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Abstract— Salient object detection in optical remote sensing
images (ORSI-SOD) has been widely explored for understanding
ORSIs. However, previous methods focus mainly on improving
the detection accuracy while neglecting the cost in memory and
computation, which may hinder their real-world applications.
In this article, we propose a novel lightweight ORSI-SOD
solution, named CorrNet, to address these issues. In CorrNet,
we first lighten the backbone (VGG-16) and build a lightweight
subnet for feature extraction. Then, following the coarse-to-
fine strategy, we generate an initial coarse saliency map from
high-level semantic features in a correlation module (CorrM).
The coarse saliency map serves as the location guidance for low-
level features. In CorrM, we mine the object location information
between high-level semantic features through the cross-layer cor-
relation operation. Finally, based on low-level detailed features,
we refine the coarse saliency map in the refinement subnet
equipped with dense lightweight refinement blocks (DLRBs)
and produce the final fine saliency map. By reducing the
parameters and computations of each component, CorrNet ends
up having only 4.09M parameters and running with 21.09G
FLOPs. Experimental results on two public datasets demon-
strate that our lightweight CorrNet achieves competitive or even
better performance compared with 26 state-of-the-art methods
(including 16 large CNN-based methods and two lightweight
methods), and meanwhile enjoys the clear memory and run-time
efficiency. The code and results of our method are available at
https://github.com/MathLee/CorrNet.

Index Terms— Cross-layer correlation, dense lightweight
refinement block (DLRB), lightweight salient object detection
(SOD), optical remote sensing image (ORSI).

I. INTRODUCTION

SALIENT object detection (SOD) [1]–[3] focuses on
extracting the visually distinctive objects or regions in a
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Fig. 1. Accuracy, parameters, and inference speed comparisons of our
CorrNet and other CNN-based methods on the EORSSD dataset [13].
represents real-time methods, represents nonreal-time methods, and •
represents our CorrNet.

scene, and often serves as an important preprocessing step in
computer vision. It has been successfully applied in image
retargeting [4], image quality assessment [5], [6], object seg-
mentation [7], [8], etc. In recent decades, there have been many
branches of SOD, such as SOD in natural scene images (NSI-
SOD) [1], video SOD [2], RGB-D SOD [9], [10], co-saliency
detection [11], SOD in optical remote sensing images (ORSI-
SOD) [12], etc. In this article, we are committed to an emerg-
ing topic in SOD, i.e., ORSI-SOD. ORSIs are photographed by
satellites and aerial sensors, and have three optical bands (i.e.,
red, green, and blue bands), which are the same as NSIs. The
scenes of ORSIs are completely different from NSIs and are
very challenging. ORSI-SOD can discover attractive objects,
which is conducive to quickly analyzing and understanding
ORSIs.

Early traditional NSI-SOD methods [14] mainly relied
on hand-crafted features, which usually lead to unsatisfac-
tory detection accuracy. Recently, convolutional neural net-
works (CNNs) [15] have demonstrated powerful capabilities
in computer vision, and greatly promoted the development
of NSI-SOD algorithms [1], which often generate satisfactory
saliency maps. However, the improvement in detection accu-
racy often comes from more complicated network structures,
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which typically come with a large amount of parameters and
increased computational complexity. Since ORSIs and NSIs
have gaps in the scene, it is not appropriate to directly migrate
NSI-SOD to ORSIs, but most of the existing ORSI-SOD
methods [13], [16]–[18] are affected by NSI-SOD methods.
Therefore, ORSI-SOD methods usually have a large computa-
tional consumption and memory burden, and are accompanied
by limited inference speed.

In Fig. 1, we show the detection accuracy of recent NSI-
SOD methods (PA-KRN [19], SUCA [20], GateNet [21],
and EGNet [22]) and ORSI-SOD methods (DAFNet [13],
EMFINet [16], MJRBM [17], and SARNet [18]) on an ORSI-
SOD dataset, namely EORSSD [13]. We also report their
parameters and inference speed in Fig. 1. Although these
methods show good performance, their parameters are amaz-
ing and inference speeds are slow, for example, PA-KRN
has 141.06M parameters with only 16 fps and EMFINet
has 107.26M parameters with 25 fps. And the performance
of the two lightweight NSI-SOD methods (CSNet [23] and
SAMNet [24]) is slightly inferior. Considering the application
scenarios of ORSI-SOD, we believe that ORSI-SOD is in
urgent need of a lightweight solution with fewer parameters,
faster speed, and good accuracy.

Inspired by the above observations, in this article, we pro-
pose a novel lightweight solution for ORSI-SOD, namely
CorrNet, which is the first lightweight ORSI-SOD model
as we know. In CorrNet, we mainly realize the lightweight
framework from two aspects: 1) lightening the backbone
and 2) designing lightweight modules. For the backbone,
previous methods [13], [16]–[18] usually adopt the pretrained
VGG [25] or ResNet [26] as the backbone, but such back-
bones suffer from a large number of parameters despite their
powerful feature extraction capabilities. To achieve a balance
between the feature extraction capabilities and the amount
of parameters, we modify the vanilla VGG [25] and build
a lightweight but powerful backbone for feature extraction.
For the lightweight modules, we use the depthwise separable
convolution [27], [28] instead of the regular one, which can
reduce the parameters of regular convolution by about 90%.
In this way, our CorrNet has only 4.09M parameters.

