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Two-Stage Edge Reuse Network for Salient Object
Detection of Strip Steel Surface Defects

Chengjun Han"', Gongyang Li*, and Zhi Liu

Abstract— Recently, researchers have paid more attention to
salient object detection (SOD) of strip steel surface defects, but
there are lots of difficulties, such as a mass of noise, blurry defect
boundaries, complex backgrounds, and various types of defects.
The existing image SOD methods fail to overcome the above
challenging scenes. To address them, in this article, we propose a
novel two-stage edge reuse network (TSERNet), which consists of
two stages, i.e., prediction and refinement. In the first prediction
stage, we construct a primary net based on the encoder—decoder
architecture. The encoder not only extracts multiscale features
but also generates an edge map. In the decoder, we propose
a novel edge-aware foreground-background integration (EFBI)
module to distinguish the foreground and the background
through edge features and reverse the attention mechanism, and
then exploit the decoder to generate an initial saliency map. In the
second refinement stage, we construct a sub-net based on the
same architecture as that of the first stage. Its encoder extracts
features from the initial saliency map, and its decoder deploys
the edge-aware refinement module (ERM), which reuses the edge
map generated from the first stage, to enhance these features for
purifying the initial saliency map, resulting in the final saliency
map. Comprehensive experiments on the public dataset show that
our proposed TSERNet is consistently superior to 22 relevant
state-of-the-art methods. The code and results of our method are
available at https://github.com/monxxcn/TSERNet.

Index Terms— Edge, reverse attention, salient object detection
(SOD), strip steel surface defects.

NOMENCLATURE

SOD Salient object detection.
TSERNet Two-stage edge reuse network.
EFBI Edge-aware foreground—background

integration.
ERM Edge-based refinement module.
BIG-Part  Background information generation part.
FIG-Part  Foreground information generation part.
S S-measure.
Fp F-measure.
E: E-measure.
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M Mean absolute error.
T.N. Traditional SOD method for natural images.

D.L.N. Deep-learning-based SOD method for natural
images.

D.L.D. Deep-learning-based SOD method for defect
images.

I. INTRODUCTION

S THE foundation of the industrial society, the steel

industry has always been valued by people. People take
it as an important indicator to evaluate the degree of industrial
modernization. So how to improve the quality of steel is an
issue that has attracted much attention in the industry. Subject
to the influence of production technology, surface defects in
the steel produced are inevitable. As shown in the first and
second rows of Fig. 1, the types of strip steel defects are varied,
the first two columns are inclusions, the second two columns
are patches, and the last two columns are scratches. These strip
steel defects seriously affect the quality of steel. Therefore,
an automated accurate steel defect detection method is very
important for the production process.

With the fast development of computer vision, the use of
computer vision for defect detection has become popular [3],
[4], [5]. However, the traditional detection methods heavily
rely on prior knowledge and a lot of constraints. On the other
side, the traditional methods often fail in the highly complex
background. Fortunately, the deep-learning-based methods can
effectively solve these problems. In this article, we explore the
salient object detection (SOD) of strip steel surface defects [1],
which aims at segmenting the area that people are interested in.
For conciseness, in the rest of the article, we specifically use
defects to refer to strip steel surface defects. In general, visual
saliency is the basic mechanism for people to understand the
world, and SOD has been applied to other tasks successfully,
such as object tracking [6], image compression [7], object
segmentation [8], [9], and person reidentification [10].

Recently, SOD of defects has become popular. The tra-
ditional SOD methods of natural images are obviously not
suitable for SOD of defects. The deep-learning-based SOD
methods of natural images have greatly improved the detection
accuracy of natural images. However, in most cases, directly
using the traditional methods or deep-learning-based methods
of natural images to defect images may not achieve good
results. As shown in Fig. 2, the traditional natural image
methods (i.e., 2LSG [11] and BC [12]) perform poorly and can
only roughly calibrate the position of the salient defects. The
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Fig. 1. Visual examples of strip steel surface defects from the
SD-saliency-900 dataset [1] and natural images from the MSRAI10K
dataset [2]. GT means the ground truth.
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Fig. 2. Saliency maps generated by various categories of SOD methods,
in which 2LSG [11] and BC [12] are the traditional natural image methods,
PoolNet [13] and R3Net [14] are the deep-learning-based natural image
methods, and our method is the deep-learning-based defect image method.

detection accuracy of the deep-learning-based natural image
methods (i.e., PoolNet [13] and R3Net [14]) is improved,
but the local details appear blurry or even missing. This is
caused by the huge difference between natural images and
defect images. As shown in Fig. 1, compared with natural
images, defect images are mainly shot in industrial production
scenes. Therefore, the scale, shape, category, illumination and,
external interference of salient objects in strip steel surface
images are different from those in natural images to some
extent. So, it may be inappropriate to directly use the natural
image SOD methods for SOD of defects.

However, we can still use the ideas and principles of
natural image SOD methods to SOD of defects. For exam-
ple, we can use the mainstream architectures of SOD, such
as the encoder—decoder network [15] and side-fusion net-
work [16], to build the model, deploy popular structures, such
as VGG [17] and ResNet [18], to extract the basic features,
introduce the attention mechanisms, such as squeeze-and-
excitation block [19] and CBAM [20], to make the model pay
more attention to the salient regions of features and use other
information of the salient object, such as edge and background,
to participate in the detection.

