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A B S T R A C T

For the salient object detection in optical remote sensing images (ORSI-SOD), many existing methods are
trapped in a local–global mode, i.e., CNN-based encoder binds with a specific global context-aware module,
struggling to deal with the challenging ORSIs with complex background and scale-variant objects. To solve
this issue, we explore the synergy of the global-context-aware and local-context-aware modeling and construct
a preferable global–local–global context-aware network (GLGCNet). In the GLGCNet, a transformer-based
encoder is adopted to extract global representations, combining with local-context-aware features gathered
from three saliency-up modules for comprehensive saliency modeling, and an edge assignment module is
additionally employed to refine the preliminary detection. Specifically, the saliency-up module involves two
components, one for global–local context-aware transfer towards pixel-wise dynamic convolution parameters
prediction, the other for dynamically local-context aware modeling. The corresponding position-sensitive filter
is aware of its previous global-wise focus, thus enhancing the spatial compactness of salient objects and
encouraging the feature upsampling achievement for multi-scale feature combinations. The edge assignment
module enhances the robustness of preliminary saliency prediction and assigns the semantic attributes of
preliminary saliency cues to the shallow-level edge feature to obtain final complete salient objects in a spatially
and semantically global manner. Extensive experiments demonstrate that the proposed GLGCNet surpasses 23
state-of-the-art methods on three popular datasets.
1. Introduction

Simulating the human visual attention mechanism of humans dur-
ing scene-free viewing is termed as visual saliency detection (Wang
et al., 2021b; Wang and Shen, 2018). Compared with visual saliency
detection, salient object detection (SOD) makes a further step to detect
the salient objects (Wang et al., 2020; Li et al., 2021b; Wang et al.,
2019a). SOD is taken as a visual saliency analysis process to facilitate
a variety of real-world applications, such as video segmentation (Wang
et al., 2018c,b), photo cropping (Wang et al., 2019b), semantic seg-
mentation (Wang et al., 2022d, 2021d), and image resize (Wang et al.,
2017), etc. Recently, the application scene of SOD has expanded from
natural scene images (NSIs) to optical remote sensing images (ORSIs)
(Yang et al., 2019b; Xu et al., 2021a; Han et al., 2014). ORSI-SOD is a
challenging task as the acquisition condition of ORSIs with minimal hu-
man intervention is more easily affected by some uncontrollable factors
(e.g., terrain shade, illumination intensity, weather, and shooting time).
This situation demands global-context-aware observation for the whole
scene, and the attribution of the pixel-wise prediction made the local-
context-aware modeling is also indispensable for ORSI-SOD. Till now,
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many popular methods directly draw together the convolution neural
networks (CNNs) (LeCun et al., 1989) based encoder with different
global-context-aware modules.

Absorbing the advantages from the NSI-SOD (Wang et al., 2022a)
and according to the specific characteristics of ORSIs, existing ORSI-
SOD methods (Li et al., 2019; Zhang et al., 2021; Zhou et al., 2022a;
Cong et al., 2021; Tu et al., 2022; Huang et al., 2021; Li et al., 2022b,a;
Huang et al., 2022) achieved impressive detection accuracy with the
promotion of CNNs. The popular methods typically build upon a CNN-
based encoder, densely connecting multi-scale CNN-based features or
designing self-attention mechanism-based modules to capture global
context information. However, these methods are confined to the local–
global scheme, where the postponed global information capture process
may be suboptimal for some challenging scenes, such as the motor-
way that crosses the entire image in Fig. 1, the motorway cannot
be identified owing the methods with local observation at the begin-
ning are easy to be attracted by local regions with strong appearance
contrast. It is difficult to be remedied by subsequent global context-
aware operations. Different from the above methods, GPNet (Liu et al.,
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Fig. 1. Existing local–global context-aware methods are difficult to identify the salient
object ignored in the local context-aware stage. In contrast, our GLGCNet is fully aware
of both local and global contexts, enabling a holistic understanding of the whole ORSI
and segmenting complete salient objects.

2022) embeds global-context-aware operation and multi-scale connec-
tion into a CNN-based encoder for representative feature extraction.
Though available, it lacks the anti-interference capability. How to
stimulate the synergy of global-context-aware and local-context-aware
modeling to tackle challenging scenes, is under-explored in existing
ORSI-SOD methods. To deal with the challenging scenes, we design
a Global–Local–Global Context-aware Network (GLGCNet) for ORSI-
SOD, building the interdependence between global-context-aware and
local-context-aware modeling as shown in Fig. 1. Compared with the
CNN-based encoder, the transformer-based encoder with global long-
range dependencies (Liu et al., 2021d; Mao et al., 2021; Dosovitskiy
et al., 2021), is good at understanding the whole scene content. With
the deepening of the network, the resolution of high-level features
decreases dramatically, which is not conducive to the accurate detec-
tion of some small or irregularly shaped objects. Instead of directly
carrying out static local interaction, i.e., static convolution layer, we
believe the content-adaptive local interaction among adjacent pixels is
beneficial to highlight the attention of these tough objects. Therefore,
the global basic features are dynamically enhanced in the local view
with attentional focus, which corresponds to the global–local trans-
fer, creating inseparable synergy among the global-context-aware and
local-context-aware modeling. Shallow-level features exhibit detailed
boundary information, which is indispensable for complete SOD, but
also carries some background noises. In GLGCNet, we further pursue
complete SOD by selectively enhancing the edge cues of salient objects
and propagating the semantic features of detected salient objects to
them with a spatially and semantically global propagation. The global–
local transfer and the preliminary saliency cues guided propagation
build strong interdependence among global-context-aware and local-
context-aware modeling, making a fully attentional model, with great
adaptability for diverse ORSIs.

In particular, we first extract four-level global basic features from
a transformer-based encoder. The saliency-up module adopts the dy-
namic convolution layer to adaptively achieve local interaction, pre-
serving and refining the structures of salient objects, and also rescales
the enhanced features spatially to promote the combination of features
of adjacent levels. We deploy saliency-up modules on global features of
three levels to progressively restore the resolution of saliency cues for
preliminary saliency detection. The edge assignment module is applied
to the feature of the first level to establish global interaction between
the enhanced low-level feature and the saliency cues for final saliency
detection.

Following the above global–local–global scheme, our GLGCNet can
accurately and completely capture the salient objects without distur-
bances in some challenging scenes, which are difficult for the local–
global scheme based methods, i.e., SARNet (Huang et al., 2021) and
MCCNet (Li et al., 2022b) in Fig. 7. Experimental results shown in
Tables 1 and 2 demonstrate that GLGCNet surpasses 23 state-of-the-art
across three benchmark datasets, which is consistent with the visual
185
comparison in Fig. 7. Moreover, even compared with the lightweight
method, i.e., CorrNet (Li et al., 2022a), our method still has the lowest
computational complexity.

Our main contributions are summarized as follows:

• We propose a transformer-based method for SOD in ORSIs, named
Global–Local–Global Context-aware Network (GLGCNet). Unlike
previous methods that follow the local–global scheme, we develop
a novel global–local–global scheme in our GLGCNet to stimu-
late the synergy of global-context-aware and local-context-aware
modeling.

• We propose a Saliency-up Module to build the global–local context-
aware transfer, that is, handling global context-aware features in a
local manner using content-adaptive dynamic convolution layers.

• We propose an Edge Assignment Module to detect more com-
plete salient objects with sharp boundaries by injecting enhanced
shallow-level features into high-level saliency cues in a spatially
and semantically global manner.

2. Related work

In this section, we first summarize the works of ORSI-SOD, covering
traditional and CNN-based methods, and then briefly describe the
development of the vision transformer and the dynamic filter.

2.1. Salient object detection in optical remote sensing images

With different imaging conditions and interference from environ-
mental factors, the ORSI-SOD task is more challenging than the NSI-
SOD task (Wang et al., 2019d). Similar to the development of most
computer version tasks, the early ORSI-SOD methods were mainly
based on some superpixel-wise handcrafted features (i.e., color, texture,
intensity, histogram, and orientation) and employed classical machine
learning algorithms (e.g., Sparse coding (Zhao et al., 2015), Low-rank
matrix decomposition (Liu et al., 2019b), Quaternion fourier trans-
form (Zhang and Yang, 2014), Wavelet transform (Zhang and Zhang,
2017), etc) to deal with challenge optical remote sensing scenes.

The rise of CNN promotes the significant performance improvement
of the ORSI-SOD task. Due to the lacking of ORSIs data in the early
stage, Zhang and Ma (2021) introduced weakly supervised learning
into ORSI-SOD. As the deep learning supervision scheme (Liang and
Hu, 2015; Wang et al., 2019c; Zhou et al., 2019) works well, the
publicly available ORSI-SOD datasets, i.e., ORSSD (Li et al., 2019),
EORSSD (Zhang et al., 2021), and ORSI-4199 (Tu et al., 2022) were
built. To detect complete salient objects with scale variation, most
existing methods followed the multi-scale architecture accompanied
by effective strategies for context modeling (Zhou et al., 2022a; Li
et al., 2020, 2022b, 2023, 2022c, 2019), for example, constructing a
dense and nested structure with multi-resolution inputs (Li et al., 2019),
adopting multiple convolution layers with different sizes of kernels and
dilation rates (Zhou et al., 2022a; Li et al., 2020, 2022b, 2023, 2022c,
2019) and attention mechanism-based operations to explore foreground
prior, edge clue, background cue, and global cues (Zhang et al., 2021;
Li et al., 2022b,c,a, 2023), introducing global awareness module into
CNN-based encoder (Cong et al., 2021; Liu et al., 2022; Wang et al.,
2022c) to extract representative feature, and employing additional edge
labels to promote the boundary-aware capability of models (Li et al.,
2019; Zhou et al., 2022a).

To sum up, most above methods follow the local–global context-
aware scheme which cannot well deal with challenging scenes. Dif-
ferent from these methods, our GLGCNet employs a transformer-based
backbone to extract multi-level basic global features and adopts a dy-
namic filter to adaptively preserve and enhance important local details
for preliminary prediction. This progress is reversed to most existing
methods, following the global–local scheme. Besides these, we addi-
tionally sharpen the boundary of salient objects by globally propagating



ISPRS Journal of Photogrammetry and Remote Sensing 198 (2023) 184–196Z. Bai et al.
the preliminary saliency cues to purified shallow-level features, instead
of depending on edge supervision like DAFNet (Zhang et al., 2021),
EMFINet (Zhou et al., 2022a), and MJRBM (Tu et al., 2022). Over-
all, our complete framework follows a distinctive global–local–global
scheme to pursue superior performance.

2.2. Vision transformer

The transformer was first presented in the natural language pro-
cessing (NLP) field, which shows great performance by capturing
long-range dependencies among sequence elements. Dosovitskiy et al.
(2021) introduced the ability of global interaction into computer vision
and first applied a transformer to image classification. Subsequently,
lots of improved transformer-based models were proposed in many
aspects, i.e., improving the training efficiency (Chen et al., 2021b;
Touvron et al., 2021), reducing computation complexity (Liu et al.,
2021b; Wang et al., 2022e), and modifying architecture to adapt to
various computer vision tasks (Yuan et al., 2021; Zheng et al., 2021;
Wang et al., 2021c, 2022e; Zhu et al., 2021). Some pioneering methods
were improved to adapt to dense prediction tasks (Wang et al., 2022b;
Chen et al., 2021a), for example, replacing the static window with
shifted window strategy to interact with cross-window information (Liu
et al., 2021b), embedding CNN into multi-head attention block (Wang
et al., 2021c, 2022e) to explicitly model local and global context,
and stacking CNN and transformer blocks to form a new encoder
structure (Chen et al., 2021a). The transformer was also explored in the
field of SOD with fully supervised and weakly supervised manners (Liu
et al., 2021d; Mao et al., 2021).

Inspired by these excellent works, we adopt PVT-v2 as the backbone
of our GLGCNet, anticipating global context information to guide the
subsequent process of local details enhancement and global propaga-
tion.

