analysis network to progressively refine
saliency map. We can find the impression of CNN-based NSI-
SOD methods among the above-specialized CNN-based RSI-
SOD methods, but these specialized methods are uniquely
constructed according to the characteristics of optical RSIs.

The above-mentioned previous arts suggest that the fore-
ground prior, edge cue, and background cue play an important
role in SOD. However, they have been exploited independently
in RSI-SOD. In our MCCM, we not only explore the comple-
mentation among three kinds of content (i.e., foreground, edge,
and background), but also introduce the global (image-level)
content, which is more comprehensive than [11] and [23].
Moreover, we lay out MCCM with five feature scales in our
MCCNet with one network input, which is more efficient
than [10] and [23].

III. PROPOSED METHOD

In this section, we detail the proposed MCCNet.
In Section III-A, we present the network overview of
our MCCNet. In Section III-B, we elaborate our MCCM.
In Section III-C, we clarify the comprehensive loss function.

A. Network Overview

As depicted in Fig. 2, our MCCNet is built on the
encoder–decoder architecture, which is friendly to pixel-level
image segmentation [73], [74] and various SOD tasks [41],
[45], [75], [76], and comprises three key parts: encoder net-
work, five MCCM components, and decoder network.

For the encoder network, we adapt the popular VGG-16
[48] for basic feature extraction. Different from the original
VGG-16 structure for image classification task, we delete the
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Fig. 2. Overall framework of the proposed MCCNet, which is based on the general encoder–decoder architecture. We first extract the basic features using the
classic VGG-16 [48] from an optical RSI with a size of 256 × 256 × 3. Then, we model the complementary information between foreground features, edge
features, background features, and global image-level features in the pivotal MCCM. Finally, we progressively infer salient objects using multiscale features
output from five MCCMs in the decoder. In the training phase, we employ the comprehensive supervision to each decoder block, including the pixel-level
BCE loss, map-level IoU loss, and metric-aware F-m loss.

last four layers, including one max-pooling layer and three
fully connected layers, for our pixel-level RSI-SOD task, and
denote the remaining five convolution blocks as Et , where t is
the block index and belongs to {1, 2, 3, 4, 5}. For t = 1, 2,
Et contains two convolutional layers; for t = 3, 4, 5, Et

contains three convolutional layers. For the input optical RSI
I ∈ R

256×256×3, the extracted features of each convolution
block are denoted as f t

e ∈ R
ht ×wt ×ct , where ht is (256/2t−1),

wt is (256/2t−1), and ct belongs to {64, 128, 256, 512, 512}.
Then, the basic features f t

e of five levels will be fed to
the corresponding MCCM to produce f t

mccm ∈ R
ht ×wt×ct .

In MCCM, we generate the foreground, edge, background, and
global image-level features from the source features f t

e, and
explore the complementarity between them. Since MCCMs are
deployed in five levels, they can capture multiscale comple-
mentary information, which is beneficial to RSI-SOD. Finally,
our decoder network infers salient objects based on f t

mccm in
a progressive resolution restoration manner. Our decoder net-
work also contains five blocks, denoted by Dt , whose structure
corresponds to that of Et , i.e., Dt contains two convolutional
layers for t = 1, 2, and Dt contains three convolutional layers
for t = 3, 4, 5. Between the two decoder blocks, we use a
deconvolutional layer to restore the resolution. In addition
to the classic binary cross-entropy (BCE) loss, we introduce
intersection-over-union (IoU) loss and F-measure (F-m) loss
as auxiliary losses for each decoder block to comprehensively
supervise the network training.

B. Multi-Content Complementation Module

In the studies of saliency detection, foreground assumption
is often regarded as the prior in traditional NSI-SOD meth-

ods [28], [32], and provides effective guidance to find obvious
salient regions. It can be explored in deep learning through
the attention mechanism [77]. The background information is
another important cue in NSI-SOD to determine the nonsalient
regions, and is modeled by the reverse attention [19]. The
edge information is also widely used to complete the salient
objects. Since the scenes of RSI-SOD are typically more
complicated than that of NSI-SOD, it is insufficient to consider
the above three kinds of content in RSI-SOD independently.
According to the above motivation, we propose the MCCM,
so as to address RSI-SOD based on the complementation of
foreground, background, and edge. In addition, we integrate
the global image-level content into MCCM, which is indis-
pensable for RSI-SOD.