Based on the above motivation, we propose a novel two-
stage edge reuse network (TSERNet) for SOD of defects,
which follows a two-stage prediction refinement strategy. The
networks of both the stages are built on the encoder—decoder
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architecture. The first stage is a primary net, which is responsi-
ble for generating the initial saliency map. To better predict the
salient defects from multiple aspects, our primary net also gen-
erates an edge map based on the low-level and high-level basic
features generated from the encoder. Meanwhile, we propose a
novel edge-aware foreground—background integration (EFBI)
module that uses the edge map to distinguish the foreground
and background regions in features. With the cooperation of
the encoder—decoder architecture, EFBI modules, and edge,
the primary net generates an initial saliency map, which locates
salient defects but with rough details. Therefore, we propose
a sub-net with the edge-based refinement module (ERM) for
saliency map refinement, whose input is the initial saliency
map and the edge map. ERM not only reuses the edge features
obtained by the primary net but also generates other edge
features through the features extracted from the initial saliency
map. Taking advantage of ERMs, our sub-net can gradually
refine the details of salient defect objects and generate an
accurate saliency map. In addition, inspired by the deep
supervision mechanism [16], we deploy it in our TSERNet.
This way is not only beneficial to network training but also
can better enable the network to enhance the representation of
salient defect objects and edge.

In summary, the main contributions of our work are three-
fold as follows.

1) We propose a novel TSERNet, which consists of a
primary net and a sub-net, for SOD in the defect
images. Our TSERNet follows a two-stage prediction-
refinement strategy, i.e., prediction in the primary net
and refinement in the sub-net, and uses edge information
twice.

2) We propose an EFBI module in the primary net. It can
recover saliency information well from foreground fea-
tures and edge features through reverse attention. Thus,
with the EFBI modules, the primary net can distinguish
the foreground from the background based on edge,
generating the initial saliency map.

3) We propose an ERM in the sub-net. It combines features
of the initial saliency map and edge features of two
different sources for salient region refinement. With
ERMs, the sub-net can refine the initial saliency map of
the primary net, generating the final saliency map with
more accurate boundaries and more precise location for
the defect objects.

The rest of this article is organized as follows. First,
Section II reviews the related work of SOD for natural images
and for defect images. Next, in Section III, we present our
TSERNet in detail. Then, Section IV elaborates the experi-
ments and ablation studies. Finally, we draw the conclusion in
Section V.

II. RELATED WORK

In this section, we briefly introduce the related work of
SOD. First, we introduce the traditional SOD methods for
natural images, and then introduce the deep-learning-based
SOD methods for natural images. Finally, we introduce the
SOD methods specifically designed for defect images.
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A. Traditional SOD Methods for Natural Images

The SOD methods for natural images can be roughly
divided into two types, i.e., the traditional methods and
the deep-learning-based methods. As a pioneering work in
the field of saliency detection, Itti et al. [21] expressed the
problem of visual saliency using a computational model. The
idea of center-surround difference proposed by Itti ef al. was
also adopted by many subsequent methods. For example, Liu
and Gleicher [22] proposed scale-invariant saliency and region
enhanced saliency on the basis of center-surround difference.
To capture the contextual properties of image pixels or regions
better, Li et al. [23] modeled an image as a hypergraph and
analyzed the contrast at patch level. Shi et al. [24] achieved
a lightweight model which is based on color and structure
contrasts and accelerates the detection speed by fusing com-
plementary contrast measures in a pixel-wise adaptive manner.

In addition, priors play an important role in the tradi-
tional methods. To obtain a better prediction result, various
kinds of priors have been added to the traditional methods.
Chang er al. [25] exploited shape information to address
the SOD task using objectness to help estimate saliency.
Wei et al. [26] focused more on the background rather than the
object and used the background information as the priors to
detect the salient regions. Just using the background informa-
tion may be not reliable sometimes. Researchers realized that
the boundary of objects is essential in SOD. In [12], the spatial
layout of the image regions with respect to the image bound-
aries was used to help detect a robust background measure,
named background connectivity prior. Niu et al. [27] further
explored the potential of the background connectivity prior.
They proposed a salient object segmentation method based on
the superpixel and background connectivity prior and actually
boosted the performance. Although the above traditional SOD
methods cannot achieve satisfactory performance, they provide
a lot of inspiration and ideas for follow-up works.

B. Deep-Learning-Based SOD Methods for Natural Images

The detection accuracy of the traditional methods relies
on the handcrafted features. Recently, the deep-learning-based
methods have become popular and have been introduced into
the field of SOD. Relying on the powerful feature extraction
ability of neural network [28], the deep-learning-based meth-
ods eliminate the need for handcrafted features and reduce the
dependence on the prior bias.

Inspired by the solution of edge detection [29],
Hou et al. [16] introduced short connections to the skip-layer
structure for SOD. Zhang et al. [30] explored the way of
aggregating multilevel convolution feature maps and predicted
saliency maps with multiresolution features. Zhang et al. [31]
further explored multiscale information fusion strategy
and designed a bidirectional structure to pass messages
between multilevel features. Chen er al. [32] rethought the
gap between multilevel features and proposed GCPANet to
integrate features from different levels. Gupta et al. [33]
proposed a gate-based context extraction module which
can retain relevant contextual information across multiple
scales. Pang et al. [34] used the features of adjacent layers
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by learning from each other. Gupta et al. [35] paid more
attention to the variability in scales of salient objects and
proposed the adjacent layer attention block and partial
encoder—decoder block to mine abundant scale features
at the current resolution and fuse the multiscale features,
respectively. In [36], Zhang et al. introduced the classic
spatial attention and channel attention to achieve better
performance. Then, Liu et al. [37] proposed the pixelwise
contextual attention to focus more on contextual information.
Most methods are based on the attention mechanisms to focus
on the foreground regions, while Chen et al. [38] constructed
the top—down reverse attention based on the background
information. Zhang et al. [39] proposed a novel progressive
dual-attention residual network (PDRNet) to exploit two
complementary attention maps to guide residual learning,
thus progressively refining prediction in a coarse-to-fine
manner. In addition, researchers continued to improve the
performance of SOD in other aspects. Liu et al. [40] explored
the potential of pooling techniques for SOD. Wang ef al. [41]
deployed the weakly supervision strategy to detect salient
objects.