2.3. Dynamic filter

Static convolution filters are content-agnostic and are shared across
images and pixels, leading to sub-optimal feature learning. Dynamic
filter, as opposed to static convolution, is content adaptive and can
adjust its parameters according to the input features. Deformable con-
volution (Dai et al., 2017) reshaped the convolution kernels to adapt to
the effective reception field. The early proposed dynamic filters (Chen
et al., 2020a; Yang et al., 2019a) adjusted the kernels based on their
inputs during inference by linear combining multiple static convolu-
tions (Yang et al., 2019a). Another convolution parameter adaptation
is achieved by directly generating the kernel weights from the inputs,
embedding with an independent parameter prediction branch (Brun
et al., 2022). By stacking this type of dynamic filter units, DyNet (Neu-
big et al., 2017), SENet (Hu et al., 2020a), and DynamicConv (Chen
et al., 2020b) were constructed, but filter with generated parameters
was still applied in a convolution manner (spatially shared) (Hou et al.,
2021). CARAFE (Wang et al., 2021a) proposed a dynamic layer with
a branch to predict a 2D filter for each pixel, with fewer parameters
and computation complexity. While the channel-wise shared 2D filters
cannot encode channel-specific information.

Our saliency-up module decouples the convolution filter into the
channel and spatial domains to perform a pixel-specific filter on the
ORSI-SOD. This module is spatial sensitivity, which reassembles dy-
namic filtered features to realize feature upsampling, adaptively pre-
serving and highlighting the effective local information of salient ob-
jects. Notably, this module looks complex but simple and lightweight.
186
Fig. 2. Architecture overview of the proposed GLGCNet. For a given image, we first
utilize PVT-V2-B2 (Wang et al., 2022e) to obtain four-scale features. Then, three
relatively high-level features are fed into three saliency-up modules, respectively,
generating discriminative features 𝐔i with resolution amplification. With a convolution,
𝐔i are compressed to the saliency map 𝐒i. Subsequently, the outputs 𝐔2 and 𝐒2 of first
saliency-up module flow into the edge assignment module to propagate the saliency
cues to 𝐅1 for final detection, generating the final saliency map 𝐒1. In the training
phase, only 𝐒1 and 𝐒2 are supervised by 𝐆𝐓.

3. Proposed method

3.1. Network overview

As depicted in Fig. 2, our GLGCNet is a U-shape (Ronneberger et al.,
2015) structure, is comprised of three key parts: the encoder network,
three saliency-up modules, and an edge assignment module.

For the encoder network, we adopt a pyramid vision transformer
(PVT) (Wang et al., 2022e) as an encoder to extract long-range depen-
dencies (i.e., global) features as basic features. Then, the saliency-up
module is employed to enhance the local representations and achieve
feature up-sampling. Three saliency-up modules are connected in series
to progressively realize the preliminary saliency prediction. The edge
assignment module is in charge of the final salient object detection.
And it removes noise and enhances the finer details of detected images
through the propagation of preliminary saliency prediction.

Given an image 𝐈 ∈ R3×𝐻×𝑊 , we first use PVT-V2-B2 (Wang
et al., 2022e) to extract four features with four scales, i.e., 𝐅𝑖 ∈
R𝐶𝑖×

𝐻
2𝑖+1

× 𝑊
2𝑖+1 , where 𝑖 is the stage index and belongs to {1, 2, 3, 4}, 𝐶𝑖

corresponds to each stage is {64, 128, 320, 512}, and the head number
of the self-attention in 𝑖th stage is {1, 2, 5, 8}. Then, the basic features
𝐅𝑖 of three relatively high-level stages (𝑖 ∈ {2, 3, 4}) will be fed into
the corresponding saliency-up module to produce up-sampling features
𝐔𝑖 ∈ R32×𝐻

2𝑖
×𝑊

2𝑖 . For each 𝐔𝑖, a convolution layer is used to generate
saliency map 𝐒𝑖 ∈ R1×𝐻

2𝑖
×𝑊

2𝑖 . The generated 𝐔𝑖 and 𝐒𝑖 of the above three
levels are combined in a top-down pathway. Finally, the proposed edge
assignment module transmits saliency cues of 𝐔2 and 𝐒2 to shallow-
level feature 𝐅1 and infers complete salient objects. For the network
training, we introduce the classic binary cross-entropy (BCE) loss and
intersection-over-union (IoU) loss to supervise two outputs, i.e., 𝐒1 and
𝐒2.

3.2. Saliency-up module

With the deepening of the network, the resolution of high-level
features decreases dramatically, which is not conducive to the accurate
detection of some small or irregularly shaped objects. The extracted
global context feature representation 𝐅𝑖 can roughly locate the location
of salient objects, but the softmax normalization operation to the
quadratic input sequence length, making the pixels belonging to salient
objects with individual properties may be obscured. Accordingly, local
interaction is needed to aggregate structural information of salient ob-
jects. In contrast to directly stacking several layers of static convolution,
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Fig. 3. Illustration of the saliency-up module.
Algorithm 1 Pseudo code of key blocks in the saliency-up module.
# CF: spatial attention feature, F: feature to be filtered
# b: batch size, h: height, w: width, r: dilated ratio
# ch: channel number, k: dynamic kernel size
# o: reduction ratio, p: padding
################### initialization ###################
--------------------- CFP --------------------------
conv = nn.Conv2d(3, 1, 3, p, r)
CFP = nn.Sequential(

nn.AdaptiveAvgPool2d((1,1)),
nn.Linear(ch, ch*o),
nn.Relu(True),
nn.Linear(ch*o, ch*k*k),
FilterNorm(K, ’channel’))

--------------------- SFP --------------------------
SFP = nn.Sequential(

nn.Conv2d(ch, ch, 1),
nn.Conv2d(ch, k*k, 1),
FilterNorm(K, ’spatial’))

--------------------- DAF --------------------------
unfold = nn.Unfold(k, 1, 1, 1)
#################### forward pass ####################
--------------------- CFP --------------------------
cs = conv(CF)
F = F.max(torch.mul(cs, F))
cp = CFP(F) #b, ch*k*k
--------------------- SFP --------------------------
sp = SFP(F) #b, k*k, h, w
--------------------- DAF ---------------------------
cp = cp.view(b, ch, k*k, 1, 1)
sp = sp.unsqueeze(1) #b, 1, k*k, h, w
filter = torch.mul(cp, sp) #b, ch, k*k, h, w
F_unfold = unfold(F) #b, ch*k*k, h, w
FF = F_unfold.view(b, ch, k*k, h, w)
out = torch.mul(FF, filter).sum(dim=2)
return out

we consider the content-adaptive and spatial position-sensitive factors
to preserve and enhance saliency cues in the local view. This is achieved
using a dynamic convolution, which inserts a more diverse and effective
attention mechanism into the convolution kernel space, and decouples
the convolution filter into the channel and spatial domains to perform
a pixel-specific filter on the given feature. We propose the saliency-up
module that introduces saliency cues from the higher level to conduct
adjacent-level contextual complementary, then serves as the global–
local hub, which transfers the given global contextual information into
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the dynamic kernels required by the local connection operation, i.e., dy-
namic convolution, to filter itself, adaptively achieving local interaction
to enhance its representation capability. This module further realizes
feature up-sampling by reassembling the dynamics-filtered features.

As shown in Fig. 3, our saliency-up module is implemented with
the global–local context-aware transfer, and feature upsampling. Specif-
ically, for the saliency-up module corresponding to 𝐅4, its input is
𝐅4, which is generated from 𝐅4 by channel reduction. While for the
saliency-up module corresponding to 𝐅𝑖∈{2,3}, its inputs are 𝐅𝑖 and 𝐒𝑖+1,
respectively, 𝐅𝑖 is the sum of the channel reduced 𝐅𝑖 and 𝐔𝑖+1. We
present our saliency-up module in a Pytorch-like style on Algorithm
1. In the following, we elaborate on this module from the above two
parts.

3.2.1. Global–local context-aware transfer
The global–local context-aware transfer refers to the process of

generating dynamic convolution kernels according to the given global
basic features, which is comprised of multi-scale channel-wise filter
prediction (the convolution filter in the channel domain) and spatial-
wise filter prediction (the convolution filter in the spatial domain)
blocks.

Multi-scale channel-wise filter prediction. We employ improved
spatial-wise attention and channel-wise attention on the channel-wise
filter prediction. The generated processes of the spatial-wise attention
feature 𝐂𝐅𝑖 ∈ R3×ℎ×𝑤 is generated as follows:

𝐂𝐅𝑖 =
{

𝑐𝑜𝑛𝑐𝑎𝑡
(

𝑃𝑚𝑎𝑥(𝐅𝑖), 𝑃𝑎𝑣𝑔(𝐅𝑖),𝐒𝑖+1
)

, 𝑖 = 2, 3
𝑐𝑜𝑛𝑐𝑎𝑡

(

𝑃𝑚𝑎𝑥(𝐅𝑖), 𝑃𝑎𝑣𝑔(𝐅𝑖)
)

, 𝑖 = 4,
(1)

where 𝑐𝑜𝑛𝑐𝑎𝑡(⋅), 𝑃𝑚𝑎𝑥(⋅), and 𝑃𝑎𝑣𝑔(⋅) are feature concatenation, channel-
wise global max pooling, and channel-wise global average pooling,
respectively. Then 𝐂𝐅𝑖 flows into four channel-wise filter prediction
(CFP) blocks with different dilation rates. In each CFP block, a dilated
convolution layer, an element-wise maximum, a squeeze-and-excitation
(SE) operation (Hu et al., 2020a),1 and a filter normalization opera-
tion (Zhou et al., 2021) are applied on 𝐂𝐅𝑖 to generate channel-wise
filter weights 𝛿𝑐𝑖,𝑗 ∈ R(𝑘2×32)×1×1, where 𝑗 is the index of the CFP block,
𝛿𝑐𝑛𝑖,𝑗 ∈ R(𝑘2×1)×1×1 is the convolution weight for the 𝑛th channel, and
𝑘 denotes the kernel size of dynamic convolution layer and is set to 3

1 SE is implemented by a spatial global average pooling (GAP) and two
fully connected layers.
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Fig. 4. Local context-aware saliency-up module. F2 is the feature generated by the
second stage of PVT-V2-B2. We apply saliency-up, ASPP, and CBAM modules on F2,
respectively. SU is the feature generated by the Saliency-up module, ASPP is the feature
generated by ASPP, and CBAM is the feature generated by CBAM.

in this paper. This filter is channel-specific but spatial-agnostic. These
operations are implemented as follows:

𝛿𝑐𝑖,𝑗 = 𝐹𝑁
(

𝑆𝐸
(

𝑀𝑎𝑥(𝑑𝑐𝑜𝑛𝑣𝑗−13×3(𝐂𝐅𝑖)⊙ 𝐅𝑖),𝐅𝑖
)

)

, (2)

where 𝑀𝑎𝑥(⋅, ⋅), ⊙, 𝑑𝑐𝑜𝑛𝑣𝑗−13×3, 𝑆𝐸(⋅), and 𝐹𝑁(⋅) respectively denote
element-wise maximum, element-wise multiplication, a 3 × 3 dilated
convolution layer with a dilation rate of 𝑗 − 1, SE operation, and the
filter normalization operation. The filter normalization is implemented
by zero-mean normalization measured in terms of standard deviations
from the mean.

With multiple dilated convolution layers and the element-wise max-
imum operation, the saliency-up module can learn desired diverse
representations to highlight the obscure pixels of salient objects with
variable sizes. And SE operation further pays more attention to the
feature maps with distinctive attributes. The filter normalization is
adopted to limit the range of the generated filter values, avoiding the
gradient vanishing/exploding during training.

Spatial-wise filter prediction. The spatial sensitivity supports the
detail-oriented feature enhancement. However, the predicted filter of
the CFP block is spatial-agnostic, which is not conducive to subsequent
upsampling. To this end, the spatial-wise filter prediction (SFP) block
is designed, which only contains two 1 × 1 convolution layers and
a filter normalization operator to generate spatial-wise filter weights
𝛿𝑠𝑖,𝑗 ∈ R(𝑘2×1)×ℎ×𝑤 for each pixel of 𝐅𝑖. 𝛿𝑠𝑖,𝑗 adjusts the filter predicted
by CFP, i.e., 𝛿𝑐𝑖,𝑗 , to adapt to any position:

𝛿𝑠𝑖,𝑗 = 𝐹𝑁
(

(

𝑐𝑜𝑛𝑣1×1(𝑐𝑜𝑛𝑣1×1(𝐅𝑖))
)

)

, (3)

where 𝑐𝑜𝑛𝑣1×1(⋅) is the 1 × 1 convolution layer. The SFP block endows
our saliency-up module with the spatial-specific property in an intuitive
way, which enlarges the flexibility of feature recovery and promotes the
subsequent feature upsampling.