We illustrate the structure of MCCM in Fig. 3. In MCCM,
the input features are f t

e from Et . We regard f t
e as source

features, which generate all four kinds of content. In the
following, we elaborate MCCM based on these four kinds of
content.

1) Foreground and Edge: As shown in Fig. 3, foreground
and edge features are extracted in parallel. Considering that f t

e
of VGG-16 is relatively rough, we first perform the channel
attention [77] on f t

e to reduce redundant information and
purify f t

e as follows:
f t

ca = CA
(

f t
e

) � f t
e (1)

where f t
ca ∈ R

ht ×wt ×ct denotes the purified features, CA(·) is
the channel attention,1 and � is the channel-wise multiplica-
tion.

1Channel attention is implemented by a spatial global max pooling (GMPs),
two fully connected layers, and a sigmoid activation function.
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Fig. 3. Illustration of the MCCM.

Then, we obtain the foreground map and edge map, denoted
by {at

f, at
e} ∈ [0, 1]ht×wt ×1, through the spatial attention [77]

at the same time, which can be computed as

at
f = SA

(
f t

ca

)
(2)

at
e = SA

(
f t

ca

)
(3)

where SA(·) is the spatial attention.2 Notably, the foreground
map is generated in an adaptive way, while the edge map is
generated in a learning way, i.e., under the supervision of the
ground truth of edge in the training phase.

Since both foreground map and edge map are correlated
with the salient regions and can complement each other,
we aggregate them together using the element-wise sum-
mation, and obtain the foreground-edge map, denoted by
at

fe ∈ [0, 2]ht ×wt×1. And we adopt the foreground-edge map
to highlight the salient regions at feature level as follows:

f t
fe = at

fe � f t
ca (4)

where f t
fe ∈ R

ht ×wt×ct is the foreground-edge features and
� is the element-wise multiplication. The way we merge the
foreground map and edge map is different from those of using
edge information in SOD [10], [16], [20], [23]. In particular,
our method explicitly explores the complementary information
between these two maps, and is therefore more effective.

2) Background: The generation of background map is
closely related to the foreground-edge map. Following [19],
we obtain the background map, denoted by at

b ∈
2Spatial attention is implemented by a GMPc , a convolutional layer and a

sigmoid activation function.

[−1, 1]ht×wt ×1, through the reverse attention. In the back-
ground map at

b, we redefine the concept of background and
foreground, i.e., the background is defined as 1, and the fore-
ground is defined as −1. And we also adopt the background
map to highlight the nonsalient regions at feature level. The
process is written as

at
b = 1 � at

fe (5)

f t
b = at

b � f t
ca (6)

where 1 is a matrix with size ht × wt × 1, where all elements
are 1, � is the element-wise subtraction, and f t

b ∈ R
ht ×wt ×ct

are the background features. We can find that the background
features are based on the foreground-edge features, but they
are the opposite of the foreground-edge features. In the subse-
quent processing of MCCM, we will merge them at channel
level, and implicitly extract the complementary information
between them.

3) Global Image-Level Content: In fact, whether it is
foreground-edge features or background features, they contain
local information, which benefits to complete the detail and
boundary of salient objects. And inspired by [24], we introduce
the global image-level content to capture the overall tone of
source features in our MCCM.