In addition to the attention mechanism, researchers also real-
ized the importance of edge information in SOD. Liu et al. [13]
and Qin et al. [42] constructed the U-shape network, and
both used the edge features in a residual way to refine the
prediction map. In [43], [44], [45], and [46], researchers
generated the initial prediction map and edge map in parallel
and used the edge map to guide the prediction of saliency
map. Wu et al. [47] introduced not only the edge information
but also the skeleton information to construct an edge-aware
SOD network. In [48], Tu et al. completed the SOD task with
the edge map as the input to the network.

Although the deep-learning-based methods for natural
images have achieved good performance, due to the com-
plexity of defect images, it is not suitable to directly apply
these methods to defect images. Compared with the edge-
based methods, in our work, we not only generate an edge map
to guide prediction but also obtain the final refinement result
in a residual way. Meanwhile, due to the characteristic of strip
steel surface images, we integrate the foreground information,
background information, and edge information to predict the
initial results as accurately as possible in the first stage. Then,
we reuse the edge map in the second stage to refine the initial
results to generate the final prediction map.

C. SOD Methods for Defect Images

Due to the differences between defect images and natural
images, SOD of defect images is more challenging than SOD
of natural images. Therefore, it is inevitable to explore the
special solution for SOD of defect images. Zhou et al. [49]
proposed a traditional SOD method for defect images. They
considered the correlation between the foreground and the
background and noted the double low-rank and sparse char-
acteristics of defect images, resulting in a good performance.
To better carry out the SOD task, in [50], Song et al. pub-
lished the dedicated dataset of strip steel surface defects,
called SD-saliency-900. Moreover, they noted the differences
between the natural images and the strip steel surface defect
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Fig. 3.

Overall framework of our TSERNet, which is built on the encoder—decoder architecture and consists of two parts, i.e., primary net and sub-net.

Primary net is responsible for prediction, while sub-net is responsible for refinement. In the primary net, we first extract the basic features from an input defect
image with a size of 224 x 224 x 3 and generate an edge map in the edge generation module (EGM) based on the low-level and high-level basic features.
Then, we use the basic features and the edge information to generate an initial saliency map in the decoder with the EBFI modules. In the sub-net, we propose
an ERM to reuse the edge information for saliency map refinement and generate the final saliency map. In the training phase, we use the supervision to each
decoder and the EGM. For each decoder, we adopt a hybrid loss function, including the pixel-level BCE loss, the patch-level SSIM loss, the map-level IoU
loss, and the metric-aware F-m loss to supervise the intermediate saliency maps. For the EGM, we adopt the BCE loss to supervise the edge map.

images and proposed an encoder—decoder residual network.
To better integrate the low-level features and semantic features,
they deployed the channel weighted block and the residual
decoder block alternatively. Similar to SOD, Dong et al. [51]
were committed to segmenting the defects and proposed a
global context attention network, in which the feature pyramid
fusion strategy allows the low-resolution information and high-
resolution information to better integrate. To better detect the
defect regions from the complex scenes of strip steel surface
images, Zhou et al. [52] proposed a dense attention-guided
cascaded network and deployed the dense attention mechanism
to steer the deep features pay more concerns to the defect
regions. Zhou et al. [53] also noted the importance of edge
information in SOD of defects. They adopted the U-shape
architecture where the two crucial points are the interactive
feature integration and the edge-guided saliency fusion and
added the edge extraction branch after each decoder block to
preserve the salient object boundaries in the prediction results.

With the development of steel industry, the SOD of
strip steel surface defects attracts researchers’ attention, and
researchers focus on coping with the complexity of defect
images. In this article, we explore the edge information to

address the challenging scenes of defect images. Specifically,
we generate an edge map and use it to distinguish the fore-
ground and the background. We also mine the complementary
information contained in the generated edge map and features
for object details’ refinement.

III. PROPOSED METHOD
In this section, we describe our TSERNet in detail. First,
the overview of our TSERNet is presented in Section III-A.
Then, in Section III-B, we show the details of our EFBI
module. In Section III-C, we elaborate our ERM. Finally,
in Section III-D, we introduce the loss function.

A. Network Overview

As shown in Fig. 3, our TSERNet consists of two key parts,
i.e., primary net for prediction and sub-net for refinement, and
both the parts are based on the encoder—decoder architecture,
which is widely used in the SOD task [1], [54], [55].

The primary net of our TSERNet can be divided into
three parts, including the encoder network, the EGM, and the
decoder network. We adopt ResNet-34 [18] as the encoder
network for basic feature extraction, and it consists of an input
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convolution layer, six encoder blocks, and a bridge block.
The input convolution layer has 64 convolution filters with
a kernel size of 3 x 3 and a stride of 1. Compared with the
original ResNet-34, we do not deploy the pooling operation
after the input layer. We denote these six encoder blocks as
E;E{1’2’3’4’5’6} and the bridge block as Ell’,. Fori =1,2,3,4,
similar to the original ResNet-34 [18], Ei, has three, four,
six, and three BasicBlocks [18], respectively; while for i =
5,6, E’p has three BasicBlocks. El,’, consists of three convo-
lution layers with a kernel size of 3 x 3 and a dilation rate of
2. For an input image I € R??**22%3 we denote the extracted
features of Ei, as f;’e € Rtxwixci where h; is (224/2'71),
w; is (224/271), and ¢; € {64, 128, 256,512,512, 512}. The
output feature of E};) is denoted as f };) . which has the same
size as f (;,, .- Inspired by [56], we add a residual convolution
unit (RCU) [56] to each encoder block to refine the details
of f ’p . via the residual connection for better feature repre-
sentation. Therefore, f ’p . 1s redefined as the output features
of RCU.