Since convolution mainly acts on two channels, the number of
parameters of linear projection in the above two filter prediction blocks
accounts for a large proportion. In total, the number of parameters for
a saliency-up module can be even lower than a static convolution layer.

3.2.2. Feature upsampling
This part consists of four dynamic alignment filter (DAF) blocks and

a Stack&Group convolution&Shuffle operation (Shi et al., 2016).
Dynamic alignment filter. The DAF block is a combination of

unfolding operations and multiplication operations, as presented in
Algorithm 1. And it can filter the input feature by unfolding the inputs
to fit the filters predicted by CFP and SFP blocks.

Following four DAF blocks, we stack four outputs of these DAF
blocks, connecting four values corresponding to each pixel through
group convolution with 𝑐 groups, and shuffling these to achieve feature
upsampling, generating 𝐔𝑖 for the subsequent combination between
features of adjacent levels.

The upsampling operation undertakes unifying feature scales for
multi-level feature combinations, especially for dense prediction tasks.
Compared with the representative upsampling operation, i.e., bilinear
interpolation, and deconvolution, our upsampling operation is content-
adaptive and with less information loss, which is more appropriate for
188
Fig. 5. Illustration of the edge assignment module.

our explored dense prediction task. Notably, the number of dynamic
convolutions can be adjusted according to the upsampling rate.

As shown in Fig. 4, we replace the saliency-up module with classic
atrous spatial pyramid pooling (ASPP) (Chen et al., 2017) and convolu-
tional block attention module (CBAM) (Woo et al., 2018) respectively.
The ASPP based on static convolution with fixed weights only empir-
ically models local connections without the context-aware ability. In
contrast, the content-adaptive local connections among adjacent pixels
implemented by our saliency-up module are beneficial to selectively
recovering the attention of confused pixels in salient objects. This
module creates inseparable and effective synergy among the backbone
and local-context-aware modeling, which is more suitable for complex
ORSIs. From the first image of Fig. 4, the dynamic convolution with
adaptive local smoother makes better use of the global-context-aware
saliency cues and minimizes adverse effects of non-salient region, is
better than directly adopting attention mechanism and static convolu-
tion (Han et al., 2022), i.e., CBAM. The reason is that the saliency-up
module enhances the feature in a spatial-sensitive local window, not
the pixel-wise enhancement adopted by CBAM. As the property of the
pixels in salient objects tends to be consistent, the generated saliency
maps become sharper.

3.3. Edge assignment module

In the studies of dense prediction tasks, shallow-level features con-
taining rich detail information, such as texture and edges, are widely
adopted to complete the segmented objects. Nevertheless, by directly
concatenating the preliminary saliency cues with shallow-level fea-
tures, the details of non-salient objects may confuse the detection,
especially in complicated ORSIs. When we obtain an accurate prelimi-
nary saliency map, directly multiplying the shallow-level feature with
the preliminary saliency map just increases the saliency value of the
salient object pixels with details. On the contrary, this strategy results
in abnormal segmentation results. The effect of refining the preliminary
saliency map is weak. The preliminary saliency cues only require the
supplement of the valuable details of salient objects. Accordingly, we
construct an edge assignment module to enhance the edge cues of
shallow-level features of salient regions with the assistance of pre-
liminary prediction, and model the interaction between the enhanced
shallow-level feature and semantic features of the detected salient
objects in a global view, as depicted in Fig. 5 to promote the complete
saliency detection.

This module works in the mode of non-local connection (Wang
et al., 2018a) and resets the components of query, key, and value to
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Fig. 6. Visualization of edge assignment module.

implement edge injection on preliminary acquired semantic saliency
cues according to the requirements of ORSI-SOD.

Given the saliency-up feature 𝐔2, preliminary saliency map 𝐒2 and
the shallow-level feature 𝐅1, we construct the saliency feature with the
enhanced edge, shallow-level saliency feature, and semantic saliency
feature as query, key, and value respectively. First, we take 𝐒2 as the
mask of 𝐅1 to generate the detailed feature 𝐅𝑠

1 of salient objects as
follow:

𝐅𝑠
1 = 𝐅1 ⊙ 𝐒2. (4)

Simultaneously, we employ a specifically designed edge exploration
(EE) block to improve the effectiveness of the preliminary saliency map
𝐒2 and generate edge feature 𝐅𝑒. In this block, we employ a Gaussian
convolution and a subtraction operation to amplify the preliminary
saliency regions of 𝐒2, and then adopt an improved Sigmoid activation
function (Liao et al., 2022) (i.e., differentiable binarization) to acti-
vate the pixels covered by amplifying saliency region. The above are
formulated in detail as follows:

𝜉𝑏(𝐙𝑝) =
1

1 + 𝑒−𝑚(𝐙𝑝−�̄�)
, (5)

where 𝜉𝑏(⋅) is the differentiable binarization operation, 𝑚 indicates the
amplifying factor set to 10 empirically, 𝑝 is the position of pixel in 𝐙, �̄�
is the mean of all pixels in 𝐙. This differentiable binarization position
operation helps the edge exploration block to enhance edge pixels from
the shallow-level feature, which greatly enhances the robustness and
stability of 𝐅𝑒

1.

𝐅𝑒
1 = 𝐅1 ⊙

(

𝜉𝑏
(

𝐒2 ⊖ 𝑔𝑐𝑜𝑛𝑣
(

𝐒2
))

⊕ 𝐒2
)

, (6)

where 𝑔𝑐𝑜𝑛𝑣(⋅) is a convolution operation with a Gaussian kernel and
zero bias to blur the edge of salient objects, the differences produced
by the subtraction operation tend to emphasize the edges of salient
objects. From Fig. 6, Then, we try to enhance 𝐅𝑒

1 and 𝐅𝑠
1 using the

concatenation-channel attention operation, obtaining features 𝐐 and
𝐅𝑘
1 :

𝐐 = 𝐅𝑒
1 ⊕ 𝐅𝑒

1 ⊙ 𝐶𝐴(𝑐𝑜𝑛𝑐𝑎𝑡(𝐅𝑒
1,𝐅

𝑠
1)), (7)

𝐅𝑘
1 = 𝐅𝑠

1 ⊕ 𝐅𝑒
1 ⊙ 𝐶𝐴(𝑐𝑜𝑛𝑐𝑎𝑡(𝐅𝑒

1,𝐅
𝑠
1)), (8)

where 𝐶𝐴(⋅) is a channel attention operation, 𝐐 is defined as query.
To decrease the computation complexity, we apply average pooling
and convolution operations on 𝐅𝑘

1 and 𝐔2 to obtain 𝐊 and value 𝐕,
respectively:

𝐊 = 𝑐𝑜𝑛𝑣1×1
(

𝐴𝑃 (𝐅𝑒
1)
)

, (9)

𝐕 = 𝑐𝑜𝑛𝑣1×1
(

𝐴𝑃 (𝐔2)
)

, (10)

where 𝐊, 𝐕, and 𝐴𝑃 (⋅) are key, value, and average pooling, respec-
tively.

The key can be regarded as the detail feature of salient objects, and
value is the semantic feature of salient objects. After matrix multipli-
cation of query and key, the relation of edge pixels and salient regions
are connected, which is defined as M:

𝑇 (11)
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𝐌 = 𝜁 (𝐐 ⊗𝐊),
𝐅𝑟
1 = 𝐌𝑇 ⊗ 𝐕, (12)

where 𝜁 and ⊗ denote softmax layer and matrix multiplication, re-
spectively. Then we project the acquired M onto the semantic level,
i.e., aggregating pixels with similar semantic to one vertex to generate
𝐅𝑟
1 for the final saliency map is 𝐒1:

𝐒1 = 𝑐𝑜𝑛𝑣1×1(𝐅𝑟
1 ⊕ 𝐔2). (13)

As shown 𝐒2 in Fig. 6, considering the inaccurate of the preliminary
saliency map, i.e., the detected salient objects are incomplete, the road
forks in the first image are not detected. The EE block expands the
saliency region to extract valuable shallow-level edge features, e.g., 𝐅𝑒

1
in Fig. 6. The following channel-wise enhancement operation further
minimizes the detractors from the background, i.e., 𝐐. By connecting
detail-semantic in a spatially global view, EA accurately assigns the se-
mantic attributes of salient objects to finer detailed features to improve
the completeness of salient objects. As shown in Fig. 5, the Flops of
this module is 0.0096G, which is lower than the classic self-attention
operation. The Flops of the series operation of static convolution layer
and concatenation is 0.1368G. Our proposed module makes a good
trade-off between computational complexity and effectiveness.

3.4. Comprehensive loss function

As shown in Fig. 2, similar to some existing SOD methods (Qin
et al., 2019; Li et al., 2021a; Zhou et al., 2022a), we combine the classic
pixel-level BCE loss with map-level IoU loss as our loss function. A
comprehensive loss function L𝑖 is constructed to supervise the predicted
saliency map. The resolutions of the generated saliency maps and
ground truth are all resized to 352 × 352. This can be formulated as:

L𝑖 = 𝓁𝑏𝑐𝑒(𝐒𝑖,𝐆) + 𝓁𝑖𝑜𝑢(𝐒𝑖,𝐆), (14)

where 𝐆 ∈ {0, 1}352×352 is the ground truth, and 𝐒𝑖 ∈ [0, 1]352×352(𝑖 =
1, 2) is the predicted saliency map, 𝓁𝑏𝑐𝑒(⋅) is BCE loss, and 𝓁𝑖𝑜𝑢(⋅) is IoU
loss. The total loss Ltotal of our GLGCNet in the training phase is the
sum of L1 and L2. This loss function is enough to urge our GLGCNet to
adapt to a variety of complicated ORSIs.

4. Experiments

4.1. Experimental protocol

4.1.1. Datasets
We conduct our experiments on three ORSI datasets (see Table 1),

including EORSSD, ORSSD, and ORSI-4199. The ORSSD dataset (Li
et al., 2019) contains 800 ORSIs, where 600 images are for training
and 200 images for testing. The EORSSD dataset (Zhang et al., 2021)
is an extended version of ORSSD and contains 1400 training images
and 600 testing images. The ORSI-4199 dataset (Tu et al., 2022) is the
biggest and most challenging ORSI-SOD dataset, where 2000 images
for training and 2199 images for testing. These three datasets cover
various salient objects, i.e., airplane, ship, car, river, pond, bridge,
stadium, beach, etc, and the scenes with cluttered backgrounds and
scatter distribution are more challenging than NSIs.

4.1.2. Implementation details
The adopted backbone is PVT-V2-B2 pretrained by ImageNet-1k

(Russakovsky et al., 2015). The experiments are implemented on the
platform of Pytorch (Paszke et al., 2019) by adapting an NVIDIA GTX
2080Ti GPU (11G memory). During training, except for the parameters
of the backbone, the additional parameters in the proposed GLGCNet
are initialized with the random normal distribution, Adam (Kingma and
Ba, 2015) is taken as the optimizer to train GLGCNet, and respectively
set the learning rate and weight decay to 10−5 and 10−4. All imported
ORSIs are resized into 352 × 352. For each training iteration of the
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training stage, we set the number of a batch to 10. For the EORSSD
dataset (Zhang et al., 2021), we train our GLGCNet with 11,200 aug-
mented pairs of ORSI and GT for 38 epochs. For the ORSSD dataset (Li
et al., 2019), the proposed GLGCNet is trained with 4800 augmented
pairs for 45 epochs. While for the ORSI-4199 dataset (Tu et al., 2022),
the proposed GLGCNet is trained with 16,000 augmented pairs for 38
epochs.

4.1.3. Evaluation metrics
We use S-measure (Fan et al., 2017) (𝑆𝛼 , 𝛼 = 0.5), maximum F-

easure (Achanta et al., 2009) (𝐹max
𝛽 , 𝛽2 = 0.3), mean F-measure

𝐹mean
𝛽 ), adaptive F-measure (𝐹 adp

𝛽 ), maximum E-measure (Fan et al.,
018) (𝐸max

𝜉 ), mean E-measure (𝐸mean
𝜉 ), adaptive E-measure (𝐸adp

𝜉 ),
and mean absolute error (MAE, ) to evaluate the performance of our
proposed method and all compared methods.

Additionally, we binarize the saliency maps with thresholds ranging
from 0 to 255 and form Precision-Recall curves for the relative state-
of-the-art methods by connecting the generated pairs of precision and
recall scores.