Concretely, following [24], we apply spatial-wise global
average pooling on f t

e to extremely compress global distri-
bution information into pixels and get the basic image-level
features, and perform a 1 × 1 convolutional layer for feature
smoothing. Then, we reconstruct the image-level content to
the same size as the original f t

e using upsampling with
bilinear interpolation. Such a rough operation will lose a lot
of detailed information, but the reconstructed features can
reflect the overall tone of source features. Different from [24],
which directly integrates the image-level content at channel
level through concatenation, we compress the reconstructed
image-level content into an elegant response map, namely the
global image-level map at

g ∈ [0, 1]ht ×wt ×1, via the spatial
attention. The entire process is formulated as follows:

at
g = SA

(
up

(
conv1×1

(
GAPs

(
f t

e

))))
(7)

where GAPs(·) is the spatial global average pooling,
conv1×1(·) is the 1×1 convolutional layer, and up(·) is the
upsampling operation. We adopt at

g to reflect the overall tone
at feature level as follows:

f t
g = at

g � f t
e (8)

where f t
g ∈ R

ht ×wt ×ct is the global image-level feature.
4) Multi-Content Aggregation: Through the above thor-

ough operations, we obtain features of four kinds of
content, i.e., f t

fe, f t
b, and f t

g, and further polish them

using the 3 × 3 convolutional layer, obtaining f̂
t
fe, f̂

t
b,

and f̂
t
g. Then, we aggregate them using the adaptive

concatenation–convolution operation. Besides, we adopt a
short connection to retain the original content to generate
the output features of MCCM f t

mccm ∈ R
ht ×wt×ct . The entire

aggregation process is written as

f t
mccm = conv3×3

(
f̂

t
fe � f̂

t
b � f̂

t
g

) ⊕ f t
e (9)
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Fig. 4. Feature visualization of components in MCCM attached to E3. Please
zoom-in for viewing details.

where � is the cross-channel concatenation and ⊕ is the
element-wise summation. In summary, f t

mccm comprises the
essence of foreground, edge, background, global image-level
content, and original content, which makes MCCM an indis-
pensable part of MCCNet. The MCCMs equipped with five
feature levels assist MCCNet to adapt to the complex scenes
and changeable objects in optical RSIs.

In Fig. 4, we visualize three maps of four kinds of content
in MCCM attached to E3, i.e., a3

fe, a3
b, and a3

g. With the
combination of a3

f and a3
e, a3

fe can clearly highlight the
salient regions, regardless of whether they have a tiny size,
a large size, multiple objects, or a complex topology, and
meanwhile a3

b makes the nonsalient regions obvious. And a3
g

provides the specific basic tone of source features of each
optical RSI.

C. Comprehensive Loss Function

For a successful CNN-based model, an effective architecture
and several well-designed modules are necessary. In addition,
a good training strategy can improve model performance with-
out extra model parameters. As shown in Fig. 2, we adopt the
widely used deep supervision [34], [78] in the training phase
to monitor the intermediate saliency maps of different sizes,
which forces features to learn the characteristics of salient
regions of different sizes. And inspired by the successful usage
of hybrid and complementary loss in SOD [20], [23], [79],
we adopt the classic pixel-level BCE loss and map-level IoU
loss in our loss function. We also include the metric-aware F-m
loss [21] in our loss function to further facilitate the network
training. Thus, we construct a comprehensive loss function L

t
s

to supervise the predicted saliency map St of Dt , which can
be formulated as

L
t
s = �bce(up(St), G) + �iou(up(St ), G) + �fm(up(St ), G)

(10)

where G is the ground truth, and �bce(·), �iou(·), and �fm(·) are
BCE loss, IoU loss, and F-m loss, respectively. They can be

computed as follows:

�bce = −
W ·H∑

i=1

[G(i)log(S(i)) + (1 − G(i))log(1 − S(i))]
(11)

�iou = 1 −
∑W ·H

i=1 S(i) · G(i)
∑W ·H

i=1 [S(i) + G(i) − S(i) · G(i)] (12)

�fm = 1 − (1 + β2) · P(S, G) · R((S, G))

β2 · P(S, G) + R(S, G)
(13)

where G(i) ∈ {0, 1} and S(i) ∈ [0, 1] are the ground truth
label and predicted saliency score of the i th pixel, respectively,
β2 is 0.3, P = (TP/(TP + FP)), R = (TP/(TP + FN)),
TP(S, G) = ∑W ·H

i=1 S(i) · G(i), FP(S, G) = ∑W ·H
i=1 S(i) ·

(1 − G(i)), and FN(S, G) = ∑W ·H
i=1 (1 − S(i)) · G(i). Our

comprehensive loss function helps our MCCNet better adapt
to the special scenes of optical RSIs.