Notably, inspired by EGNet [43], in the primary net,
we propose an EGM to integrate f° | which has rich context

p.e’
information, and f i .» which contains details, to generate an

edge map Seqpe € R?2*2241 Ag shown in the top of Fig. 3,
our EGM first implements the edge information fusion via the
elementwise summation, and then uses the multiscale fusion
operation, which has four branches with a kernel size 3 x 3 and
different dilation rates, to collect the edge information in
different receptive fields.

For the decoder network of primary net, we adopt the
EFBI module as the decoder block, and its output fea-
tures are denoted as fl,. € RH*®ix<% where ¢; €
{64, 64, 128, 256,512, 512}. With the above three parts work-
ing together, the primary net finally generates the initial
saliency map Sinita € R224x224x1 T avoid overfitting [57],
each decoder block and Siy, are supervised by the ground
truth.

The sub-net is similar to the primary net, but simpler. Its
encoder network consists of five encoder blocks denoted as
E§€“°2°3°4°5}. For j = 1,2,3,4, the encoder block has one
convolution layer with a max-pooling operation; while for j =
5, the encoder block only has a convolution layer. Considering
that the input of this encoder network is the initial saliency
map Sinitiar Which does not have as much information as the
input image I, the channel number of the encoder block in
the sub-net is limited to 64. The extracted features of E/ are
denoted as f!, € R">*vix¢ where h; is (224/277"), w; is
(224/2771), and c is 64. Correspondingly, we adopt the ERM
as the decoder block of the sub-net, and its output features are
denoted as fI e R"*“i*¢ Through the above operations,
the sub-net purifies Siya and generates the purified saliency
map Spurified € R224x224x1 " which has more accurate details.
Finally, we get the final saliency map Spny € R?24*%24x1 by
adding Sinitial tO Spurified-

B. Edge-Aware Foreground—Background Integration Module

The foreground information plays an important role in the
field of SOD. Some mainstream methods [30], [31] based on
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Fig. 4. Illustration of the edge-aware foreground-background integration
(EFBI) module.

the foreground information have achieved good performance.
Some methods [36], [37] deploy attention mechanism on SOD,
which forces the network to better focus on the foreground
regions in features. In addition to the foreground informa-
tion, the background information steps into researchers’ sight.
Reverse attention [22] is a good practice to incorporate the
background information into the network. The above success-
ful SOD solutions of nature images are worth learning from.

Compared with nature images that contain strong semantic
information, defect images contain weaker semantic informa-
tion, and the border of the salient defects and nonsalient area
in defect images is usually blurry. This characteristic of defect
images makes the encoder difficult to extract effective feature
representations that can strongly distinguish salient defects
and nonsalient area. The above methods for natural images
that only rely on the foreground information or background
information may not be able to cope with this characteristic
well. In addition, some edge-based methods [13], [43], [53]
use edge information in a simple way, such as the elementwise
summation [13], [43] or concatenation [53]. To this end,
we propose an EFBI module, which not only introduces the
foreground and background information but also introduces
the clear edge information to distinguish and integrate them.
We illustrate the structure of the EFBI module in Fig. 4.
Its inputs are f;’e, fi (ff,’e when i = 6) and Seqge,
which are, respectively, generated from the corresponding
stage in the encoder, the previous stage in the decoder, and
the EGM. The EFBI module can be divided into two key
parts, i.e., background information generation part (BIG-Part)
and foreground information generation part (FIG-Part). In the
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following, we elaborate the EFBI module based on these two
parts.

1) Background Information Generation Part: BIG-Part is
shown on the left of Fig. 4, and its inputs are f ’eﬁ)} f f,’e when
i =6)and f 'p,e. Since the output of the previous EFBI module
fij{)g (i €{1,2,3,4,5}) can reflect the salient defects and f}])),e
contains more global semantic information, we extract the
background information from them via reverse attention [22]
and identify the background regions in f ;’e, which has blurry
border.

Concretely, in BIG-Part, we first generate a group of atten-
tion maps from fi}! through the sigmoid activation function,
and then adopt the reverse attention operation to obtain a group
of background maps. After that, we adopt the background
maps to modulate f ;’e and generate the background features
f{;g € Rhxwixci The above operations in BIG-Part can be
expressed as

Fl= G((tes(fif) ®C(fh,), i=1,2,3,4,5 W
EG((es(fh) @C(f).), i=6

where C(-)/C5(-) is one/three convolution layers, and each
convolution layer contains a 3 x 3 convolution layer, a batch
normalization (BN) layer [58], and a ReLU activation func-
tion [59]. 1 is a matrix with the same dimension as the
subtracted features and all the elements are 1, s(-) is a sigmoid
activation function, and ®/© is the elementwise multiplication/
subtraction.

2) Foreground Information Generation Part: FIG-Part is
shown on the right of Fig. 4, and its inputs are Segge and
Fobd (fb; when i = 6). Seqge indicates the clear boundary of
salient defects, and f.}! is sensitive to the edge. Therefore,
we first reverse Seqee and multiply it with f g ’+l to enhance
the pure foreground region, generating the pure foreground
features fl,, € R">“>¢ which can be computed as

oo [ +(C(Fi) @ (10 5(D(Sue))))s i =1,2.3,4,5
Polae(f) @ e s(D(Sw)), =6
)

where D(-) is the downsampling operation.