4.2. Comparison with state-of-the-art methods

To evaluate the effectiveness of the proposed model, 23 state-of-
the-art models are adopted for comparison, including DSS (Hou et al.,
2017), RADF (Hu et al., 2018), R3Net (Deng et al., 2018), PoolNet (Liu
et al., 2019a), EGNet (Zhao et al., 2019), GCPA (Chen et al., 2020c),
MINet (Pang et al., 2020), ITSD (Zhou et al., 2020), GateNet (Zhao
et al., 2020), SUCA (Li et al., 2021c), PA-KRN (Xu et al., 2021b),
VST (Liu et al., 2021d), LVNet (Li et al., 2019), DAFNet (Zhang et al.,
2021), MJRBM (Tu et al., 2022), SARNet (Huang et al., 2021), EMFINet
(Zhou et al., 2022a), ERPNet (Zhou et al., 2022b), ACCoNet (Li et al.,
2022c), MCCNet (Li et al., 2022b), CorrNet (Li et al., 2022a), GP-
Net (Liu et al., 2022), and HFANet (Wang et al., 2022c). For the
methods with the released source code, Parameters, FLOPs and Speed
are provided. For a fair comparison, we use either the implementations
with recommended parameter settings or saliency maps provided by
the authors.

4.2.1. Quantitative comparison
In Table 1, we report the quantitative comparison results of our

method and all compared methods on three ORSI-SOD datasets with
respect to 𝑆𝛼 , 𝐹max

𝛽 , 𝐹mean
𝛽 , 𝐹 adp

𝛽 , 𝐸max
𝜉 , 𝐸mean

𝜉 , 𝐸adp
𝜉 , , and measure

12 competitive SOD methods and our GLGCNet in terms of the PR
curves, shown in Fig. 8.

Our method performs excellently on the tested two datasets as
reported in Table 1, GLGCNet surpasses all compared methods on
almost all evaluated metrics. On the EORSSD dataset, the 𝐸max

𝜉 of our
method lags behind that of DAFNet, but other evaluated scores are
much higher than the indicators of DAFNet (e.g., 𝑆𝛼 : 0.9375 (Ours)
vs. 0.9166 (DAFNet), 𝐹 adp

𝛽 : 0.8499s (Ours) vs. 0.6427 (DAFNet), 𝐸adp
𝛽 :

0.9701 (Ours) vs. 0.8446 (DAFNet), : 0.0055 (Ours) vs. 0.0060
(DAFNet)), and on ORSSD dataset, only 𝐹mean

𝛽 of GLGCNet is slightly
lower than that of MCCNet. Besides these, in Fig. 8, our method is
represented as the outermost red line, which is superior to the other
compared methods. This is consistent with the remarkable quantitative
results of our method on three datasets in Tables 1 and 2.

Even though the CNN-based NSI-SOD methods are retrained on
ORSIs, most CNN-based NSI-SOD methods are generally inferior to
the specialized ORSI-SOD methods, which illustrates the necessity of
proposing specialized solutions for the ORSI-SOD.

We measure the computational complexity in terms of inference
speed (without I/O time), network parameters, and FLOPs, which are
captured from the available public ORSI-SOD benchmarks (Li et al.,
2019; Zhang et al., 2021) and our retraining, and report them in
Table 1. Compared with state-of-art methods (including NSI-SOD and
ORSI-SOD methods), the inference speed of our method is at the
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midstream level (20∼30 fps), and network parameters and smaller
FLOPs of our method rank at the leading level. The low computational
complexity of our GLGCNet benefits from the fact that our key modules
are applied to compressed basic features with only 32 channels. The
parameters and FLOPs of GPNet (Liu et al., 2022) rank second, but
the performance of this method is far inferior to our GLGCNet. The
poor performance results from the ignorance of the gap between the
global-context-aware and local-context-aware. In our GLGCNet, the gap
is considered in the saliency-up module and filled by the global–local
transfer. Compared with the lightweight method CorrNet which focuses
on simplifying the underlying implementation to decrease computation
complexity, the inference speed of our model is slower than that of
the CorrNet model due to the unfold operation of the saliency-up
module, but the detection performance exceeds that of this model. From
Tables 1 and 2, the transformer-based models, i.e., VST (Liu et al.,
2021d) and HAFNet (Wang et al., 2022c) require more parameters and
computation, and they also achieve satisfactory performance. VST per-
forms better on the ORSI-4199 dataset with more training data, which
also exposes the performance limitations of VST on small datasets.
Our method with great adaptability is friendly to small datasets. From
the above quantitative comparison and computational complexity com-
parison, our model makes a good trade-off between performance and
computational complexity, which is effective and efficient.

4.2.2. Visual comparison
As shown in Fig. 7, we post some representative scenes of OR-

SIs, including tiny salient objects (airplane and car), narrow salient
objects with complex geometry (river, pool, and dyke), big salient
objects (building and motorway), the complex scene with confusing
background (shadow), and complex scene with interference (fog). The
three CNN-based ORSI-SOD methods perform certain competitiveness
in several sporadic scenes, but cannot deal with challenging ORSIs.

The transformer-based methods, i.e., VST and HFANet, lack the
capabilities of details capture and anti-interference. These are remedied
by our designed edge assignment and saliency-up modules. Concretely,
for the first and third scenes, the two traditional methods perform
worst, the tiny salient objects can be located by most of the compared
methods. Compared with these methods, the salient objects detected by
our method have finer boundaries without noise, which is profited from
the adopted edge assignment module. Moreover, for the detection of the
salient objects with complex topology in the seventh and eighth lines,
our GLGCNet with global–local context-aware transfer of saliency-up
modules performs excellently in competition.

4.3. Ablation studies

To gain insight into our key components, we do extensive abla-
tion experiments on ORSSD and EORSSD datasets to investigate their
effectiveness of these, including the effectiveness of the global–local–
global scheme, the design rationality of the saliency-up module, and
the effectiveness of the edge assignment module. For fair experiments,
we rigorously retrain each variant with the same settings as the original
GLGCNet.

4.3.1. The effectiveness of key components
To evaluate the effectiveness of the global–local–global scheme and

our key modules, we quantitatively measure the performance of GLGC-
Net with flexible backbones, the performance improvements brought by
the proposed modules on flexible backbones, and the indispensability
of the saliency-up and edge assignment modules.

The effectiveness of global–local–global scheme. The backbone
of the proposed GLGCNet is flexible and replaceable. To demonstrate
that, we replace the originally adopted PVT-V2-B2 with four com-
mon used backbones, i.e., VGG16 (Simonyan and Zisserman, 2014),
ResNet50 (Simonyan and Zisserman, 2014), tiny Swin transformer (Liu
et al., 2021b), and PVT-V2-B3. Notably, on account of the VGG16
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Table 1
Benchmarking results of 23 leading SOD methods on EORSSD and ORSSD datasets. The comparison methods are 11 CNN-based NSI-SOD methods (C.N.), 1 transformer-based
NSI-SOD method (T.N.), 9 CNN-based ORSI-SOD methods (C.R.), 1 hybrid encoder-based ORSI-SOD method (H.O.), and 1 transformer-based ORSI-SOD method (T.O.). ↑ & ↓ denote
that larger and smaller are better, respectively. The top three results are marked in red, blue and green, respectively.

Methods Type Speed #Param FLOPs EORSSD (Zhang et al., 2021) ORSSD (Li et al., 2019)

(fps) ↑ (M) ↓ (G) ↓ 𝑆𝛼 ↑ 𝐹max
𝛽 ↑ 𝐹mean

𝛽 ↑ 𝐹adp
𝛽 ↑ 𝐸max

𝜉 ↑ 𝐸mean
𝜉 ↑ 𝐸adp

𝜉 ↑  ↓ 𝑆𝛼 ↑ 𝐹max
𝛽 ↑ 𝐹mean

𝛽 ↑ 𝐹adp
𝛽 ↑ 𝐸max

𝜉 ↑ 𝐸mean
𝜉 ↑ 𝐸adp

𝜉 ↑  ↓

DSS17 (Hou et al., 2017) C.N. 8 62.23 114.6 .7868 .6849 .5801 .4597 .9186 .7631 .6933 .0186 .8262 .7467 .6962 .6206 .8860 .8362 .8085 .0363
RADF18 (Hu et al.,
2018)

C.N. 7 62.54 214.2 .8179 .7446 .6582 .4933 .9140 .8567 .7162 .0168 .8259 .7619 .6856 .5730 .9130 .8298 .7678 .0382

R3Net18 (Deng et al.,
2018)

C.N. 2 56.16 47.5 .8184 .7498 .6302 .4165 .9483 .8294 .6462 .0171 .8141 .7456 .7383 .7379 .8913 .8681 .8887 .0399

PoolNet19 (Liu et al.,
2019a)

C.N. 25 53.63 123.4 .8207 .7545 .6406 .4611 .9292 .8193 .6836 .0210 .8403 .7706 .6999 .6166 .9343 .8650 .8124 .0358

EGNet19 (Zhao et al.,
2019)

C.N. 9 108.07 291.9 .8601 .7880 .6967 .5379 .9570 .8775 .7566 .0110 .8721 .8332 .7500 .6452 .9731 .9013 .8226 .0216

GCPA20 (Chen et al.,
2020c)

C.N. 23 67.06 54.3 .8869 .8347 .7905 .6723 .9524 .9167 .8647 .0102 .9026 .8687 .8433 .7861 .9509 .9341 .9205 .0168

MINet20 (Pang et al.,
2020)

C.N. 12 47.56 146.3 .9040 .8344 .8174 .7705 .9442 .9346 .9243 .0093 .9040 .8761 .8574 .8251 .9545 .9454 .9423 .0144

ITSD20 (Zhou et al.,
2020)

C.N. 16 17.08 54.5 .9050 .8523 .8221 .7421 .9556 .9407 .9103 .0106 .9050 .8735 .8502 .8068 .9601 .9482 .9335 .0165

GateNet20 (Zhao et al.,
2020)

C.N. 25 100.02 108.3 .9114 .8566 .8228 .7109 .9610 .9385 .8909 .0095 .9186 .8871 .8679 .8229 .9664 .9538 .9428 .0137

SUCA21 (Li et al.,
2021c)

C.N. 24 117.71 56.4 .8988 .8229 .7949 .7260 .9520 .9277 .9082 .0097 .8989 .8484 .8237 .7748 .9584 .9400 .9194 .0145

PA-KRN21 (Xu et al.,
2021b)

C.N. 16 141.06 617.7 .9192 .8639 .8358 .7993 .9616 .9536 .9416 .0104 .9239 .8890 .8727 .8548 .9680 .9620 .9579 .0139

VST21 (Liu et al., 2021d) T.N. 23 44.03 23.2 .9208 .8716 .8263 .7089 .9743 .9442 .8941 .0067 .9365 .9095 .8817 .8262 .9810 .9621 .9466 .0094

LVNet19 (Li et al., 2019) C.O. 1.4 - - .8630 .7794 .7328 .6284 .9254 .8801 .8445 .0146 .8815 .8263 .7995 .7506 .9456 .9259 .9195 .0207
DAFNet21 (Zhang et al.,
2021)

C.O. 26 29.35 68.5 .9166 .8614 .7845 .6427 .9861 .9291 .8446 .0060 .9191 .8928 .8511 .7876 .9771 .9539 .9360 .0113

MJRBM21 (Tu et al.,
2022)

C.O. 32 43.54 95.7 .9197 .8656 .8239 .7066 .9646 .9350 .8897 .0099 .9204 .8842 .8566 .8022 .9623 .9415 .9328 .0163

SARNet21 (Huang et al.,
2021)

C.O. 47 25.91 129.7 .9240 .8719 .8541 .8304 .9620 .9555 .9536 .0099 .9134 .8850 .8619 .8512 .9557 .9477 .9464 .0187

EMFINet21 (Zhou et al.,
2022a)

C.O. 25 107.26 480.9 .9290 .8720 .8486 .7984 .9711 .9604 .9501 .0084 .9366 .9002 .8856 .8617 .9737 .9671 .9663 .0109

ERPNet22 (Zhou et al.,
2022b)

C.O. 50 56.48 87.2 .9210 .8632 .8304 .7554 .9603 .9401 .9228 .0089 .9254 .8974 .8745 .8356 .9710 .9566 .9520 .0135

ACCoNet22 (Li et al.,
2022c)

C.O. 81 102.55 180.0 .9290 .8837 .8552 .7969 .9727 .9653 .9450 .0074 .9437 .9149 .8971 .8806 .9796 .9754 .9721 .0088

MCCNet22 (Li et al.,
2022b)

C.O. 95 67.65 112.8 .9327 .8904 .8604 .8137 .9755 .9685 .9538 .0066 .9437 .9155 .9054 .8957 .9800 .9758 .9735 .0087

CorrNet22 (Li et al.,
2022a)

C.O. 100 4.09 21.1 .9289 .8778 .8620 .8311 .9696 .9646 .9593 .0083 .9380 .9129 .9002 .8875 .9790 .9746 .9721 .0098

GPNet22 (Liu et al.,
2022)

H.O. 47 25.95 13.3 .9233 .8687 .8447 .8132 .9672 .9617 .8132 .0085 .9185 .8829 .8683 .8545 .9638 .9590 .9581 .0125

HFANet22 (Wang et al.,
2022c)

T.O. 26 60.53 68.3 .9380 .8876 .8681 .8365 .9740 .9679 .9644 .0070 .9399 .9112 .8981 .8819 .9770 .9712 .9722 .0092

Ours T.O. 21 25.15 9.8 .9375 .8924 .8714 .8499 .9803 .9757 .9701 .0055 .9488 .9236 .9054 .8931 .9864 .9820 .9800 .0071
Table 2
Quantitative comparisons with state-of-the-art NSI-SOD and ORSI-SOD methods on the ORSI-4199 dataset. We mark the top three results in red, blue, and green respectively.