Besides, in the t-th MCCM, we generate the edge map at
e

by a model learned from minimizing with the edge loss L
t
e,

which can be formulated as

L
t
e = �bce

(
up

(
at

e

)
, Ge

)
(14)

where Ge is the ground truth of edge, generated in the same
way as [16]. Therefore, the total loss Ltotal of our MCCNet in
the training phase can be expressed as

Ltotal =
5∑

t=1

(
L

t
s + L

t
e

)
. (15)

IV. EXPERIMENTS

A. Experimental Protocol

1) Datasets: We train and evaluate our method and the
compared methods on two public RSI-SOD datasets.

ORSSD [10] consists of 800 optical RSIs with correspond-
ing pixel-wise ground truths, including multiple scenes, such
as ships, cars, airplanes, playgrounds, rivers, and islands.
We adopt 600 images with their ground truths for training
and the remaining 200 images for testing.

EORSSD [11] expands the ORSSD dataset to include more
complex and challenging scenes, resulting in 2000 optical RSIs
with corresponding pixel-wise annotation, which is the largest
available RSI-SOD dataset. We adopt 1400 images with their
ground truths for training and the remaining 600 images for
testing.

2) Implementation Details: We conduct experiments of our
proposed MCCNet on PyTorch [80] platform with an NVIDIA
Titan X GPU (12 GB memory). During the network training,
each optical RSI is resized to 256 × 256 and augmented
by flipping and rotation, producing seven additional training
samples. We initialize the encoder network of our MCC-
Net and other newly added convolutional layers by the pre-
trained VGG-16 model [48] and the normal distribution [81],
respectively. We utilize the Adam optimizer [82] for network
optimization with the batch size 8 and the initial learning
rate 1e−4, which will be divided by 10 after 30 epochs.
Following [11], [23], for the EORSSD dataset [11], we train
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TABLE I

QUANTITATIVE RESULTS ON TWO RSI-SOD DATASETS, INCLUDING EORSSD AND ORSSD. THERE ARE 23 STATE-OF-THE-ART METHODS, INCLUDING
FIVE TRADITIONAL NSI-SOD METHODS, 12 CNN-BASED NSI-SOD METHODS, 3 TRADITIONAL RSI-SOD METHODS, AND 3 CNN-BASED RSI-

SOD METHODS. ↑/↓ MEANS A LARGER/SMALLER SCORE IS BETTER. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE, AND

GREEN, RESPECTIVELY

Fig. 5. Quantitative comparison in terms of PR curve on two datasets for RSI-SOD, i.e., EORSSD and ORSSD. We show the top five methods in color.
(a) EORSSD [11]. (b) ORSSD [10].

our MCCNet with 1400 original optical RSI and GT pairs and
their 9800 augmented samples for 39 epochs. While for the
ORSSD dataset [10], we train our MCCNet with 600 original
optical RSI and GT pairs and their 4200 augmented samples
for 34 epochs.

3) Evaluation Metrics: We use five evaluation metrics to
evaluate our method and other compared methods: S-measure
(Sα , α = 0.5) [83] is responsible for evaluating the structural
similarity at object-aware and region-aware levels. F-measure
(Fβ) [44] is the weighted harmonic average of precision and
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recall. We set β2 to 0.3 to emphasize the precision over
recall, and adopt its maximum, mean, and adaptive forms
(i.e., Fmax

β , Fmean
β , and Fadp

β ) for comprehensive measure.
E-measure (Eξ ) [84] simultaneously captures the local match
information at pixel-level and the global statistics at image-
level. We report its maximum, mean, and adaptive values
(i.e., Emax

ξ , Emean
ξ , and Eadp

ξ ). Mean Absolute Error (MAE, M)
evaluates the average pixel-level difference. Precision-recall
(PR) curve plots different combinations of precision and recall
with the threshold ranging from 0 to 255.