Then, we directly integrate Scqge With f feb to complete the
foreground region with fine boundaries via the elementwise
summation and apply several convolution layers for feature
smoothing, generating the foreground features f ég € Rhixwixci
as follows:

fég - C3 (fieb (&) Sedge)- (3)

Finally, we integrate f f)g, which contains rich background
information, and f ég, which indicates the foreground rg:gion,
to generate the output features of the EFBI module, f.g., as
follows:

i = Cs(fle @ fl) o

where @ is the elementwise summation.
The above fusion strategy makes f.g, easier to distinguish
the foreground information and background information by the

clear edge information and facilitates the subsequent inference
of salient defects.
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Fig. 5. Illustration of the edge-based refinement module (ERM).

C. Edge-Based Refinement Module

In our TSERNet, the primary net predicts an initial saliency
map Sinitial, Which reflects the salient defects with the blurry
boundary and some noise. Therefore, we construct the second
stage, i.e., sub-net, which aims to refine Sipita. In the sub-
net, we make full use of edge information for salient defects’
refinement. Specifically, we propose the ERM, which plays
an important role in our sub-net. In the ERM, we explore
two types of edge information. The first one is the edge
map Scqee generated in the first stage, and the second one
is extracted from the basic features of the sub-net’s encoder

g,e. We illustrate the structure of ERM in Fig. 5.

First, we extract the edge information carried by the features
themselves as follows:

= ReLU(f], © AVG(

s L)) )

where f! los € € RM>wix¢ ig the self-edge features, AVG(:) is the
average pooling operation, and ReLU(-) is the ReL.U activation
function.

Then, we adopt a direct and adaptive manner to integrate
the self-edge features elgq and the predicted edge map Seqge
via the concatenation-convolution operation, which can be
formulated as follows:

idge = C(Cat( egs? C(D(sedge))) (6)

where f edge € € Rtxwix¢ s the fused edge features, and Cat(-)
is the cross-channel concatenation. Notably, to prevent the
edge information of Scqee from being overwhelmed by f ogs”
we convert Sedge into feature maps with the same dimension
as fl, via a convolution layer. Since fl des aNd Seqge are two
types of edge information from different sources, the above
fusion operation can mine their complementary information,
which is conducive to refining salient defects.

Finally, we adopt the concatenation-convolution operation
to fuse f7, / from the encoder, the fused edge features f’ edge
and the preV10us fit I ! generating the output features of ERM,
S, which can be computed as follows:

C(Cat(fgdge, u,ff“)), i=1,2,3

C(Cat( édge’ s,e’ fj+1))7 .] =4

With the help of ERMs, our sub-net can gradually refine
the boundary of salient defects based on two types of edge
information and generate the purified saliency map Spurified-

i
erm

@)
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D. Loss Function

An effective and suitable loss function can improve the
performance without modifying the network structure and
increasing the model parameters. We adopt the widely used
deep supervision [16] to force our TSERNet focus on salient
regions at different stages. Two kinds of loss functions are used
in our TSERNet, one for the edge supervision denoted as Legge
and the other for the saliency supervision. There are a total of
12 saliency supervisions in our TSERNet, including six ones
in the primary net, four ones in the sub-net, one for Siyital,
and one for Sg,,. For brevity, we denote the six generated
saliency maps of the primary net as Séal,i €{1,2,3,4,5,6},
Zal, the four generated saliency maps of the sub-net

as ' i €{8,9,10, 11}, and Sgna as S'?

sal? sal*

The corresponding
saliency supervision for S, is denoted as L., Thus, the total

loss Liyar of our TSERNet can be formulated as:

Sinitial as S

12
ILltolal = ILledge + z ]L’ial (8)
i=1

For each L., we resize the predicted saliency map to 224 x
224 by upsampling to fit the size of GT.
Specifically, we adopt the classic BCE loss [60] for edge

supervision, which is denoted as
IL'f:dgf: = fbce (Sedge, Gedge) (9)

where pcc(+) is the BCE loss, and Gegge is the ground truth
of edge.

Inspired by some effective SOD solutions [42], [61], [62],
[63], [64], we adopt a hybrid loss function for saliency
supervision, including the classic pixel-level BCE loss, the
patch-level SSIM loss [65], the map-level IoU loss [66], and
the metric-aware F-m loss [67], which is denoted as

Lgal = fbce (S;ala Gsal) + fssim (Sia]) Gsal)
+£IOU (Slsap Gsal) + gFm( lsap Gsal) (10)
where Sgu is the predicted saliency map, and Gg, is the

ground truth of saliency map. Notably, fgim, €1ou, and €pm
are, respectively, denoted as follows:

(2urpy + C1) (20,0 + C2)
(12 + 12+ C) (o2 + 02+ Ca)
where x and y are the corresponding patches from Sg, and
G, respectively, . /u, and o,/p, are the mean and standard
deviation, respectively, of x/y, and C; and C, are set to
0.012 and 0.032, respectively, to avoid the dividing by zero
B > Sa(@) - Gai)

S (S (@) + G i) = Ssa (@) - Gaa(i))

where G, (i) € {0, 1} is the ground-truth value, and Sy (i) €
[0, 1] is the predicted saliency score at the ith pixel

(1+ %) - P(Ssa, Gsar) - R(Ssal, Gsal)
B2 P(Sp, Gsa) + R(Ssal, Gsal)
where P = (TP/(TP + FP)), R = (TP/(TP + FN)),
TP(Sqt, Gat) = Yt Ssa(@) - Gaar(i), FP(Sa, Gua) =

SV S - (1 = Ga(i)), FN(Ssu, Ga) = S0H (1 -
Sq(i) - Ggu (i), and B2 = 0.3.