Moreover, to keep a good detection accuracy of CorrNet,
we implement it following the coarse-to-fine strategy with
two novel modules. For the coarse part, we explore the
object location information among two groups of high-level
semantic features in the correlation module (CorrM), and
obtain the initial coarse saliency map. Then, we refine it
with other low-level detailed features in the refinement subnet,
which consists of several dense lightweight refinement blocks
(DLRBs), and obtain the final fine saliency map. With all
components working together, our CorrNet achieves excellent
performance in accuracy (86.20% in mean F-measure on the
EORSSD dataset [13]), parameters (4.09M), and inference
speed (100 fps), as shown in Fig. 1.

Our main contributions are summarized as follows.
1) We explore the lightweight framework of ORSI-SOD

for the first time. To this end, we propose a novel
lightweight CorrNet (only 4.09M parameters) that uses
the coarse-to-fine strategy.

2) We propose a CorrM to explore the cross-layer correla-
tion of high-level semantic context, generating an initial
coarse saliency map to low-level features for location
guidance.

3) We propose a DLRB to merge the enhanced feature
embeddings and the refined features for finely sculpt-
ing salient objects, gradually producing the final fine
saliency map.

4) We evaluate the proposed CorrNet against 26 state-of-
the-art methods on two ORSI-SOD datasets. Experi-
ments demonstrate that the proposed CorrNet achieves
better or competitive performance compared with previ-
ously proposed large CNN-based methods.

We organize the rest of this article as follows. In Section II,
we review the related work of ORSI-SOD. In Section III,
we elaborate our CorrNet. In Section IV, we conduct experi-
ments and ablation studies. Finally, in Section V, we draw the
conclusion.

II. RELATED WORK

A. Lightweight Methods for NSI-SOD

The lightweight NSI-SOD task is an emerging direc-
tion in NSI-SOD, which aims to propose a solution
suitable for edge computing devices. Gao et al. [23] pro-
posed an extremely lightweight network with only about
100K parameters and 95.3-ms run-time on a single core
i7-8700K CPU. Liu et al. [24] constructed a stereoscopic
attention mechanism-based backbone for lightweight NSI-
SOD. Liu et al. [29] imitated the primate visual hierarchies
and proposed the hierarchical visual perception network for
better multiscale learning. However, lightweight ORSI-SOD
is still a desert. In this article, we propose an effective
and efficient solution for lightweight ORSI-SOD for the first
time. Different from the above lightweight NSI-SOD methods
that focus on designing lightweight backbones, we focus on
lightening the existing backbone (i.e., VGG-16) and proposing
effective and lightweight modules.

B. Traditional Methods for ORSI-SOD

Similar to traditional NSI-SOD methods [14], traditional
ORSI-SOD methods also mainly rely on hand-crafted features.
Faur et al. [30] presented a rate distortion-based estimation
method and considered the mean-shift algorithm to segment
the remote sensing images. Zhang et al. [31] applied color
information content analysis to ORSIs and then computed
the saliency scores of each color channel and fused color
components for final results. Zhao et al. [32] introduced
the high-level global and background cues for saliency map
integration. Zhang et al. [33] combined the super-pixel and
statistical saliency feature analysis for ORSI-SOD. Based
on low-rank matrix recovery, Zhang et al. [34] proposed a
self-adaptive fusion method to fuse color feature, intensity
feature, texture, and global contrast for saliency detection
in ORSIs. Huang et al. [35] proposed a contrast-weighted
dictionary learning-based method for VHR RSI saliency detec-
tion, which follows the procedure of discriminant dictionary
construction, saliency measurement, and saliency fusion.
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Fig. 2. Overall framework of the proposed CorrNet. First, we adopt a lightweight feature extraction subnet, which is a variant of classic VGG-16 [25],
to extract the basic feature embeddings. Then, we model the cross-layer correlation between two groups of high-level semantic features in the CorrM, and
generate the initial coarse saliency map S4. Meanwhile, the low-level detailed features are enhanced in the general feature enhancement module (FEM).
Finally, we refine the coarse saliency map with the enhanced features in the refinement subnet, which consists of three DLRBs, and generate the final fine
saliency map S1. Notably, in the training phase, we adopt the deep supervision.

In addition to general ORSI-SOD methods, there are some
traditional methods for specific scenes of ORSIs. For ship
detection, Chen et al. [36] proposed a contour refinement
and the improved generalized Hough transform-based method
to handle complex harbor scenes. For oil tank detection,
Liu et al. [37] constructed a color Markov chain in the CIE
Lab space to generate a bottom-up latent saliency map. For
airport detection, Zhang et al. [38] proposed a complementary
saliency analysis and saliency-oriented active contour model.
For residential areas extraction, based on complementarities,
Zhang et al. [39] merged two global maps and one local map
to achieve complete residential areas.

Since hand-crafted features are usually accompanied by
a large amount of computational consumption and memory
burden, the above traditional methods are not efficient enough
for practical applications.