B. Comparison With State-of-the-Art Methods

We compare our proposed method with 23 state-of-the-art
SOD methods, which can be divided into four categories.
The first one contains the traditional NSI-SOD methods,
including RRWR [28], HDCT [31], DSG [32], SMD [33], and
RCRR [29]. The second one includes the CNN-based NSI-
SOD methods, including DSS [34], RADF [46], R3Net [47],
EGNet [16], PoolNet [45], GCPA [36], ITSD [37], MINet [40],
GateNet [41], U2Net [35], SUCA [38], and PA-KRN [39]. The
third one includes the traditional RSI-SOD methods, including
VOS [53], CMC [57], and SMFF [71]. The last one contains
the CNN-based RSI-SOD methods, including LVNet [10],
DAFNet [11], and EMFINet [23]. For a fair comparison,
we use the saliency maps provided by the available public
RSI-SOD benchmarks [10], [11] and/or by the authors. Specif-
ically, we retrain seven recent CNN-based NSI-SOD methods,
i.e., GCPA, ITSD, MINet, GateNet, U2Net, SUCA, and PA-
KRN, on EORSSD and ORSSD datasets with their default
settings using the same training data as our method.

1) Quantitative Comparison: In Table I, we report the quan-
titative comparison results of our method and all compared
methods on two RSI-SOD datasets in terms of Sα , Fmax

β ,
Fmean

β , Fadp
β , Emax

ξ , Emean
ξ , Eadp

ξ , and M, among which the
higher the first seven evaluation metrics, the better, while the
last one is opposite to them.

Overall, our method shows excellent performance as com-
pared with all four categories of methods on EORSSD and
ORSSD. Specifically, on the EORSSD dataset, our method
is weaker than DAFNet in terms of Fmax

β and M, but is
significantly better than DAFNet on the other six metrics,
e.g., Fadp

β : 0.8137 (Ours) versus 0.6427 (DAFNet), and Eadp
ξ :

0.9538 (Ours) versus 0.8446 (DAFNet). While on the ORSSD
dataset, our method fully surpasses DAFNet in all eight
metrics, e.g., Sα: 0.9437 (Ours) versus 0.9191 (DAFNet), and
M: 0.0087 (Ours) versus 0.0113 (DAFNet). Compared with
the latest CNN-based RSI-SOD method EMFINet, our method
consistently outperforms it on both datasets, e.g., Fmax

β : 2.11%
and 1.70% better than it and M: 21.43% and 20.18% lower
than it on EORSSD and ORSSD, respectively. In comparison
to the eight traditional methods, including NSI- and RSI-SOD,
our method is a lot ahead of them. Even though the CNN-
based NSI-SOD methods are retrained on optical RSI data,
their performance is generally lower than that of specialized
RSI-SOD methods, which illustrates the urgency and necessity
of proposing specialized solutions. In addition, we present PR
curves in Fig. 5. We observe that the specialized CNN-based

methods show great strength, and the PR curve of our method
is closer to the upper right corner than all compared methods,
which is consistent with the remarkable quantitative results of
our method on two datasets in Table I.

2) Computational Complexity Comparison: We measure
the computational complexity from three aspects, including
inference speed (without I/O time), network parameters and
FLOPs, which are captured from the available public RSI-SOD
benchmarks [10], [11] and our retraining, and report them in
Table I. Overall, we can find that most CNN-based methods
run in real time (23–25 frames/s), especially our method
reaches an astonishing inference speed of 95 frames/s, which is
friendly to practical applications. The network parameters and
FLOPs of our method are at the midstream level. However,
compared with the second best method EMFINet, our net-
work parameters and FLOPs are much smaller, e.g., #Param:
67.65M (Ours) versus 107.26M (EMFINet), and FLOPs:
112.8M (Ours) versus 480.9M (EMFINet). From the above
quantitative comparison and computational complexity com-
parison, we can conclude that our method is effective and
efficient.

3) Visual Comparison: We show some representative visual
examples of optical RSIs in Fig. 6, including airplane, car,
building, river, and pool. We summarize the five specific
scenes as follows: 1) three cases of airplane: general air-
plane, airplane with shadows, and airplane with interferences;
2) three cases of car: multiple cars, multiple tiny cars, and cars
with complex background; 3) three cases of building: general
building, multiple buildings, and building with inconsistent
colors; 4) two cases of river: river with irregular topology
and river with low contrast; and 5) two cases of pool: pool
with complex geometry and pool with interferences. The above
cases include challenging scenes of optical RSIs, such as mul-
tiple objects, tiny objects, object with interferences, object with
shadows, complex background, low contrast, and complex
topology. We present the saliency maps of the representative
methods in four categories, including EMFINet, DAFNet,
LVNet, PA-KRN, U2Net, SMFF, and SMD.