1—

Y

gssim =

fiou =

12)

mezl_

13)
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Algorithm 1 Training of Our TSERNet
Require: dataSet(I, G, Gedge)
Ensure: Trained TSERNet(.|w)
batchSize < 4, iteration < 26000, current < 0
Set < dataSet(I, Gsai, Gegge, batchSize)
[ <0
for current in range (iteration) do
for (I, Gyu, Gegge) in enumerate Set do
(8! ,» Seage) < TSERNet(I|w), i = 1,2,...,12
I = Liotal
w < update(dl/ow)
if current % 1000 == 0 then
Save(TSERNet(.|w))
end if
if [ is convergent then
return TSERNet(.|w)
end if
end for
end for
return TSERNet(.|w)

IV. VALIDATION OF THE PROPOSED METHOD

A. Experimental Protocol

1) Datasets: We use the public SD-saliency-900 dataset
[50] to train and evaluate the proposed TSERNet. The
SD-saliency-900 dataset includes three defect categories,
i.e., inclusions, patches, and scratches, with a total of
900 images, and contains the corresponding pixel-level ground
truth. All the images are with the resolution of 200 x 200.

2) Implementation Details: We train and test our proposed
TSERNet on the NVIDIA Titan Xp GPU (12 GB memory)
based on the PyTorch [68] platform. We show the network
training process of our TSERNet in Algorithm 1, in which
TSERNet(.|w) is our TSERNet and @ denotes the learnable
parameters. Following EDRNet [1], our training set contains
540 images (180 images per class). We adopt the salt and
pepper noise for data augmentation. During the training phase,
each image is first resized to 256 x 256 and randomly cropped
to 224 x 224. For the test set, EDRNet [1] adopts all the
900 images as the test set, resulting in the test set containing
all the training images, which is unreasonable. Therefore, dif-
ferent from EDRNet [1], we adopt the remaining 360 images
from the SD-saliency-900 dataset as the test set, excluding
images in the training set. We use the pretrained parameters
of ResNet-34 [18] to speed up the loss convergence with the
Adam optimizer [69]. The initial learning rate, betas, eps,
weight decay, and batch size are set to le=3, (0.9, 0.999),
le78, 0, and 4, respectively, and we just train our TSERNet
until the loss converges.

3) Evaluation Metrics: To evaluate our TSERNet and com-
pare with other SOD methods, we use five evaluation metrics,
including S-measure [70], F-measure [71], E-measure [72],
mean absolute error, and precision—recall curve.

a) S-Measure: (S,, o = 0.5) can efficiently evaluate the
structural similarity at object-aware and region-aware levels.
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b) F-Measure: (Fp) pays more attention to the quality
of boundary and efficiently evaluates the edge details of the
prediction results. In our experiment, we adopt its maximum
form, denoted as F 2,““".

c) E-Measure: (E¢) proposed two kinds of information,
i.e., image-level statistics and local pixel matching informa-
tion. In our experiment, we adopt its maximum form, denoted
as EF*™.

d) Mean Absolute Error: (MAE, M) can better reflect
the actual difference between the prediction and the corre-
sponding ground truth at pixel level.

e) Precision—Recall Curve: reflects the relationship
between the precision and the recall.

B. Comparison With State-of-the-Art Methods

We compare our TSERNet with 22 state-of-the-art SOD
methods, which can be divided into three categories. The
first one is the traditional SOD methods for natural images,
including BC [12], 2LSG [11], SMD [74], and RCRR [73].
The second class is the deep-learning-based SOD methods for
natural images, including DSS [16], NLDF [76], PiCANet
[37], R3Net [14], BMPM [31], PFANet [75], PoolNet [13],
CPD [77], BASNet [42], EGNet [43], GCPANet [32], MINet
[34], SAMNet [78], and SUCA [79]. The last one is the deep-
learning-based methods for defect images, including EDRNet
[1], DACNet [52], and EMINet [53]. For a fair comparison,
the saliency maps of the following 14 methods, including BC,
2LSG, SMD, RCRR, DSS, NLDF, PiCANet, R3Net, BMPM,
PFANet, PoolNet, CPD, BASNet, and EDRNet, are derived
from the data published by Song ef al. [1], and the saliency
maps of DACNet and EMINet are released by the authors.
We pick out the same 360 images from the published data as
the test set we used. For EGNet, GCPANet, MINet, SAMNet,
SUCA, and ENFNet, we retrained these six methods with their
default settings using the same training set as our method.

1) Quantitative Comparison: We list the quantitative com-
parison results of our TSERNet and all the compared methods
in Table I. We use four kinds of evaluation metrics, including
Se, M, Egm, and Ff,;“a". Among these four metrics, we want
M to be as small as possible while the remaining three to be
as large as possible.