C. CNN-Based Methods for ORSI-SOD

Taking the advantage of the powerful feature representation
capabilities of CNNs, many CNN-based ORSI-SOD methods
have shown good performance. In order to meet the data
requirements of CNN-based methods, Li et al. [12] and
Zhang et al. [13] constructed two challenging datasets for
ORSI-SOD, namely ORSSD and EORSSD. Based on these
two datasets, a large number of CNN-based methods have
emerged.

Li et al. [12] constructed a L-shape module (i.e., the
two-stream pyramid module) and a V-shape module (i.e.,
the encoder–decoder module with nested connections) based

on features extracted from five different-resolution ORSIs.
Zhou et al. [16] followed the multiinput strategy, and intro-
duced edge features to complete salient regions in feature
level. Edge information plays an important role in ORSI-
SOD. Zhang et al. [13] additionally introduced the edge
supervision for network training and constructed a mul-
titask framework. Tu et al. [17] extracted edge features
from the local cues and the global information, and embed
the boundary features into region features. In addition to
edge information, Li et al. [40] additionally introduced fore-
ground, background, and the global image-level content to
explore the complementarity of multiple content. Differently,
Zhang et al. [41] solved this problem based on the weakly
supervised learning. Li et al. [42] focused on cross-level fea-
ture fusion and inferred saliency map from a parallel down-up
fusion network. Huang et al. [18] used the high-level features
as a guide for locating multiscale objects and combined
cross-level features and semantic information to refine the
objects.

The above-mentioned existing methods have achieved high
detection accuracy on the ORSSD and EORSSD datasets.
However, these methods neglect the parameter and compu-
tational complexity of models, which prevents them from
being deployed into practical systems. By contrast, in this
article, we no longer focus on improving detection accuracy
blindly, but open up a new direction for ORSI-SOD, that
is, lightweight ORSI-SOD, which is to achieve a balance
among accuracy, parameters, and computational complexity.
To this end, we propose the first lightweight framework,
namely CorrNet, for ORSI-SOD. In CorrNet, we implement
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all components in a lightweight manner while maintaining
competitive or even better performance.

III. PROPOSED METHOD

In this section, we elaborate the proposed CorrNet.
In Section III-A, we depict the network overview of our Cor-
rNet. In Section III-B, we show how to lighten the backbone.
In Sections III-C and III-D, we elaborate the CorrM and the
DLRB, respectively. In Section III-E, we formulate the loss
function.

A. Network Overview

We present the overall framework of the proposed Corr-
Net in Fig. 2. CorrNet comprises three main components:
a lightweight feature extraction subnet [equipped with the
general feature enhancement module (FEM)], a CorrM, and
a refinement subnet (equipped with the DLRB). It follows the
coarse-to-fine strategy, that is, first generating a coarse saliency
map and then sculpting it to generate a fine saliency map.

For feature extraction, we modify the classic vanilla
VGG-16 [25] and construct a lightweight feature extraction
subnet, named LFE-VGG. There are five convolution blocks in
LFE-VGG. The first three convolution blocks are denoted as Et

(t = 1, 2, 3) and their output features as f t
e ∈ R

ct ×ht ×wt . The
last two convolution blocks are denoted as DS-Et (t = 4, 5),
and their output features as f t

dse ∈ R
ct ×ht ×wt . The size of

input is I ∈ R
3×256×256, so ht is (256/2t−1), wt is (256/2t−1),

and ct belongs to {64, 128, 256, 512, 512}. Then, we apply the
channel and spatial attentions1 [43], [44] to f 1

e and f 2
e in the

FEM, and get the enhanced features f̂
1
e and f̂

2
e . To reduce

parameters and computational complexity, we compress the
channel of f 4

dse and f 5
dse (i.e., 512) to 128, and then upsample

f 5
dse to be the same size as f 4

dse. This way, we get f̂
4
dse and

f̂
5
dse, which belong to R

ĉ4×h4×w4 (ĉ4 is 128).

Next, we model the feature correlation among f̂
4
dse and f̂

5
dse

in the CorrM, aiming to mine the object location information
of high-level semantic context. In this way, we get an initial
coarse saliency map S4. As shown in Fig. 2, the coarse saliency
map S4 can accurately locate the salient objects. It is used to
modulate f 3

e to focus on the salient regions, generating the

modulated features f̂
3
e . Finally, f̂

1
e , f̂

2
e and f̂

3
e are fed to the

refinement subnet to generate the final fine saliency map S1

through three DLRBs.

B. Lightweight Feature Extraction Subnet

Previous ORSI-SOD methods [13], [16], [40] generally
adapt the vanilla VGG-16 [25] for basic feature extraction,
i.e., the last four layers (i.e., one max-pooling layer and
three fully connected layers) are abandoned. However, the
amount of parameters of the modified vanilla VGG is still
large, which is not suitable as the backbone of a lightweight
model. Therefore, in this article, we propose a convenient way

1Channel attention is implemented by a spatial-wise global max pool-
ing (GMP) and two fully connected layers (the first one is with ReLU and
the second one is with sigmoid); and spatial attention is implemented by a
channel-wise GMP and a one-channel regular convolution layer with sigmoid.