Methods Type ORSI-4199 (Tu et al., 2022)

𝑆𝛼 ↑ 𝐹max
𝛽 ↑ 𝐹mean

𝛽 ↑ 𝐹 adp
𝛽 ↑ 𝐸max

𝜉 ↑ 𝐸mean
𝜉 ↑ 𝐸adp

𝜉 ↑  ↓

R3Net18 (Deng et al., 2018) C.N. .8142 .7847 .7790 .7776 .8880 .8722 .8645 .0401
PoolNet19 (Liu et al., 2019a) C.N. .8271 .8010 .7779 .7382 .8964 .8676 .8531 .0541
EGNet19 (Zhao et al., 2019) C.N. .8464 .8267 .8041 .7650 .9161 .8947 .8620 .0440
BASNet19 (Qin et al., 2019) C.N. .8341 .8157 .8042 .7810 .9069 .8881 .8882 .0454
MINet20 (Pang et al., 2020) C.N. .8665 .8531 .8457 .8364 .9297 .9231 .9077 .0344
GateNet20 (Zhao et al., 2020) C.N. .8680 .8626 .8414 .7946 .9369 .9199 .8816 .0357
SAMNet21 (Liu et al., 2021c) C.N. .8409 .8249 .8029 .7744 .9186 .8938 .8781 .0432
HVPNet21 (Liu et al., 2021a) C.N. .8471 .8295 .8041 .7652 .9201 .8956 .8687 .0419
ENFNet21 (Tu et al., 2021) C.N. .7766 .7285 .7177 .7271 .8370 .8107 .8235 .0608
SUCA21 (Li et al., 2021c) C.N. .8794 .8692 .8590 .8415 .9438 .9356 .9186 .0304
PA-KRN21 (Xu et al., 2021b) C.N. .8491 .8415 .8324 .8200 .9280 .9168 .9063 .0382

VST21 (Liu et al., 2021d) T.N. .8790 .8717 .8524 .7947 .9481 .9348 .8997 .0281

DAFNet21 (Zhang et al., 2021) C.O. .8552 .8458 .8261 .7819 .9220 .9007 .8905 .0396
MJRBM22 (Tu et al., 2022) C.O. .8593 .8493 .8309 .7995 .9311 .9102 .8891 .0374
EMFINet22 (Zhou et al., 2022a) C.O. .8675 .8584 .8479 .8186 .9340 .9257 .9136 .0330
ERPNet22 (Zhou et al., 2022b) C.O. .8670 .8553 .8374 .8024 .9290 .9149 .9024 .0357
ACCoNet22 (Li et al., 2022c) C.O. .8775 .8686 .8620 .8581 .9412 .9342 .9167 .0314
CorrNet22 (Li et al., 2022a) C.O. .8623 .8560 .8513 .8534 .9330 .9206 .9142 .0366
MCCNet22 (Li et al., 2022b) C.O. .8746 .8690 .8630 .8592 .9413 .9348 .9182 .0316
GPNet22 (Liu et al., 2022) H.O. .8573 .8450 .8396 .8371 .9263 .9184 .9084 .0384
HAFNet22 (Wang et al., 2022c) T.O. .8767 .8700 .8624 .8323 .9431 .9336 .9191 .0314

Ours T.O. .8839 .8808 .8712 .8672 .9508 .9469 .9245 .0274
191
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Fig. 7. Visual comparisons with 15 representative state-of-the-art methods, including 1 transformer-based NSI-SOD method (VST Liu et al., 2021d), 1 transformer-based ORSI-SOD
method (HFANet Wang et al., 2022c), 1 hybrid encoder-based ORSI-SOD methods (GPNet Liu et al., 2022), 10 CNN-based ORSI-SOD methods (CorrNet Li et al., 2022a, GPNet Liu
et al., 2022, MCCNet Li et al., 2022b, EMFINet Zhou et al., 2022a, MJRBM Tu et al., 2022, ACCoNet Li et al., 2022c, ERPNet Zhou et al., 2022b, SARNet Huang et al., 2021,
DAFNet Zhang et al., 2021, and LVNet Li et al., 2019), 3 CNN-based NSI-SOD methods (PA-KRN Xu et al., 2021b, ITSD Zhou et al., 2020, and SUCA Li et al., 2021c) on various
scenes.
Fig. 8. Quantitative comparison in terms of PR curve on three datasets for ORSI-SOD.
having five feature extraction blocks, the variant is embedded with
four saliency-up modules. We retrain these four variants and pro-
vide the quantitative results in Table 3. The VGG16-based variant
and ResNet50-based variants with CNN-based backbone belong to
local–global scheme-based methods, which perform inferior to other
transformer-based variants, and with four saliency-up modules, the
VGG16-based variant cost more consumption with the highest Flops.
With the improvement of basic feature extraction ability, the perfor-
mance of the variant with PVT-V2-B3 has indeed slightly improved to
a certain extent. But this variant has more FLOPs consumption and pa-
rameters than the original GLGCNet. When replacing the backbone with
the tiny Swin-Transformer, the performance is competitive with the
original network. These above all indicate that the extraction of global
basic features does promote the optical ORSI-SOD task. And compared
192
with the normal local–global scheme, the adopted global–local–global
scheme is more adaptable to this task.

The performance improvement brought by the proposed mod-
ules. Additionally, we construct four types of backbone-based UNet
by removing our designed modules. The performance improvement
brought by our proposed modules can be observed by comparing the
pure UNets and corresponding variants (e.g., VGG16-UNet→VGG16-
Ours: 4.27%/5.27%/5.39% on EORSSD/ORSSD/ORSI-4199 in 𝑆𝛼). Be-
sides the performance improvements, the lower computational com-
plexity and fewer network parameters also demonstrate the superiority
of the saliency-up and edge assignment modules. From Table 3, the
performance improvement of CNN-based variants is more obvious than
that of transformer-based variants, the reason is that the closer to
the upper-performance limit, the harder it is to improve. For the
PVTv2-B3 backbone with the strongest feature representative ability,
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Table 3
Performance of GLGCNet with flexible backbones.

Backbones #Param FLOPs EORSSD ORSSD ORSI-4199

(M) ↓ (G) ↓ 𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp

𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓

VGG16-UNet 15.21 23.0 .8819 .8075 .0126 .8765 .8194 .0228 .8248 .7953 .0500
VGG16-Ours 15.20 22.8 .9246 .8279 .0089 .9292 .8551 .0103 .8707 .8521 .0309

ResNet50-UNet 24.70 10.9 .8864 .7466 .0114 .9001 .8277 .0146 .8307 .8311 .0403
ResNet50-Ours 24.68 10.7 .9286 .8321 .0079 .9312 .8525 .0097 .8737 .8508 .0303

SwinT-UNet 27.95 11.4 .9060 .7663 .0103 .9185 .8403 .0128 .8259 .8020 .0387
SwinT-Ours 27.94 11.2 .9315 .8474 .0067 .9407 .8952 .0091 .8784 .8559 .0298

PVTv2-B3-UNet 45.03 17.1 .9303 .8315 .0074 .9319 .8578 .0104 .8705 .8433 .0323
PVTv2-B3-Ours 45.02 16.9 .9405 .8477 .0053 .9470 .8999 .0073 .8875 .8657 .0259

PVTv2-B2-UNet 25.17 10.1 .9223 .8289 .0089 .9309 .8385 .0118 .8650 .8393 .0336
Ours 25.15 9.8 .9375 .8499 .0055 .9488 .8931 .0071 .8839 .8672 .0274
Table 4
Performance of GLGCNet with two proposed modules. The baseline is a U-Net with PVT-V2-B2 as the backbone, EA represents the edge
assignment module, and SU is the Saliency-up module.

Model EORSSD ORSSD ORSI-4199

𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp

𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓

Baseline .9223 .8289 .0089 .9309 .8385 .0118 .8650 .8493 .0316

w/o SU .9293 .8324 .0065 .9329 .8789 .0092 .8698 .8421 .0312
w/ 4SU .9319 .8304 .0081 .9375 .8652 .0133 .8699 .8532 .0302

w/o EA .9317 .8388 .0063 .9387 .8938 .0089 .8746 .8563 .0290

Ours .9375 .8499 .0055 .9488 .8931 .0071 .8839 .8672 .0274
Table 5
Performance of different variants to our saliency-up module. CFP corresponds to the channel-wise filter prediction block, MC is the series of
dilated convolution and the element-wise maximum comparison operation in the CFP block, SFP indicates the spatial filter prediction block,
SGS is the stack&group convolution&shuffle operation.

No. CFP MC SFP SGS ASPP CBAM EORSSD ORSSD ORSI-4199

𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp

𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓

0 ✓ ✓ ✓ ✓ .9375 .8499 .0055 .9488 .8931 .0071 .8839 .8672 .0274

1 ✓ ✓ ✓ .9339 .8496 .0059 .9479 .8922 .0080 .8779 .8655 .0295
2 ✓ ✓ .9359 .8504 .0061 .9437 .8874 .0079 .8773 .8649 .0310
3 ✓ ✓ .9327 .8364 .0063 .9387 .8856 .0086 .8750 .8522 .0296
4 ✓ ✓ ✓ .9324 .8435 .0057 .9441 .8828 .0092 .8801 .8657 .0290

5 ✓ .9362 .8358 .0068 .9389 .8707 .0102 .8825 .8429 .0288
6 ✓ .9254 .7730 .0061 .9371 .8722 .0109 .8768 .8585 .0291
embedding our designed two modules into it still brings performance
improvement that cannot be ignored (i.e., 1.62%/4.21%/2.24% on
EORSSD/ORSSD/ORSI-4199 in 𝐹 adp

𝛽 ).

The indispensability of the proposed modules. To prove the
individual contribution of saliency-up and edge assignment modules for
our GLGCNet, we take a PVTv2-B2-UNet as a baseline and provide three
variants by deleting one module in turn. From the quantitative compar-
ison in Table 4, we observe that each module of GLGCNet contributes to
the ultimate excellent performance. Although the variant without edge
assignment module performs the highest 𝐹 adp

𝛽 on the ORSSD dataset,
the other indexes are still far lower than that of the complete GLGCNet.
The w/ 4SU indicates that each stage of the basic feature is followed
by a saliency-up module. Although the saliency-up module can adap-
tively enhance the structure information of salient objects, it cannot
capture finer details, proven by the performance degradation. These
can confirm that the saliency-up module corresponding to global–local
context-aware modeling and the edge assignment module for global
edge refinement are indispensable to our GLGCNet, and further proves
the superiority of the global–local–global scheme.
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4.3.2. The design rationality of saliency-up module
We now discuss the various design choices in our saliency-up mod-

ule that affect the detection performance by constructing four variants,
i.e., model ‘1’: w/o SFP, model ‘2’: w/o SFP and MC, model ‘3’: w/o
CFP, model ‘4’: replacing the operation of stack&group-conv&shuffle
with typical bilinear interpolation for feature upsampling, which means
that only one dynamic filter is adopted, model ‘5’: replacing the
saliency-up module with ASPP module, and model ‘6’: replacing the
saliency-up module with CBAM module. The quantitative results of
trained variants are reported in Table 5. The models ‘5’ and ‘6’ are built
upon the concept of contrasting examples in Fig. 4. The visual features
in this figure and the results of the comparative experiments all confirm
the context-aware capability of the saliency-up module. Overall, it
can be observed that models ‘2’ and ‘3’ occur different degrees of
performance degradation. Although model ‘2’ gets one higher metric
score, the other five metrics are lower than the original GLGCNet. The
performance decline of model ‘4’ illustrates that stacking and shuffling
four dynamic filtered results to achieve upsampling is more effective
than typical upsampling for the ORSI-SOD task which is the type of
dense prediction. These demonstrate that the design of the saliency-up
module is rationality and fits the ORSI-SOD task for better performance.
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Table 6
Effectiveness of edge assignment module. EE is the edge exploration block, CA is the concatenation-channel attention operation, and GP denotes

the global-wise propagation.