Obviously, the two traditional methods SMFF and SMD are
often confused by the unique scenes of optical RSIs. The two
recent CNN-based NSI-SOD methods PA-KRN and U2Net
often show weak inadaptability to optical RSIs data. The
three CNN-based RSI-SOD methods can overcome difficult
scenes to a certain extent, but generate saliency maps with
flaws. Using the complementarity of four kinds of content,
i.e., foreground, edge, background, and global image-level
content, our method can accurately locate salient objects
and outline fine details, which shows strong adaptability and
robustness in these scenes.

C. Ablation Studies

Here, we conduct comprehensive experiments to evaluate
the effectiveness of important components of our MCCNet on
EORSSD and ORSSD datasets. In particular, we investigate
1) the individual contribution of each content in MCCM; 2) the
necessity of merging the original content in MCCM; and 3) the
effectiveness of our comprehensive loss function.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 19,2022 at 08:15:03 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: MCCNet FOR SOD IN OPTICAL REMOTE SENSING IMAGES 5614513

Fig. 6. Visual comparisons with seven representative state-of-the-art methods, including three CNN-based RSI-SOD methods (EMFINet [23], DAFNet [11]
and LVNet [10]), two CNN-based NSI-SOD methods (PA-KRN [39] and U2Net [35]), one traditional RSI-SOD method (SMFF [71]), and one traditional
NSI-SOD method (SMD [33]), on various scenes. Please zoom-in for the best view.

For each variant experiment, we rigorously retrain it
with the same parameter settings and datasets as in
Section IV-A.

1) Individual Contribution of Each Content in MCCM:
To evaluate the individual contribution of each content,
i.e., foreground (FG), edge (EG), background (BG), and global
image-level content (GIC), in MCCM, we first provide four
progressive variants of MCCM on the upper part of Table II:
1) Baseline, which is the encoder-decoder network with skip
connections (i.e., replacing MCCM with skip connection in

MCCNet); 2) Baseline + FG; 3) Baseline + FG + EG; and
4) Baseline + FG + EG + BG. For an intuitive understanding
of variants, we illustrate three variants (No. 2–No. 4) in Fig. 7.

Based on the quantitative results in Table II, we observe
consistently the increasing trends of performance on both
datasets. FG greatly activates the potential of the network, and
based on it, by additionally exploring the complementation
of EG and BG, the performance takes off further. Notably,
although GIC only provides the specific basic tone of source
features, as expressed in Section III-B and Fig. 4, it increases
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Fig. 7. Structures of eight MCCM variants (i.e., No. 2–No. 9) and the full MCCM (i.e., No. 10). Please zoom-in for viewing details.

TABLE II

ABLATION STUDY ON EVALUATING THE INDIVIDUAL CONTRIBUTION OF

EACH CONTENT IN MCCM. BASELINE IS THE ENCODER–DECODER
NETWORK WITH SKIP CONNECTIONS. FG, EG, BG, AND GIC

MEAN FOREGROUND, EDGE, BACKGROUND, AND GLOBAL

IMAGE-LEVEL CONTENT, RESPECTIVELY. THE BEST
RESULT IN EACH COLUMN IS BOLD

Fmax
β from 0.8879 to 0.8904 on the EORSSD dataset and from

0.9096 to 0.9155 on the ORSSD dataset. In summary, our
full MCCM improves “Baseline” by 2.17% and 1.70% on
Fmax

β and Emax
ξ , respectively, on the EORSSD dataset. The

performance improvement is more significant on the ORSSD
dataset, that is, our full MCCM improves “Baseline” by 2.77%
and 1.92% on Fmax

β and Emax
ξ , respectively.