TABLE I

PARAMETERS COMPARISON (INCLUDING THE PARAMETERS OF CON-
VOLUTIONAL LAYER AND BATCH NORMALIZATION LAYER) OF

VANILLA-VGG AND OUR LFE-VGG

to lighten the vanilla VGG without compromising its feature
extraction ability.

In Table I, we present the amount of parameters (including
the parameters of convolution layer and batch normalization
layer [45]) of each convolution block in the vanilla VGG.
We observe that the last two convolution blocks of the vanilla
VGG (i.e., E4 and E5) have 12.98M parameters, which account
for about 88.18% of all parameters. Recently, MobileNets [27],
[28] use the depthwise separable convolution (DSConv) to
replace the regular convolution. The DSConv can signifi-
cantly reduce the parameters without weakening the feature
representation ability. Motivated by Howard et al. [27] and
Sandler et al. [28], we adopt DSConvs instead of regular
convolutions in E4 and E5, and get the redefined convolution
blocks DS-E4 and DS-E5. There are two reasons why we only
redefine E4 and E5. First, according to the above analysis,
E4 and E5 occupy the largest amount of parameters. Second,
we hope to use as many pretrained parameters of the vanilla
VGG as possible to inherit powerful feature extraction ability.

In this way, we construct our lightweight feature extraction
subnet, named LFE-VGG. As presented in Table I, the amount
of parameters of E4 is reduced from 5.90M to 0.67M, and that
of E5 is reduced from 7.08M to 0.81M. Overall, our LFE-VGG
reduces 11.50M parameters compared to the vanilla VGG,
and only has 3.22M parameters in total, which is a qualified
lightweight backbone. We will assess the effectiveness and
efficiency of LFE-VGG in Section IV-C.

C. Correlation Module

In video object segmentation, the target objects usually
exist in consecutive video frames with small differences.
To accurately segment the target objects, Lu et al. [46]
employed the co-attention mechanism [47] to effectively mine
the inherent correlation among consecutive video frames.
Inspired by Lu et al. [46], considering that the salient regions
also exist in consecutive features of an ORSI, we make an
attempt to explore the cross-layer correlation of continuous
high-level semantic features and propose the CorrM. Different
from [46], which generates corresponding segmentation maps
of different video frames, we focus on generating an initial
coarse saliency map from the continuous semantic features
for location guidance of low-level features.
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Fig. 3. Illustration of the CorrM.

We illustrate the CorrM in Fig. 3. It has three main
components: cross-layer correlation operator, polishing gate,
and initial coarse saliency map generation. In the following,
we elaborate CorrM based on these three parts, and we also
present the feature modulation process based on the coarse
saliency map.

1) Cross-Layer Correlation: As shown in Fig. 3, we per-
form the cross-layer correlation operator on f̂

4
dse and f̂

5
dse (i.e.,

the continuous high-level semantic features), both belonging
to R

ĉ4×h4×w4 . Here, we simplify their sizes ĉ4 × h4 × w4 as
C × H × W for notation conciseness.

First, we reshape f̂
4
dse to R

C×(H W ), and reshape and trans-

pose f̂
5
dse to R

(H W )×C . Then, we define a learnable weight

matrix Wc ∈ R
C×C for f̂

5
dse, and construct a learning process

for the cross-layer correlation operator, which makes our
CorrM robust. Next, we compute the feature correlation via
matrix multiplication to capture similarity between each row
of the reshaped and transposed f̂

5
dse and each column of the

reshaped f̂
4
dse. We formulate the above process as follows:

r =
(

rshp
(

f̂
5
dse

))�
� Wc � rshp

(
f̂

4
dse

)
(1)

where r ∈ R
(H W )×(H W ) is the cross-layer correlation matrix,

rshp(·) is the reshape operation, � is the matrix transpose
operation, and � is the matrix multiplication.

After obtaining the cross-layer correlation matrix r, we use
the softmax function to normalize it along the rows and
columns, respectively, and exploit it to determine the location
of salient regions of high-level semantic features, which can

be formulated as follows:
f 4

corr = rshp
(

rshp
(

f̂
4
dse

)
� softmax(r)

)
(2)

f 5
corr = rshp

(
rshp

(
f̂

5
dse

)
� softmax

(
r�))

(3)

where { f 4
corr, f 5

corr} ∈ R
C×H×W are features containing rich

location information.
Since we perform the matrix-based cross-layer correlation

operator on f̂
4
dse and f̂

5
dse, whose sizes are 128 × 32 × 32,

its computational cost is limited. Besides, only the parameters
of the weight matrix Wc need to be learned. Therefore, the
cross-layer correlation operator is with few parameters and
low computational cost, but has strong capabilities to locate
salient objects in ORSIs.

2) Polishing Gate: The above cross-layer correlation oper-
ator may leave some redundant information in f 4

corr and f 5
corr.