Model EORSSD ORSSD ORSI-4199

𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp

𝛽 ↑  ↓ 𝑆𝛼 ↑ 𝐹 adp
𝛽 ↑  ↓

w/ EA (Ours) .9375 .8499 .0055 .9488 .8931 .0071 .8839 .8672 .0274

wo/ EE .9347 .8436 .0065 .9429 .8904 .0084 .8799 .8603 .0286
wo/ CA .9360 .8471 .0052 .9437 .8933 .0075 .8830 .8635 .0280
wo/ GP .9344 .8446 .0052 .9487 .8947 .0082 .8787 .8591 .0283
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Fig. 9. Some representative failure cases on the challenging scenes.

.3.3. The effectiveness of edge assignment module to GLGCNet
We construct three variants: deleting the edge exploration block for

dge feature construction (i.e., wo/ EE), removing the concatenation-
hannel attention operation for the enhancement of shallow-level
aliency features (i.e., wo/ CA), and deleting the global-wise propaga-
ion operation (i.e., wo/GP). The results are demonstrated in Table 6,
nd the performance of these variants all less inferior to the complete
LGCNet. In general, the above analysis clearly verifies the effective-
ess of our edge assignment module. The key operations undertake
ifferent functions, promoting the edge assignment module to focus on
aluable edge features, which eliminates some negative effects caused
y inaccurate preliminary saliency prediction as shown in Fig. 6, to
etect more complete salient objects with finer boundaries.

.4. Failure cases

Although the proposed GLGCNet performs better than existing
ethods, it still struggles with some limitations in a few challenging

cenes. We show some failure cases of our GLGCNet in Fig. 9.
As shown in the first three columns of Fig. 9, it is still challenging

o completely distinguish the salient objects with multi-semantic at-
ributes and irregular geometry, such as the irregularly shaped stadium
nd the internal venues with weak semantic relevance, landmarks and
ural buildings with similar appearance and semantics, and the side
nd top of storage oil tanks. The main reasons are that understanding
he semantic correlation and differentiation of multiple attributes is
till weak for our GLGCNet and salient objects with multiple relatively
ndependent semantic attributes are rare in training data. As the last
wo columns of Fig. 9, it is still challenging to completely eliminate
he interference of some non-salient objects with training data bias,
uch as rural buildings near storage oil tanks and lakes beside the
oad. The high proportion of the two categories of rural building and
ake in the training data leads to the fact that in these scenes, even
f they are relatively insignificant, these two categories can still be
isidentified as salient objects. To deal with these challenging scenes,

n the future, two attempts should be made. The first one is developing
etter learning strategies from the training data with category bias and
few challenging scenes. The second is modeling more comprehensive

nd adaptive semantic attribute relationships to understand abstract
emantic information in the task of ORSI-SOD.
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. Conclusion

In this paper, we explore the synergy of the global-context-aware
nd local-context-aware modeling and propose an effective GLGCNet
o deal with complicated scenes in a global–local–global scheme with a
ransformer-based backbone. The dynamic convolution-based saliency-
p module adaptively highlights pixels that belong to salient objects but
ave independent attributes by transferring the global basic feature into
ynamic kernels, and further realizes the feature upsampling with less
nformation loss. The edge assignment module is executed in a global
iew, globally exploring the connectivity between preliminary saliency
ues and shallow-level features to enhance the edge pixels of salient
bjects to deal with narrow salient objects with complex geometry.
e conduct extensive experiments on three public ORSI-SOD datasets.

he experimental results demonstrate the superiority of our proposed
LGCNet.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work was supported in part by the National Natural Science
oundation of China under Grant 62171269, and in part by the China
ostdoctoral Science Foundation under Grant 2022M722037.

eferences

chanta, R., Hemami, S., Estrada, F., Susstrunk, S., 2009. Frequency-tuned salient
region detection. In: Proc. IEEE CVPR. pp. 1597–1604. http://dx.doi.org/10.1109/
CVPR.2009.5206596.

run, A., Cucci, D.A., Skaloud, J., 2022. Lidar point–to–point correspondences for rigor-
ous registration of kinematic scanning in dynamic networks. ISPRS J. Photogramm.
Remote Sens. 189, 185–200. http://dx.doi.org/10.1016/j.isprsjprs.2022.04.027.

hen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z., 2020a. Dynamic convolution:
Attention over convolution kernels. In: Proc. IEEE CVPR. pp. 11027–11036. http:
//dx.doi.org/10.1109/CVPR42600.2020.01104.

hen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z., 2020b. Dynamic convolution:
Attention over convolution kernels. In: Proc. IEEE CVPR. pp. 11027–11036. http:
//dx.doi.org/10.1109/CVPR42600.2020.01104.

hen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y., 2021a.
TransUNet: Transformers make strong encoders for medical image segmentation.
arXiv preprint arXiv:2102.04306.

hen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587.

hen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., Ma, S., Xu, C., Xu, C.,
Gao, W., 2021b. Pre-trained image processing transformer. In: Proc. IEEE CVPR.
pp. 12294–12305. http://dx.doi.org/10.1109/CVPR46437.2021.01212.

hen, Z., Xu, Q., Cong, R., Huang, Q., 2020c. Global context-aware progressive
aggregation network for salient object detection. In: Proc. AAAI. pp. 10599–10606.
http://dx.doi.org/10.1609/aaai.v34i07.6633.

ong, R., Zhang, Y., Fang, L., Li, J., Zhang, C., Zhao, Y., Kwong, S., 2021. RRNet:
Relational reasoning network with parallel multi-scale attention for salient object
detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sens.
http://dx.doi.org/10.1109/TGRS.2021.3123984.

http://dx.doi.org/10.1109/CVPR.2009.5206596
http://dx.doi.org/10.1109/CVPR.2009.5206596
http://dx.doi.org/10.1109/CVPR.2009.5206596
http://dx.doi.org/10.1016/j.isprsjprs.2022.04.027
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://arxiv.org/abs/2102.04306
http://arxiv.org/abs/1706.05587
http://dx.doi.org/10.1109/CVPR46437.2021.01212
http://dx.doi.org/10.1609/aaai.v34i07.6633
http://dx.doi.org/10.1109/TGRS.2021.3123984


ISPRS Journal of Photogrammetry and Remote Sensing 198 (2023) 184–196Z. Bai et al.
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y., 2017. Deformable
convolutional networks. In: Proc. IEEE ICCV. pp. 764–773. http://dx.doi.org/10.
1109/ICCV.2017.89.

Deng, Z., Hu, X., Zhu, L., Xu, X., Qin, J., Han, G., Heng, P.-A., 2018. R3Net: Recurrent
residual refinement network for saliency detection. In: Proc. IJCAI. pp. 684–690.
http://dx.doi.org/10.24963/ijcai.2018/95.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N., 2021.
An image is worth 16x16 words: Transformers for image recognition at scale. In:
Proc. ICLR. pp. 1–5.

Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., Borji, A., 2017. Structure-measure: A new
way to evaluate foreground maps. In: Proc. IEEE ICCV. pp. 4548–4557. http:
//dx.doi.org/10.1109/ICCV.2017.487.

Fan, D.-P., Gong, C., Cao, Y., Ren, B., Cheng, M.-M., Borji, A., 2018. Enhanced-
alignment measure for binary foreground map evaluation. In: Proc. IJCAI. pp.
698–704. http://dx.doi.org/10.5555/3304415.3304515.

Han, Q., Fan, Z., Dai, Q., Sun, L., Cheng, M.-M., Liu, J., Wang, J., 2022. On the
connection between local attention and dynamic depth-wise convolution. In: ICLR.

Han, J., Zhou, P., Zhang, D., Cheng, G., Guo, L., Liu, Z., Bu, S., Wu, J., 2014. Efficient,
simultaneous detection of multi-class geospatial targets based on visual saliency
modeling and discriminative learning of sparse coding. ISPRS J. Photogramm.
Remote Sens. 89, 37–48. http://dx.doi.org/10.1016/j.isprsjprs.2013.12.011.

Hou, X., Bai, Y., Li, Y., Shang, C., Shen, Q., 2021. High-resolution triplet network
with dynamic multiscale feature for change detection on satellite images. ISPRS
J. Photogramm. Remote Sens. 177, 103–115. http://dx.doi.org/10.1016/j.isprsjprs.
2021.05.001.

Hou, Q., Cheng, M.-M., Hu, X., Borji, A., Tu, Z., Torr, P., 2017. Deeply supervised salient
object detection with short connections. In: Proc. IEEE CVPR. pp. 5300–5309.
http://dx.doi.org/10.1109/TPAMI.2018.2815688.

Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E., 2020a. Squeeze-and-excitation networks.
IEEE Trans. Pattern Anal. Mach. Intell. 42 (8), 2011–2023. http://dx.doi.org/10.
1109/TPAMI.2019.2913372.

Hu, X., Zhu, L., Qin, J., Fu, C.-W., Heng, P.-A., 2018. Recurrently aggregating deep
features for salient object detection. In: Proc. AAAI. pp. 6943–6950. http://dx.doi.
org/10.5555/3504035.3504885.

Huang, Z., Chen, H., Liu, B., Wang, Z., 2021. Semantic-guided attention refinement
network for salient object detection in optical remote sensing images. Remote Sens.
13 (11), 2163. http://dx.doi.org/10.3390/rs13112163.

Huang, Z., Xiang, T.-Z., Chen, H.-X., Dai, H., 2022. Scribble-based boundary-aware
network for weakly supervised salient object detection in remote sensing images.
ISPRS J. Photogramm. Remote Sens. 191, 290–301. http://dx.doi.org/10.1016/j.
isprsjprs.2022.07.014.

Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: ICLR.
pp. 1–15.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D., 1989. Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1 (4), 541–551. http://dx.doi.org/10.1162/neco.1989.1.4.541.

Li, C., Cong, R., Guo, C., Li, H., Zhang, C., Zheng, F., Zhao, Y., 2020. A parallel down-
up fusion network for salient object detection in optical remote sensing images.
Neurocomputing 415, http://dx.doi.org/10.1016/j.neucom.2020.05.108, 411–420.

Li, C., Cong, R., Hou, J., Zhang, S., Qian, Y., Kwong, S., 2019. Nested network with
two-stream pyramid for salient object detection in optical remote sensing images.
IEEE Trans. Geosci. Remote Sens. 57 (11), 9156–9166. http://dx.doi.org/10.1109/
TGRS.2019.2925070.

Li, G., Liu, Z., Bai, Z., Lin, W., Ling, H., 2022a. Lightweight salient object detection in
optical remote sensing images via feature correlation. IEEE Trans. Geosci. Remote
Sens. 60, 1–12. http://dx.doi.org/10.1109/TGRS.2022.3145483.

Li, G., Liu, Z., Chen, M., Bai, Z., Lin, W., Ling, H., 2021a. Hierarchical alternate
interaction network for RGB-D salient object detection. IEEE Trans. Image Process.
30, 3528–3542. http://dx.doi.org/10.1109/TIP.2021.3062689.

Li, G., Liu, Z., Lin, W., Ling, H., 2022b. Multi-content complementation network for
salient object detection in optical remote sensing images. IEEE Trans. Geosci.
Remote Sens. 60, 1–13. http://dx.doi.org/10.1109/TGRS.2021.3131221.