Moreover, to comprehensively analyze the different com-
binations of four kinds of content, we provide another five
variants of MCCM on the middle part of Table II: 5) Base-
line + EG; 6) Baseline + GIC; 7) Baseline + FG + GIC;
8) Baseline + EG + GIC; and 9) Baseline + FG + EG +
GIC. We also illustrate these five variants (No. 5–No. 9) in
Fig. 7. Notably, since BG is jointly defined by FG and EG
according to Eq. (5), BG cannot be obtained by the single FG
or the single EG.

By comparing the fifth and sixth variants with the first
one, we can clearly observe the contributions of EG and
GIC. By comparing the seventh and eighth variants with the
sixth one, we can find that based on GIC, FE or EG can

TABLE III

ABLATION STUDY ON PROVING THE NECESSITY OF MERGING THE ORIG-
INAL CONTENT IN MCCM. THE BEST RESULT IN EACH COLUMN IS

BOLD

further promote the performance. When we abandon BG in
MCCM, the performance of “Baseline + FG + EG + GIC”
is adversely affected. Through the comprehensive comparison
of all nine variants and our complete MCCM, we can conclude
that each content in MCCM contributes to the final excellent
performance and the proposed MCCM is effective.

2) Necessity of Merging the Original Content in MCCM:
To prove the necessity of merging the original content in
MCCM, we provide a variant that removes the original content
in (9), i.e., w/o original content. As summarized in Table III,
we can observe that the performance degradation occurs in
w/o original content, e.g., Fmax

β and Emax
ξ are reduced by

0.0045 and 0.0026 on the EORSSD dataset, and 0.0035 and
0.0037 on the ORSSD dataset. This demonstrates that the basic
information of salient regions provided by the original content
is necessary for a better performance.

3) Effectiveness of Our Comprehensive Loss Function: To
validate the effectiveness of our comprehensive loss function,
we provide three loss variants for network training: 1) the
single BCE loss; 2) BCE loss with IoU loss; and 3) BCE loss
with F-m loss. We report the quantitative results in Table IV.

Our MCCNet trained with the single BCE loss achieves
acceptable performance, e.g., Fmax

β : 0.8747 and Emax
ξ :

0.9705 on the EORSSD dataset, and Fmax
β : 0.9094 and Emax

ξ :
0.9728 on the ORSSD dataset. And with the assistance of
IoU loss or F-m loss, the performance is further improved
by about 0.0018–0.0127 in Fmax

β and 0.0018–0.0038 in Emax
ξ .

Integrating the three losses together to train our MCCNet, our
MCCNet achieves the best performance, which increases the
simplest variant by 0.0158 in Fmax

β on the EORSSD dataset
and 0.0072 in Emax

ξ on the ORSSD dataset. In general, the
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TABLE IV

ABLATION STUDY ON EVALUATING THE EFFECTIVENESS OF OUR COM-
PREHENSIVE LOSS FUNCTION. BCE, IOU AND F-M REPRESENT BCE

LOSS, IOU LOSS AND F-MEASURE LOSS, RESPECTIVELY. THE

BEST RESULT IN EACH COLUMN IS BOLD

above analysis clearly verifies the effectiveness of our compre-
hensive loss function, and training network with suitable losses
is efficient to boost our method without additional parameters.

V. CONCLUSION

In this article, we propose an effective MCCM to model
the complementarity of multiple content, including foreground,
edge, background, and global image-level content, for optical
RSI data. In MCCM, the foreground map and edge map are
directly integrated to complete salient regions, and then each
content complements others in an adaptive manner. Moreover,
we equip MCCM to the encoder–decoder network, and pro-
pose a full solution, namely MCCNet, for RSI-SOD. MCCMs
on five feature sizes can highlight salient regions well, and
successfully address the variable object scales/types/quantities
of optical RSI data. Finally, a comprehensive loss function
is employed in the training phase to boost performance.
We conduct extensive experiments on two public RSI-SOD
datasets. The experimental results demonstrate the superiority
of the proposed MCCNet as well as the effectiveness of
the proposed MCCM. Moreover, the fast inference speed of
95 frames/s is extremely conducive to applying our MCCNet
in practical applications.
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