To address this issue, we introduce a simple but effective gate
mechanism to polish f 4

corr and f 5
corr, and achieve more pure

location information.
In order to reduce the module parameters, here, we adopt

the regular 1 × 1 convolution layer to separately produce a
response map (which belongs to [0, 1]1×H×W ) for f 4

corr and
f 5

corr . Based on the two response maps, we filter the redundant
information of f 4

corr and f 5
corr . We formulate the above gate

mechanism as follows:
f 4

gate = sigmoid
(
conv1×1

(
f 4

corr

)) ⊗ f 4
corr

f 5
gate = sigmoid

(
conv1×1

(
f 5

corr

)) ⊗ f 5
corr (4)

where { f 4
gate, f 5

gate} ∈ R
C×H×W are the polished features,

conv1×1(·) is the regular 1 × 1 convolution operator, and ⊗
is the element-wise multiplication. Moreover, we adopt the
residual connection to merge f 4

gate and f̂
4
dse, and f 5

gate and

f̂
5
dse, respectively, producing f̂

4
gate and f̂

5
gate as follows:

f̂
4
gate = DSconv

(
f 4

gate ⊕ f̂
4
dse

)

f̂
5
gate = DSconv

(
f 5

gate ⊕ f̂
5
dse

)
(5)

where DSconv(·) is the 3 × 3 DSConv and ⊕ is the element-
wise summation. This original content preservation mode (i.e.,
the residual connection) is good for feature representation.

3) Initial Coarse Saliency Map Generation: Thanks to the
above two effective parts of CorrM, the generated f̂

4
gate and

f̂
5
gate are very informative. Based on them, we introduce the

last part of our CorrM as follows:
S4 = sigmoid

(
conv1×1

(
DSconv

(
f̂

4
gate � f̂

5
gate

)))
(6)

where S4 ∈ [0, 1]1×32×32 is the initial coarse saliency map and
� is the concatenation. In this way, we completely extract the
location information of f̂

4
gate and f̂

5
gate, accurately determining

the salient regions in ORSIs, as S4 shown in Fig. 2.
4) Feature Modulation: Furthermore, we migrate location

information to the basic features f 3
e as follows:

f̂
3
e = Up

(
S4

) ⊗ f 3
e ⊕ f 3

e (7)
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Fig. 4. Illustration of the DLRB.

where f̂
3
e ∈ R

c3×h3×w3 is the modulated features and Up(·) is
the upsampling operation. This direct feature modulation mode
provides accurate location information for the subsequent
object refinement process, laying a solid foundation for the
final fine saliency map.

In summary, our CorrM balances effectiveness and effi-
ciency, that is, predicting a momentous coarse saliency map
with few parameters. We will evaluate the importance of our
CorrM in Section IV-C.

D. Dense Lightweight Refinement Block

The widely used refinement block usually follows a cas-
caded structure, i.e., several regular convolution layers are
connected one by one. However, there are some challenging
scenarios in ORSIs, such as multiple objects and small objects.
The cascaded structure is not conducive to capturing multiscale
information and is a suboptimal way for objects refinement
in ORSIs. Besides, the cascaded refinement block is usually
implemented by regular convolution layers, bringing lots of
parameters. Inspired by DenseNet [48] and DSConv [27], [28],
we implement a refinement block with the dense structure
and DSConvs, constructing a DLRB for objects refinement
in ORSIs, as shown in Fig. 4.

For each DLRB, there are three dilated DSConvs with
progressive dilation rates {2,4,6} and three 1 × 1 convolution
layers. Dilated DSConvs enlarge the receptive field, capturing
multiscale features comprehensively. And 1 × 1 convolution
layers are in charge of merging the captured features. The
output feature of DLRB-t is denoted as f t

dlrb. Here, we take

DLRB-3 as an example. In DLRB-3, its input is f̂
3
e , and we

decompose its dense structure into three stages, which are
formulated as follows:

f 3,1
dlrb = conv1×1

(
DSconv2

(
f̂

3
e

)
⊕ f̂

3
e

)
(8)

f 3,2
dlrb = conv1×1

(
DSconv4

(
f 3,1

dlrb

)
⊕ f 3,1

dlrb ⊕ f̂
3
e

)
(9)

f 3,3
dlrb = conv1×1

(
DSconv6

(
f 3,2

dlrb

)
⊕ f 3,2

dlrb ⊕ f 3,1
dlrb ⊕ f̂

3
e

)

(10)

where DSconvr (·) is the dilated 3 × 3 DSConv with dilation
rate r , and f 3,3

dlrb is the output feature of DLRB-3, i.e., f 3
dlrb.

In this way, our DLRB can perceive multiscale information
and bring powerful feature representation during the refine-
ment phase, which will facilitate the carving of salient objects

in ORSIs and lead to good performance. We will evaluate the
effectiveness of our DLRB in Section IV-C.

E. Loss Function

To effectively train CorrNet, we combine the classic BCE
loss and IoU loss to construct a comprehensive loss function
for network training, which is the same as previous SOD
methods [40], [61], [62]. Moreover, we also adopt the deep
supervision [54], [63] in the training phase to supervise two
intermediate saliency maps of the refinement subnet as well
as the coarse and fine saliency maps, as shown in Fig. 2.
The intermediate saliency maps and fine saliency map are
generated by the 1 × 1 convolution layer. We formulate the
total loss function L total as

L total =
4∑

t=1

(
�bce

(
Up

(
St

)
, G

) + �iou
(
Up

(
St

)
, G

))
(11)

where G is the ground truth, and �bce(·) and �iou(·) are BCE
loss and IoU loss, respectively.