Li, G., Liu, Z., Shi, R., Hu, Z., Wei, W., Wu, Y., Huang, M., Ling, H., 2021b.
Personal fixations-based object segmentation with object localization and boundary
preservation. IEEE Trans. Image Process. 30, 1461–1475. http://dx.doi.org/10.
1109/TIP.2020.3044440.

Li, G., Liu, Z., Zeng, D., Lin, W., Ling, H., 2022c. Adjacent context coordination network
for salient object detection in optical remote sensing images. IEEE Trans. Cybern.
53 (1), 526–538. http://dx.doi.org/10.1109/TCYB.2022.3162945.

Li, G., Liu, Z., Zhang, X., Lin, W., 2023. Lightweight salient object detection in optical
remote-sensing images via semantic matching and edge alignment. IEEE Trans.
Geosci. Remote Sens. 61, 1–11. http://dx.doi.org/10.1109/TGRS.2023.3235717.

Li, J., Pan, Z., Liu, Q., Wang, Z., 2021c. Stacked U-shape network with channel-
wise attention for salient object detection. IEEE Trans. Multimed. 23, 1397–1409.
http://dx.doi.org/10.1109/TMM.2020.2997192.

Liang, M., Hu, X., 2015. Feature selection in supervised saliency prediction. IEEE Trans.
Cybern. 45 (5), 914–926. http://dx.doi.org/10.1109/TCYB.2014.2338893.

Liao, M., Zou, Z., Wan, Z., Yao, C., Bai, X., 2022. Real-time scene text detection with
differentiable binarization and adaptive scale fusion. TPAMI http://dx.doi.org/10.
1109/TPAMI.2022.3155612.
195
Liu, Y., Gu, Y.-C., Zhang, X.-Y., Wang, W., Cheng, M.-M., 2021a. Lightweight salient
object detection via hierarchical visual perception learning. IEEE Trans. Cybern. 51
(9), 4439–4449. http://dx.doi.org/10.1109/TCYB.2020.3035613.

Liu, J.-J., Hou, Q., Cheng, M.-M., Feng, J., Jiang, J., 2019a. A simple pooling-based
design for real-time salient object detection. In: Proc. IEEE CVPR. pp. 3912–3921.
http://dx.doi.org/10.1109/CVPR.2019.00404.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021b. Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proc. IEEE
ICCV. pp. 9992–10002. http://dx.doi.org/10.1109/ICCV48922.2021.00986.

Liu, Y., Zhang, X.-Y., Bian, J.-W., Zhang, L., Cheng, M.-M., 2021c. SAMNet: Stereo-
scopically attentive multi-scale network for lightweight salient object detection.
IEEE Trans. Image Process. 30, 3804–3814. http://dx.doi.org/10.1109/TIP.2021.
3065239.

Liu, N., Zhang, N., Wan, K., Shao, L., Han, J., 2021d. Visual saliency transformer.
In: Proc. IEEE ICCV. pp. 4702–4712. http://dx.doi.org/10.1109/ICCV48922.2021.
00468.

Liu, Y., Zhang, S., Wang, Z., Zhao, B., Zou, L., 2022. Global perception network for
salient object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens.
60, 1–12. http://dx.doi.org/10.1109/TGRS.2022.3141953.

Liu, Z., Zhao, D., Shi, Z., Jiang, Z., 2019b. Unsupervised saliency model with color
Markov chain for oil tank detection. Remote Sens. 11 (9), 1–18. http://dx.doi.org/
10.3390/rs11091089.

Mao, Y., Zhang, J., Wan, Z., Dai, Y., Li, A., Lv, Y., Tian, X., Fan, D.-P., Barnes, N., 2021.
Transformer transforms salient object detection and camouflaged object detection.
arXiv preprint arXiv:2104.10127.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos, A.,
Ballesteros, M., Chiang, D., Clothiaux, D., Cohn, T., Duh, K., Faruqui, M., Gan, C.,
Garrette, D., Ji, Y., Kong, L., Kuncoro, A., Kumar, G., Malaviya, C., Michel, P.,
Oda, Y., Richardson, M., Saphra, N., Swayamdipta, S., Yin, P., 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint arXiv:1701.03980.

Pang, Y., Zhao, X., Zhang, L., Lu, H., 2020. Multi-scale interactive network for salient
object detection. In: Proc. IEEE CVPR. pp. 9410–9419. http://dx.doi.org/10.1109/
CVPR42600.2020.00943.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019.
PyTorch: An imperative style, high-performance deep learning library. In: Proc.
NeurIPS. pp. 8024–8035.

Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M., 2019. BASNet:
Boundary-aware salient object detection. In: Proc. IEEE CVPR. pp. 7479–7489.
http://dx.doi.org/10.1109/CVPR.2019.00766.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional networks for
biomedical image segmentation. In: Proc. MICCAI. pp. 234–241. http://dx.doi.org/
10.1007/978-3-319-24574-4_28.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Zhiheng Huang, A.K.,
Khosla, A., Bernstein, M., 2015. ImageNet large scale visual recognition challenge.
In: Int. J. Comput. Vis.. pp. 211–252. http://dx.doi.org/10.1007/s11263-015-0816-
y.

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D.,
Wang, Z., 2016. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proc. IEEE CVPR. pp. 1874–1883.
http://dx.doi.org/10.1109/TPAMI.2022.3155612.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H., 2021. Training
data-efficient image transformers & distillation through attention. In: Proc. ICML,
Vol. 139. pp. 10347–10357.

Tu, Z., Ma, Y., Li, C., Tang, J., Luo, B., 2021. Edge-guided non-local fully convolutional
network for salient object detection. IEEE Trans. Circuits Syst. Video Technol. 31
(2), 582–593. http://dx.doi.org/10.1109/TCSVT.2020.2980853.

Tu, Z., Wang, C., Li, C., Fan, M., Zhao, H., Luo, B., 2022. ORSI salient object detection
via Multiscale Joint Region and boundary model. IEEE Trans. Geosci. Remote Sens.
60, 1–13. http://dx.doi.org/10.1109/TGRS.2021.3101359.

Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D., 2021a. CARAFE++: Unified
content-aware ReAssembly of features. IEEE Trans. Pattern Anal. Mach. Intell.
http://dx.doi.org/10.1109/TPAMI.2021.3074370.

Wang, X., Girshick, R., Gupta, A., He, K., 2018a. Non-local neural networks. In: Proc.
IEEE CVPR. pp. 7794–7803. http://dx.doi.org/10.1109/CVPR.2018.00813.

Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., Yang, R., 2022a. Salient object detection in
the deep learning era: An in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell.
44 (6), 3239–3259. http://dx.doi.org/10.1109/TPAMI.2021.3051099.

Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., Atkinson, P.M., 2022b.
UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote
sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 190, 196–214.
http://dx.doi.org/10.1016/j.isprsjprs.2022.06.008.

Wang, Z., Liu, Z., Li, G., Wang, Y., Zhang, T., Xu, L., Wang, J., 2021b. Spatio-temporal
self-attention network for video saliency prediction. IEEE Trans. Multimed. http:
//dx.doi.org/10.1109/TMM.2021.3139743.

Wang, Q., Liu, Y., Xiong, Z., Yuan, Y., 2022c. Hybrid feature aligned network for salient
object detection in optical remote sensing imagery. IEEE Trans. Geosci. Remote
Sens. 60, 1–15. http://dx.doi.org/10.1109/TGRS.2022.3181062.

http://dx.doi.org/10.1109/ICCV.2017.89
http://dx.doi.org/10.1109/ICCV.2017.89
http://dx.doi.org/10.1109/ICCV.2017.89
http://dx.doi.org/10.24963/ijcai.2018/95
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb12
http://dx.doi.org/10.1109/ICCV.2017.487
http://dx.doi.org/10.1109/ICCV.2017.487
http://dx.doi.org/10.1109/ICCV.2017.487
http://dx.doi.org/10.5555/3304415.3304515
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb15
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb15
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb15
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.011
http://dx.doi.org/10.1016/j.isprsjprs.2021.05.001
http://dx.doi.org/10.1016/j.isprsjprs.2021.05.001
http://dx.doi.org/10.1016/j.isprsjprs.2021.05.001
http://dx.doi.org/10.1109/TPAMI.2018.2815688
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.5555/3504035.3504885
http://dx.doi.org/10.5555/3504035.3504885
http://dx.doi.org/10.5555/3504035.3504885
http://dx.doi.org/10.3390/rs13112163
http://dx.doi.org/10.1016/j.isprsjprs.2022.07.014
http://dx.doi.org/10.1016/j.isprsjprs.2022.07.014
http://dx.doi.org/10.1016/j.isprsjprs.2022.07.014
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb23
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb23
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb23
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1016/j.neucom.2020.05.108
http://dx.doi.org/10.1109/TGRS.2019.2925070
http://dx.doi.org/10.1109/TGRS.2019.2925070
http://dx.doi.org/10.1109/TGRS.2019.2925070
http://dx.doi.org/10.1109/TGRS.2022.3145483
http://dx.doi.org/10.1109/TIP.2021.3062689
http://dx.doi.org/10.1109/TGRS.2021.3131221
http://dx.doi.org/10.1109/TIP.2020.3044440
http://dx.doi.org/10.1109/TIP.2020.3044440
http://dx.doi.org/10.1109/TIP.2020.3044440
http://dx.doi.org/10.1109/TCYB.2022.3162945
http://dx.doi.org/10.1109/TGRS.2023.3235717
http://dx.doi.org/10.1109/TMM.2020.2997192
http://dx.doi.org/10.1109/TCYB.2014.2338893
http://dx.doi.org/10.1109/TPAMI.2022.3155612
http://dx.doi.org/10.1109/TPAMI.2022.3155612
http://dx.doi.org/10.1109/TPAMI.2022.3155612
http://dx.doi.org/10.1109/TCYB.2020.3035613
http://dx.doi.org/10.1109/CVPR.2019.00404
http://dx.doi.org/10.1109/ICCV48922.2021.00986
http://dx.doi.org/10.1109/TIP.2021.3065239
http://dx.doi.org/10.1109/TIP.2021.3065239
http://dx.doi.org/10.1109/TIP.2021.3065239
http://dx.doi.org/10.1109/ICCV48922.2021.00468
http://dx.doi.org/10.1109/ICCV48922.2021.00468
http://dx.doi.org/10.1109/ICCV48922.2021.00468
http://dx.doi.org/10.1109/TGRS.2022.3141953
http://dx.doi.org/10.3390/rs11091089
http://dx.doi.org/10.3390/rs11091089
http://dx.doi.org/10.3390/rs11091089
http://arxiv.org/abs/2104.10127
http://arxiv.org/abs/1701.03980
http://dx.doi.org/10.1109/CVPR42600.2020.00943
http://dx.doi.org/10.1109/CVPR42600.2020.00943
http://dx.doi.org/10.1109/CVPR42600.2020.00943
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb46
http://dx.doi.org/10.1109/CVPR.2019.00766
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TPAMI.2022.3155612
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb52
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb52
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb52
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb52
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb52
http://dx.doi.org/10.1109/TCSVT.2020.2980853
http://dx.doi.org/10.1109/TGRS.2021.3101359
http://dx.doi.org/10.1109/TPAMI.2021.3074370
http://dx.doi.org/10.1109/CVPR.2018.00813
http://dx.doi.org/10.1109/TPAMI.2021.3051099
http://dx.doi.org/10.1016/j.isprsjprs.2022.06.008
http://dx.doi.org/10.1109/TMM.2021.3139743
http://dx.doi.org/10.1109/TMM.2021.3139743
http://dx.doi.org/10.1109/TMM.2021.3139743
http://dx.doi.org/10.1109/TGRS.2022.3181062


ISPRS Journal of Photogrammetry and Remote Sensing 198 (2023) 184–196Z. Bai et al.
Wang, W., Shen, J., 2018. Deep visual attention prediction. IEEE Trans. Image Process.
27 (5), 2368–2378. http://dx.doi.org/10.1109/TIP.2017.2787612.

Wang, W., Shen, J., Cheng, M.-M., Shao, L., 2019a. An iterative and cooperative top-
down and bottom-up inference network for salient object detection. In: Proc. IEEE
CVPR. pp. 5961–5970. http://dx.doi.org/10.1109/CVPR.2019.00612.

Wang, W., Shen, J., Dong, X., Borji, A., Yang, R., 2020. Inferring salient objects
from human fixations. IEEE Trans. Pattern Anal. Mach. Intell. 42 (8), 1913–1927.
http://dx.doi.org/10.1109/TPAMI.2019.2905607.