Overall, our method shows excellent performance com-
pared with the three categories of SOD methods on the
SD-saliency-900 dataset. Because of the inherent disadvan-
tages of the traditional SOD methods mentioned before, our
method is significantly better than these four traditional SOD
methods listed in Table I. The traditional SOD methods cannot
overcome the difficulties of defect images. Our method out-
performs all the deep-learning-based SOD methods for natural
images. GCPANet achieves the best performance among this
category of methods on SD-saliency-900. Compared with
GCPANet, our method achieves about 1.14%, 11.1%, 0.94%,
and 1.95% percentage gain in S,, M, Eg"“", and F /;na",
respectively. Compared with EDRNet and DACNet for defect
images, our method still shows better performance. Specif-
ically, our method has the same value as EDRNet in M
and slightly surpasses it in EZ'**. Furthermore, our method
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TABLE I

QUANTITATIVE RESULTS OF 22 STATE-OF-THE-ART METHODS,
INCLUDING FOUR TRADITIONAL SOD METHODS FOR NATURAL
IMAGES, 15 DEEP-LEARNING-BASED SOD METHODS FOR
NATURAL IMAGES, AND THREE DEEP-LEARNING-BASED SOD
METHODS FOR DEFECT IMAGES, AND OUR TSERNET
ON SD-SALIENCY-900 DATASET. 1/} MEANS A
LARGER/SMALLER SCORE IS BETTER. TOP THREE
RESULTS ARE, RESPECTIVELY, HIGHLIGHTED

IN RED, BLUE, AND

Param SD-saliency-900 [50]
Methods| Type M)} [Sa T M EE™ T F57
BCu [12]] TN. | - |.592 .156 675 470
2LSGi7 [11]| TN. | - |.554 246 .630  .435
SMDi7 [74]| TN. | - [.582 209 .648 466
RCRRys [73]| TN. | - |.533 242 628 392
DSSy7 [16]|[D.LN.[ 6223 [.775 032 893 786
NLDFy7 [76] [D.L.N.| 3548 | 811 .047 904 784
PiCANetis [37] [D.L.N.| 47.22 | 873 .031 958  .865
R3Netis [14]|D.L.N.| 56.16 | .824 .030 927 816
BMPMs [31]|D.L.N.|22.09 [ 822 .037 924  .827
PFANet;o [75]|D.L.N.| 37.27 | 742 081 855  .704
PoolNet1o [13]|D.L.N.| 53.63 | 866 .029 954  .852
CPDyo [77]|D.L.N.| 29.20 | 858 .031 953  .853
BASNetyo [42] | D.L.N.| 87.10 | .866 957 858
EGNeto [43]|D.L.N.|108.07| .867 .028 858
GCPANety [32]|D.L.N.| 67.06 956
MINetzo [34] |D.L.N.| 47.56 | 868 .025 948 857
SAMNety; [78] [D.L.N.| 1.33 |.830 .038 933  .820
SUCA2; [79]|D.L.N.|117.71 .869 956 860
ENFNety; [48]|D.L.N.| 37.27 | .800 .056 919  .789
EDRNet [1]|D.L.D.| 39.31 | .877 .024 964 872
DACNet; [52]|D.L.D.| 98.39 | 875 .024 964 870
EMINety; [53] |[D.L.D.| 99.13 | 877 .024 962  .867
Ours|D.L.D.[189.64] .886 .024 .965  .888

has higher S, and F/;na", e.g., S,: 0.886 (Ours) versus 0.877
(EDRNet), and EZ**: 0.888 (Ours) versus 0.872 (EDRNet).

In addition, the PR curves of all the compared methods are
plotted in Fig. 6. We highlight the top five methods and darken
the PR curves of other methods to distinguish the PR curves
of different methods easily. It is obvious that the PR curve of
our method is the closest one to the top right corner, which
indicates the best performance.

2) Visual Comparison: In Fig. 7, we show the saliency maps
of all the compared methods and our TSERNet. The first three
rows are inclusions, the middle three rows are patches, and the
last three rows are scratches. Obviously, our saliency maps
are very close to the ground truths and are the best of all
the methods. For the traditional methods such as (c) RCRR
and (d) 2LSG, they can only vaguely predict the approxi-
mate position of the salient defects, but cannot outline their
edge details, resulting in unsatisfactory prediction accuracy.
The retrained deep-learning-based SOD methods for natural
images can predict salient defects more accurately. However,
in their predicted saliency maps, there are cases where the
background is predicted as the salient region and the edge of
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Fig. 6. Quantitative comparison in terms of PR curve on SD-saliency-900.
We highlight the top five methods.

salient defects can only be roughly outlined. Compared with
EDRNet, DACNet, and EMINet designed for defect images,
the saliency maps of our TSERNet are visually better than
theirs. EDRNet, DACNet, and EMINet do not perform as well
as our TSERNet in the face of more complex backgrounds,
such as the case of the sixth row, in which salient defects and
background are similar and mixed together. EDRNet, DACNet,
and EMINet generate the similar prediction results, and they
cannot distinguish salient defects from the background in
the right half of the defect image and wrongly highlight
the background regions. Benefiting from the deployment of the
edge reuse and reverse attention, our TSERNet can separate
salient defects from complex backgrounds and generate more
precise saliency maps.

C. Ablation Studies

In this section, we present ablation studies on the
SD-saliency-900 dataset to demonstrate the effectiveness of
components of our TSERNet. To be more intuitive, we divide
the ablation studies into the following two parts: 1) the
individual contribution of each component in TSERNet and
2) the importance of each part in the EFBI module and
ERM. For all the ablation studies, we use the same parameter
configuration as in Section IV-A.

1) Individual Contribution of Each Component in TSERNet:
We provide three variants to evaluate the contribution of sub-
net, EFBI module, and ERM. The experimental results are
presented in Table II.

For the first variant w/o sub-net, we remove the sub-net and
regard Siniia as the network output to prove the effectiveness
of our sub-net. As shown in the first row of Table II, we can
observe that S, and F/‘;"“" of w/o sub-net have a 3.39% and
4.73% decrease, respectively, as well as M has a 20.83%
increase without the sub-net. This shows that sub-net has a
strong ability to refine the local details, and our two-stage
architecture is reasonable.