IV. EXPERIMENTS

A. Implementation Details and Evaluation Metrics

1) Implementation Details: We train and test CorrNet
on the ORSSD and EORSSD datasets, respectively. There
are 800 ORSIs with corresponding ground truths in the
ORSSD dataset [12], in which 600 images are used for training
and 200 images for testing. And there are 2000 ORSIs with
corresponding ground truths in the EORSSD dataset [13],
in which 1400 images are used for training and 600 images for
testing. We adopt the flipping and rotation for data augmen-
tation, generating 4800 training pairs for ORSSD and 11 200
training pairs for EORSSD. All the experiments are conducted
on the PyTorch [64] platform with an NVIDIA Titan X GPU
(12-GB memory). In the training phase, we resized the training
pairs to 256 × 256, and adopt the Adam optimization strat-
egy [65] with the batch size 8 and the initial learning rate 1e−4,
which will be divided by 10 after 30 epochs. We initialize
the first three blocks of LFE-VGG by the pretrained VGG-
16 model [25], and initialize other newly added DSConvs
and 1 × 1 convolution layers by the normal distribution [66].
Notably, on the ORSSD dataset, we train our CorrNet for
44 epochs; and on the EORSSD dataset, we train our CorrNet
for 34 epochs.

2) Evaluation Metrics: We employ five quantitative eval-
uation metrics to evaluate our method and other compared
methods, including S-measure (Sα , α = 0.5) [67], (maxi-
mum, mean, and adaptive) F-measure (Fβ , β2 = 0.3) [68],
(maximum, mean, and adaptive) E-measure (Eξ ) [69], mean
absolute error (MAE, M), and precision-recall (PR) curve.
The first three evaluation metrics are the bigger the better.
MAE is the smaller the better. And PR curve is closer to the
upper right, the better.

B. Comparison With State-of-the-Art Methods

We conduct a comprehensive comparison with 26 state-of-
the-art NSI-SOD and ORSI-SOD methods, including eight
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TABLE II

QUANTITATIVE COMPARISONS WITH 26 STATE-OF-THE-ART METHODS, INCLUDING FIVE TRADITIONAL NSI-SOD METHODS, THREE TRADITIONAL
ORSI-SOD METHODS, ELEVEN CNN-BASED NSI-SOD METHODS, FIVE CNN-BASED ORSI-SOD METHODS, AND TWO LIGHTWEIGHT METH-

ODS, ON EORSSD AND ORSSD DATASETS. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE, AND GREEN, RESPECTIVELY

traditional methods (RRWR [49], HDCT [50], DSG [51],
SMD [52], RCRR [53], VOS [38], CMC [37], and
SMFF [34]), 16 CNN-based methods (DSS [54], RADF [55],
R3Net [56], PoolNet [57], EGNet [22], GCPA [58],
MINet [59], ITSD [60], GateNet [21], SUCA [20], PA-
KRN [19], LVNet [12], DAFNet [13], MJRBM [17], SAR-
Net [18], and EMFINet [16]), and two lightweight methods
(CSNet [23] and SAMNet [24]). Since some methods have
different backbone versions, we only report their performance
based on VGG backbone. For a fair comparison, we retain
CNN-based NSI-SOD methods with their default parameter
settings on the same training set as our method. And the
saliency maps of other methods are provided by the authors
or generated by public source codes.

1) Computational Complexity Comparison: In Table II,
we report the inference speed with batch size of 1 (without
I/O time), parameter amount (#Param), and FLOPs of our
method and most compared methods. Notably, our method
achieves competitive performance in these three computational
complexity metrics. Our method (i.e., 100 fps) has 2.1× faster
inference speed than the second-placed method SARNet (i.e.,
47 fps). Compared with CNN-based methods, the parameter
amount and FLOPs of our method are smaller than them.
While compared with two lightweight methods, i.e., CSNet

Fig. 5. Quantitative comparison in terms of PR curve on two datasets. The
top five methods are shown in different colors, while the other compared
methods are shown in gray. Zoom-in for better visualization of details.
(a) EORSSD [13]. (b) ORSSD [12].

and SAMNet, our method is slightly inferior, but it is still
good as the first lightweight ORSI-SOD solution. Therefore,
we believe that our method is an efficient and promising
lightweight ORSI-SOD framework.

2) Quantitative Comparison: In Fig. 5, we plot the PR
curves of our method and all compared methods on EORSSD
and ORSSD. As visible, our method (i.e., the red one) is
closest to the upper right than other methods on both datasets,
showing a competitive performance.
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Fig. 6. Visual comparisons with nine representative state-of-the-art methods. Please zoom-in for the best view.

We report the quantitative performance of our method and
all compared methods on EORSSD and ORSSD in Table II.
On the EORSSD dataset, our method ranks first in five out
of all eight metrics. Compared with EMFINet with similar
performance, our method has 4× faster inference speed, 26×
fewer parameters, and 23× fewer FLOPs than it. On the
ORSSD dataset, our method outperforms all compared meth-
ods in all eight metrics. Specifically, in Fmax

β , Fmean
β and

Fapt
β , our method is 1.27%, 1.46%, and 2.58% higher than

the second-placed method EMFINet, respectively. Compared
with the lightweight methods, i.e., CSNet and SAMNet,
the performance of our method is significantly better than
them. Moreover, we observe that the performance of CNN-
based ORSI-SOD methods is generally better than that of
the retrained CNN-based NSI-SOD methods, which indicates
that the ORSI scenes are extremely challenging. Overall,
the above analysis clearly demonstrates that our lightweight
CorrNet achieves a favorable tradeoff between effectiveness
and efficiency.