Wang, W., Shen, J., Ling, H., 2019b. A deep network solution for attention and
aesthetics aware photo cropping. IEEE Trans. Pattern Anal. Mach. Intell. 41 (7),
1531–1544. http://dx.doi.org/10.1109/TPAMI.2018.2840724.

Wang, W., Shen, J., Sun, H., Shao, L., 2018b. Video co-saliency guided co-segmentation.
IEEE Trans. Circuits Syst. Video Technol. 28 (8), 1727–1736. http://dx.doi.org/10.
1109/TCSVT.2017.2701279.

Wang, W., Shen, J., Yang, R., Porikli, F., 2018c. Saliency-aware video object segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 40 (1), 20–33. http://dx.doi.org/10.
1109/TPAMI.2017.2662005.

Wang, W., Shen, J., Yu, Y., Ma, K.-L., 2017. Stereoscopic thumbnail creation via
efficient stereo saliency detection. IEEE Trans. Vis. Comput. Graphics 23 (8),
2014–2027. http://dx.doi.org/10.1109/TVCG.2016.2600594.

Wang, W., Sun, G., Gool, L.V., 2022d. Looking beyond single images for weakly
supervised semantic segmentation learning. IEEE Trans. Pattern Anal. Mach. Intell.
http://dx.doi.org/10.1109/TPAMI.2022.3168530.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.,
2021c. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. In: Proc. IEEE ICCV. pp. 548–558. http://dx.doi.org/10.
1109/ICCV48922.2021.00061.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.,
2022e. PVT v2: Improved baselines with pyramid vision transformer. Comput. Vis.
Media http://dx.doi.org/10.1007/s41095-022-0274-8.

Wang, S., Yang, S., Wang, M., Jiao, L., 2019c. New contour cue-based hybrid sparse
learning for salient object detection. IEEE Trans. Cybern. http://dx.doi.org/10.
1109/TCYB.2018.2881482.

Wang, W., Zhao, S., Shen, J., Hoi, S.C.H., Borji, A., 2019d. Salient object detection
with pyramid attention and salient edges. In: Proc. IEEE CVPR. pp. 1448–1457.
http://dx.doi.org/10.1109/CVPR.2019.00154.

Wang, W., Zhou, T., Yu, F., Dai, J., Konukoglu, E., Gool, L.V., 2021d. Exploring
cross-image pixel contrast for semantic segmentation. In: Proc. IEEE ICCV. pp.
7283–7293. http://dx.doi.org/10.1109/ICCV48922.2021.00721.

Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. CBAM: Convolutional block attention
module. In: ECCV. pp. 3–19. http://dx.doi.org/10.1007/978-3-030-01234-2_1.

Xu, B., Hu, H., Zhu, Q., Ge, X., Jin, Y., Yu, H., Zhong, R., 2021a. Efficient interactions
for reconstructing complex buildings via joint photometric and geometric saliency
segmentation. ISPRS J. Photogramm. Remote Sens. 175, 416–430. http://dx.doi.
org/10.1016/j.isprsjprs.2021.03.006.

Xu, B., Liang, H., Liang, R., Chen, P., 2021b. Locate globally, segment locally: A pro-
gressive architecture with knowledge review network for salient object detection.
In: Proc. AAAI. pp. 3004–3012. http://dx.doi.org/10.1609/aaai.v35i4.16408.

Yang, B., Bender, G., Le, Q.V., Ngiam, J., 2019a. CondConv: Conditionally param-
eterized convolutions for efficient inference. In: Proc. NeurIPS. pp. 1307–1318.
http://dx.doi.org/10.5555/3454287.3454404.
196
Yang, H., Cao, Z., Cui, Z., Pi, Y., 2019b. Saliency detection of targets in polarimetric
SAR images based on globally weighted perturbation filters. ISPRS J. Photogramm.
Remote Sens. 147, 65–79. http://dx.doi.org/10.1016/j.isprsjprs.2018.10.017.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z., Tay, F.E.H., Feng, J., Yan, S.,
2021. Tokens-to-token vit: Training vision transformers from scratch on ImageNet.
In: Proc. IEEE ICCV. pp. 538–547. http://dx.doi.org/10.1109/ICCV48922.2021.
00060.

Zhang, Q., Cong, R., Li, C., Cheng, M.-M., Fang, Y., Cao, X., Zhao, Y., Kwong, S., 2021.
Dense attention fluid network for salient object detection in optical remote sensing
images. IEEE Trans. Image Process. 30, 1305–1317. http://dx.doi.org/10.1109/TIP.
2020.3042084.

Zhang, L., Ma, J., 2021. Salient object detection based on progressively supervised
learning for remote sensing images. IEEE Trans. Geosci. Remote Sens. http://dx.
doi.org/10.1109/TGRS.2020.3045708.

Zhang, L., Yang, K., 2014. Region-of-interest extraction based on frequency domain
analysis and salient region detection for remote sensing image. IEEE Geosci. Remote
Sens. Lett. 11 (5), 916–920. http://dx.doi.org/10.1109/LGRS.2013.2281827.

Zhang, L., Zhang, J., 2017. A new saliency-driven fusion method based on complex
wavelet transform for remote sensing images. IEEE Geosci. Remote Sens. Lett. 14
(12), 2433–2437. http://dx.doi.org/10.1109/LGRS.2017.2768070.

Zhao, J., Liu, J.-J., Fan, D.-P., Cao, Y., Yang, J., Cheng, M.-M., 2019. EGNet: Edge
guidance network for salient object detection. In: Proc. IEEE ICCV. pp. 8779–8788.
http://dx.doi.org/10.1109/ICCV.2019.00887.

Zhao, X., Pang, Y., Zhang, L., Lu, H., Zhang, L., 2020. Suppress and balance: A
simple gated network for salient object detection. In: Proc. ECCV. pp. 35–51.
http://dx.doi.org/10.1007/978-3-030-58536-5_3.

Zhao, D., Wang, J., Shi, J., Jiang, Z., 2015. Sparsity-guided saliency detection for remote
sensing images. J. Appl. Remote Sens. 9 (1), 1–14. http://dx.doi.org/10.1117/1.
JRS.9.095055.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T.,
Torr, P.H., Zhang, L., 2021. Rethinking semantic segmentation from a sequence-
to-sequence perspective with transformers. In: Proc. IEEE CVPR. pp. 6877–6886.
http://dx.doi.org/10.1109/CVPR46437.2021.00681.

Zhou, Y., Huo, S., Xiang, W., Hou, C., Kung, S.-Y., 2019. Semi-supervised salient object
detection using a linear feedback control system model. IEEE Trans. Cybern. 49
(4), 1173–1185. http://dx.doi.org/10.1109/TCYB.2018.2793278.

Zhou, J., Jampani, V., Pi, Z., Liu, Q., Yang, M.-H., 2021. Decoupled dynamic
filter networks. In: Proc. IEEE CVPR. pp. 6643–6652. http://dx.doi.org/10.1109/
CVPR46437.2021.00658.

Zhou, X., Shen, K., Liu, Z., Gong, C., Zhang, J., Yan, C., 2022a. Edge-aware multiscale
feature integration network for salient object detection in optical remote sensing
images. IEEE Trans. Geosci. Remote Sens. 60, 1–15. http://dx.doi.org/10.1109/
TGRS.2021.3091312.

Zhou, X., Shen, K., Weng, L., Cong, R., Zheng, B., Zhang, J., Yan, C., 2022b. Edge-guided
recurrent positioning network for salient object detection in optical remote sensing
images. IEEE Trans. Cybern. http://dx.doi.org/10.1109/TCYB.2022.3163152.

Zhou, H., Xie, X., Lai, J.-H., Chen, Z., Yang, L., 2020. Interactive two-stream decoder
for accurate and fast saliency detection. In: Proc. IEEE CVPR. pp. 9138–9147.
http://dx.doi.org/10.1109/CVPR42600.2020.00916.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2021. Deformable DETR: Deformable
transformers for end-to-end object detection. In: Proc. ICLR.

http://dx.doi.org/10.1109/TIP.2017.2787612
http://dx.doi.org/10.1109/CVPR.2019.00612
http://dx.doi.org/10.1109/TPAMI.2019.2905607
http://dx.doi.org/10.1109/TPAMI.2018.2840724
http://dx.doi.org/10.1109/TCSVT.2017.2701279
http://dx.doi.org/10.1109/TCSVT.2017.2701279
http://dx.doi.org/10.1109/TCSVT.2017.2701279
http://dx.doi.org/10.1109/TPAMI.2017.2662005
http://dx.doi.org/10.1109/TPAMI.2017.2662005
http://dx.doi.org/10.1109/TPAMI.2017.2662005
http://dx.doi.org/10.1109/TVCG.2016.2600594
http://dx.doi.org/10.1109/TPAMI.2022.3168530
http://dx.doi.org/10.1109/ICCV48922.2021.00061
http://dx.doi.org/10.1109/ICCV48922.2021.00061
http://dx.doi.org/10.1109/ICCV48922.2021.00061
http://dx.doi.org/10.1007/s41095-022-0274-8
http://dx.doi.org/10.1109/TCYB.2018.2881482
http://dx.doi.org/10.1109/TCYB.2018.2881482
http://dx.doi.org/10.1109/TCYB.2018.2881482
http://dx.doi.org/10.1109/CVPR.2019.00154
http://dx.doi.org/10.1109/ICCV48922.2021.00721
http://dx.doi.org/10.1007/978-3-030-01234-2_1
http://dx.doi.org/10.1016/j.isprsjprs.2021.03.006
http://dx.doi.org/10.1016/j.isprsjprs.2021.03.006
http://dx.doi.org/10.1016/j.isprsjprs.2021.03.006
http://dx.doi.org/10.1609/aaai.v35i4.16408
http://dx.doi.org/10.5555/3454287.3454404
http://dx.doi.org/10.1016/j.isprsjprs.2018.10.017
http://dx.doi.org/10.1109/ICCV48922.2021.00060
http://dx.doi.org/10.1109/ICCV48922.2021.00060
http://dx.doi.org/10.1109/ICCV48922.2021.00060
http://dx.doi.org/10.1109/TIP.2020.3042084
http://dx.doi.org/10.1109/TIP.2020.3042084
http://dx.doi.org/10.1109/TIP.2020.3042084
http://dx.doi.org/10.1109/TGRS.2020.3045708
http://dx.doi.org/10.1109/TGRS.2020.3045708
http://dx.doi.org/10.1109/TGRS.2020.3045708
http://dx.doi.org/10.1109/LGRS.2013.2281827
http://dx.doi.org/10.1109/LGRS.2017.2768070
http://dx.doi.org/10.1109/ICCV.2019.00887
http://dx.doi.org/10.1007/978-3-030-58536-5_3
http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1117/1.JRS.9.095055
http://dx.doi.org/10.1109/CVPR46437.2021.00681
http://dx.doi.org/10.1109/TCYB.2018.2793278
http://dx.doi.org/10.1109/CVPR46437.2021.00658
http://dx.doi.org/10.1109/CVPR46437.2021.00658
http://dx.doi.org/10.1109/CVPR46437.2021.00658
http://dx.doi.org/10.1109/TGRS.2021.3091312
http://dx.doi.org/10.1109/TGRS.2021.3091312
http://dx.doi.org/10.1109/TGRS.2021.3091312
http://dx.doi.org/10.1109/TCYB.2022.3163152
http://dx.doi.org/10.1109/CVPR42600.2020.00916
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb93
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb93
http://refhub.elsevier.com/S0924-2716(23)00073-4/sb93

	Global–local–global context-aware network for salient object detection in optical remote sensing images
	Introduction
	Related Work
	Salient Object Detection in Optical Remote Sensing Images
	Vision Transformer
	Dynamic Filter

	Proposed Method
	Network Overview
	Saliency-up Module
	Global–local Context-aware Transfer
	Feature Upsampling

	Edge Assignment Module
	Comprehensive Loss Function

	Experiments
	Experimental Protocol
	Datasets
	Implementation Details
	Evaluation Metrics

	Comparison with State-of-the-art Methods
	Quantitative Comparison
	Visual Comparison

	Ablation Studies
	The Effectiveness of Key Components
	The Design Rationality of Saliency-up Module
	The Effectiveness of Edge Assignment Module to GLGCNet

	Failure Cases

	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