For the second variant w/o EFBI, we only remove
the EFBI modules from the primary net and adopt the
concatenation-convolution operation to fuse various features to
prove the importance of the EFBI module. The performance

5019812

TABLE II

ABLATION STUDY ON EVALUATING THE INDIVIDUAL CONTRIBUTION OF
EACH COMPONENT IN TSERNET. BEST RESULT IN EACH
COLUMN Is GIVEN IN BOLD

No. Models SD-saliency-900 [SOJ
Sa T M Fg* 1
1 w/o sub-net .856 .029 .846
2 w/o EFBI 871 .027 .861
3 w/o ERM .876 .026 .879
4 Ours .886 024 .888

of w/o EFBI shows that the simple fusion operation makes S,,
and Fg", respectively, drop by 1.69% and 3.04% as well as
a 12.5% increase in M.

For the third variant w/o ERM, we only remove the ERM
from the sub-net and adopt the concatenation-convolution
operation to fuse various features to prove the importance of
ERM. Without ERM, there are a 1.13% and 1.01% decrease in
S, and F /';‘a" as well as a 8.33% increase in M for w/o ERM.
This proves the superiority of our ERM compared with directly
using the concatenation-convolution operation for information
fusion.

2) Importance of Each Part in EFBI Module and ERM:
First, we conduct ablation studies to evaluate the importance
of BIG-Part and FIG-Part of the EFBI module and provide two
variants. The first variant named w/o FIG removes FIG-Part
from the EFBI module, and the second variant named w/o
BIG removes BIG-Part from the EFBI module. We show their
structures in Fig. 8 and report their performance in Table III.
We can observe that the performance of these two variants
is almost identical and is worse than our complete method,
which proves the effectiveness and necessity of FIG-Part
and BIG-Part in the EFBI module. Based on the foreground
information and edge information, the addition of background
information makes S, and Ff,‘;‘a" of w/o BIG, respectively,
increase by 1.03% and 2.54% as well as M decrease by
7.69%. This is due to the edge information that can better
distinguish and fuse the foreground and background informa-
tion in the EFBI module.

Second, we conduct ablation studies to evaluate the impor-
tance of two types of edge information in ERM and provide
two variants. The first variant named w/o self-edge removes
the edge information carried by f ie, and the second variant
named w/0 Segge TEMOVES Segge. We also show their structures
in Fig. 8 and report their performance in Table III. We can
observe that the addition of Segee improves S, and F /;na" of
W/0 Seqge by 0.68% and 1.60%, respectively. The addition of
edge information carried by ie improves S, and Fg™* of
w/o self-edge by 1.14% and 1.02%, respectively. This means
that our complete method which fuses these two types of
edge information can effectively outline the details of salient
defects.

D. Failure Case Analysis

Although our TSERNet shows excellent performance on the
SD-saliency-900 dataset, it still performs unsatisfactorily in
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Fig. 7. Visual comparisons with 22 state-of-the-art methods. (a) Defect image. (b) GT. (c) RCRR [73]. (d) 2LSG [11]. (e) BC [12]. (f) SMD [74]. (g) PFANet
[75]. (h) NLDF [76]. (i) DSS [16]. (j) R3Net [14]. (k) BMPM [31]. (I) PoolNet [13]. (m) PiCANet [37]. (n) CPD [77]. (0) BASNet [42]. (p) EGNet [43].
(q) GCPANet [32]. (r) MINet [34]. (s) SAMNet [78]. (t) SUCA [79]. (u) ENFNet [48]. (v) EDRNet [1]. (w) DACNet [52]. (x) EMINet [53]. (y) TSERNet

(Ours). Zoom-in for the best view.

TABLE III

ABLATION STUDY ON EVALUATING THE IMPORTANCE OF EACH PART IN
EFBI MODULE AND ERM. BEST RESULT IN EACH
COLUMN Is GIVEN IN BOLD

No. Models SD-saliency-900 [50’]
Sa T M Fge= o
1 w/o FIG .876 .026 .867
2 w/o BIG .877 .026 .866
3 w/o self-edge .876 .026 .879
4 w/o Secage .880 .025 .874
5 Ours 886 024 .888

w/o self-edge

w/o Sedge

Fig. 8. Structures of four variants of the EFBI module and ERM.

some cases. We present three types of representative failure
cases in Fig. 9. The first type is shown in the first two columns
of Fig. 9. In this case, we can observe that GTs are labeled
a bit inaccurately, while the saliency maps of our method are
actually more accurate. The second type is shown in the middle
two columns of Fig. 9. Our method does not discriminate

e
¥/
EINEE

Fig. 9.

Defect Image

Three types of failure cases of our method.

very close defects well. The last type is shown in the last two
columns of Fig. 9. Our method may miss some tiny defects.

V. CONCLUSION

In this article, we propose a novel TSERNet to address
SOD in strip steel surface defect images. In the first stage
(i.e., primary net) of our TSERNet, by taking advantage of
edge information, we fuse the foreground information and
background information in an innovative way and distinguish
them well in features, generating an initial saliency map. In the
second stage (i.e., sub-net) of our TSERNet, we reuse the
edge information generated from the first stage and explore
another edge information contained in features to refine the
local details of the initial saliency map, generating a purified
saliency map. We fuse the two saliency maps generated from
the above stages and obtain the final saliency map. In addition,
two kinds of loss functions are used to train our TSERNet
in a deep supervision manner during the training phase.
Extensive experiments on the SD-saliency-900 dataset prove
that our TSERNet achieves the best performance compared
with 22 state-of-the-art methods.
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