3) Visual Comparison: We present the visual comparison
of our method and nine representative state-of-the-art methods
on some challenging ORSI scenes in Fig. 6. As the first four
rows of Fig. 6, the first scene is of low contrast. In these
four cases, only our method can clearly highlight all salient
objects. Other compared methods are interfered by similar
backgrounds and fail in individual cases, such as EMFINet
fails in the second case and MJRBM fails in the first and
third cases. As the fifth and sixth rows of Fig. 6, the second
scene is multiple objects, which is a difficult scene in ORSI-
SOD. Our method can accurately locate all salient objects

with fine details, while some models occasionally miss objects
(such as SARNet and LVNet) or fail to outline details (such
as DAFNet and SUCA). As the seventh row of Fig. 6, the
third scene is the big object. In this scene, due to the large
span of the bridge, most methods only segment its middle part
and ignore its two ends. As the last two rows of Fig. 6, the
fourth scene is cluttered background. The cluttered background
confuses some methods, causing them to incorrectly include
background or miss objects in their saliency maps. Overall,
our method shows strong scene adaptability and overcomes
the above scenes.

C. Ablation Studies

Here, we conduct comprehensive experiments to evaluate
the effectiveness of important components of our CorrNet
on EORSSD dataset. In particular, we investigate: 1) the
efficiency of the lightweight feature extraction subnet; 2) the
effectiveness of the coarse-to-fine strategy; 3) the individual
contribution of each module in CorrNet; 4) the importance of
cross-layer correlation and polishing gate in CorrM; and 5)
the rationality of dilated DSConvs’ dilation rates in DLRB.
For each variant experiment, we rigorously retrain it with the
same parameter settings and datasets as in Section IV-A.

1) Efficiency of the Lightweight Feature Extraction Subnet:
To evaluate the efficiency of the lightweight feature extraction
subnet (i.e., LFE-VGG), we replace it with two backbones, i.e.,
Vanilla-VGG and DS-VGG. Vanilla-VGG is all convolution
layers of VGG-16 are regular convolution layers, and DS-VGG
is all convolution layers of VGG-16 are DSConvs. We report
the quantitative results in Table III.
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TABLE III

ABLATION RESULTS OF EVALUATING THE EFFICIENCY OF THE LIGHT-
WEIGHT FEATURE EXTRACTION SUBNET

TABLE IV

ABLATION RESULTS OF EVALUATING THE EFFECTIVENESS OF THE

COARSE-TO-FINE STRATEGY. THE BEST ONE IN EACH COLUMN IS

BOLD

TABLE V

ABLATION RESULTS OF EVALUATING THE INDIVIDUAL CONTRIBUTION OF

EACH MODULE IN CORRNET. THE BEST ONE IN EACH COLUMN IS

BOLD

The complete Vanilla-VGG does improve performance,
but the improvement is limited, e.g., Fmax

β is increased by
0.11% and Emax

ξ is increased by 0.22%. However, along
with improved performance comes a massive increase in
parameters, e.g., #Param increases sharply from 4.09M to
15.59M. This means that our LFE-VGG is effective and
efficient, and our modification is reasonable. As for DS-VGG,
its performance is obviously degraded, e.g., Fmax

β is reduced
by 3.31% and Emax

ξ is reduced by 1.84%, and its parameter
reduction is also limited, e.g., #Param is reduced by 1.54M.
We think that the reason for the performance degradation
of DS-VGG is because its parameters are initialized by the
normal distribution [66], losing the benefits of pretrained
parameters. Overall, our LFE-VGG maintains the powerful
feature extraction ability of E1, E2 and E3, and greatly reduces
the parameters of DS-E4 and DS-E5, so it is a qualified
lightweight backbone.

TABLE VI

ABLATION RESULTS OF EVALUATING THE IMPORTANCE OF CROSS-LAYER
CORRELATION AND POLISHING GATE IN CORRM AND THE RATIONAL-

ITY OF DILATED DSCONVS IN DLRB. THE BEST ONE IN EACH

COLUMN IS BOLD

2) Effectiveness of the Coarse-to-Fine Strategy: To evaluate
the effectiveness of the coarse-to-fine strategy, we quantita-
tively measure the performance of the initial coarse saliency
map (S4), two intermediate saliency maps (S3 and S2) and
the final fine saliency map (S1). As reported in Table IV, the
quantitative performance is generally incremental, e.g., Fmax

β :
78.00% → 85.60% → 87.55% → 87.78%. And compared
with S4, the improvement of S1 is greatly significant in all
metrics, i.e., Sα , Fmax

β , Emax
ξ and M are improved by 5.48%,

9.78%, 1.18%, and 0.0043, respectively. This confirms that the
coarse-to-fine manner is useful in our CorrM, and the refine-
ment subnet demonstrates powerful refinement capabilities.

3) Individual Contribution of Each Module in CorrNet: To
evaluate the individual contribution of each module, i.e., FEM,
DLRB, and CorrM, we design four variants of the full CorrNet
(i.e., No.5) in Table V: 1) Baseline; 2) Baseline + FEM; 3)
Baseline + FEM + DLRB; and 4) Baseline + FEM + CorrM.
For Baseline, we directly remove FEMs, replace CorrM with
concatenation-convolution operation to generate the coarse
saliency map, and replace DLRB with three cascaded regular
DSConvs.

According to the quantitative performance in Table V,
we observe that each module of CorrNet contributes to the
ultimate excellent performance. Our full CorrNet boosts the
primitive Baseline by 1.43%, 2.30%, 1.61%, and 0.0030 on Sα ,
Fmax

β , Emax
ξ , and M, respectively. As the key roles of CorrNet,

DLRB improves Fmax
β and Emax

ξ of Baseline + FEM by
0.88% and 0.66%, respectively, and CorrM improves Fmax

β and
Emax

ξ of Baseline + FEM by 1.27% and 0.98%, respectively.
With the cooperation of DLRB and CorrM, the full CorrNet
improves Fmax

β and Emax
ξ of Baseline + FEM by 1.87% and

1.55%, respectively. Therefore, the above analysis verifies that
each module in CorrNet is effective for ORSI-SOD.

4) Importance of Cross-Layer Correlation and Polishing
Gate in CorrM: To evaluate the importance of cross-layer
correlation and polishing gate in CorrM, we provide two vari-
ants in Table VI: 1) deleting cross-layer correlation operator in
CorrM, namely w/o Correlation and 2) deleting two polishing
gates in CorrM, namely w/o Gate. For w/o Correlation, there
is no cross-layer correlation operator to capture the feature
correlation among the high-level semantic context, the object
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localization capabilities of CorrM are greatly weakened, and
Sα and Fmax

β drop to 92.32% and 86.90%, respectively. w/o
Gate can capture the object location information with some
redundant information, and obtain slightly better results than
w/o Correlation, i.e., 92.53% of Sα and 87.28% of Fmax

β .
The above variants verify that the cross-layer correlation and
polishing gate are important to CorrM.

5) Rationality of Dilated DSConvs’ Dilation Rates in
DLRB: To evaluate the rationality of dilated DSConvs’ dila-
tion rates in DLRB, we provide three variants in Table VI:
1) replacing three dilated DSConvs with three regular
DSConvs in DLRB, namely w/o dilation rate; 2) changing the
original dilation rates {2,4,6} to {1,3,5}, namely w/ 1-3-5;
and 3) changing the original dilation rates {2,4,6} to {3,5,7},
namely w/ 3-5-7. Based on the quantitative performance of w/o
dilation rate and w/ 1-3-5, we observe that the relatively large
receptive fields can capture more complementary multiscale
information, which is very important for objects refinement in
ORSI-SOD. However, when we continue to expand the recep-
tive fields to {3,5,7}, we observe the performance degradation
of w/ 3-5-7, possibly due to that excessively large receptive
fields make DLRB impossible to accurately capture the salient
objects with variable scales in ORSIs. Thus, we can come to a
conclusion that the dilated DSConvs with dilation rates {2,4,6}
are rational and exactly appropriate in DLRB.

D. Discussion

Here, we discuss the weaknesses of our method and our
future works. For weaknesses, we summarize as follows: 1)
since our method is based on GPU, its model size is still
too large for edge computing devices; and 2) although the
parameter amount and computations of our method are small
as compared with most CNN-based methods, it is still difficult
to run on the CPU in real time.

Therefore, in future works, we will work in the following
two directions: 1) similar to the lightweight ORSI-SOD meth-
ods, we will focus on developing a lightweight backbone with
smaller model size for ORSI-SOD; and 2) we will introduce
the model pruning technology into our model to remove
redundant layers and to further accelerate our model.

V. CONCLUSION

In this article, we propose an effective lightweight frame-
work, namely CorrNet, for ORSI-SOD. In CorrNet, we first
lighten the vanilla VGG and propose a lightweight feature
extraction subnet, namely LFE-VGG. Then, we lighten other
modules of CorrNet, that is, we use DSConvs instead of regu-
lar convolution layers in the modules. In addition, in order to
obtain a good performance, CorrNet follows the coarse-to-fine
strategy. It first generates an initial coarse saliency map from
high-level semantic features via the CorrM, and then refines
the salient objects via the refinement subnet equipped with
DLRBs, producing the final fine saliency map. Experimen-
tal evaluations on two ORSI-SOD datasets demonstrate that
though our CorrNet only has 4.09M parameters and 21.09G
FLOPs, it achieves competitive or even better performance
than large CNN-based methods and runs at 100 fps. The

success of our CorrNet comes from three aspects: 1) the
matrix-based cross-layer correlation operation that extracts
salient regions effectively and only contains a few parameters;
2) the DSConv that maintains powerful feature representation
capabilities and only has about 10% of the parameters of the
regular convolution layer; and 3) the coarse-to-fine strategy
that lays a high-accuracy foundation.
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