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Comparedwith the annotated data for the 2D image saliency prediction task, the annotated data for training om-
nidirectional image (or 360� image) saliency prediction models are not sufficient. Most existing fully-supervised
saliency prediction methods for omnidirectional images (ODIs) adopt a scheme, first training the methods on a
labeled large 2D image saliency prediction dataset and then fine-tuning the methods on the labeled tiny ODI sa-
liency prediction dataset. However, this strategy is time-consuming and may not inadequately mine the visual
features built in ODIs. To explore the visual attributes targeted at ODIs and address the shortage of labels on
these ODIs, in this paper, we propose an end-to-end semi-supervised network, namely VFNet, which relies on
viewport features and only utilizes ODIs as training data, for ODI saliency prediction. Concretely, we adopt con-
sistency regularization as our semi-supervised learning framework. The predictions betweenmain and auxiliary
saliency inference networks in the VFNet enforce consistency. Aiming at ODIs, we introduce a new form of per-
turbation, i.e., DropView, to improve the effectiveness of consistency regularization. By randomly dropping out
different 360� cubemap viewport features before the auxiliary saliency inference network, the proposed
DropView enhances the robustness of the final ODI saliency prediction. To adaptively interact with the
equirectangular and different cubemap viewport features according to their contributions, we introduce a
Viewport Feature Adaptive Integration (VFAI) module and deploy the VFAI module at different levels in the
VFNet to raise the capacity of feature encoding of our VFNet. Compared with state-of-the-art fully-supervised
methods, our VFNet with fewer labeled training data achieves competitive performance demonstrated by exten-
sive experiments on two publicly available datasets.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Visual saliency prediction, of which the goal is to predict the location
of the human visual attention over an image, has been studied exten-
sively in the last decades [1–8]. Saliency prediction is an essential step
for many computer vision tasks such as image classification [9], video
compression [10], object detection [11], object segmentation [12,13],
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and image captioning [14]. Many 2D image saliency predictionmethods
based on Convolutional Neural Networks (CNNs) have reached good
performance in the normal Field of View (FoV) because of the sufficient
labeled data for training in existing datasets [15,16]. Comparedwith the
training data of 2D image saliency prediction models, however, the la-
beled data of omnidirectional images (or 360� images) in the publicly
available datasets [20,21] can not meet the need for the training of
360� image saliency prediction methods. To mitigate the insufficiency
of labeled data, most existing CNN-based omnidirectional image (ODI)
saliency predictionmethods adopt a time-consuming and computation-
ally expensive training strategy, i.e., pre-training the methods on a 2D
image saliency prediction dataset [15] and then fine-tuning them on
the small ODI dataset. Nevertheless, different from the typical 2D im-
ages with a limited FoV, ODI displays the spatial information of all



Fig. 2. Examples of non-uniform eye fixation distribution of different cubemap viewports
from the Salient360!2017 [20] and Saliency-in-VR [21] datasets, respectively. GT is the
ground truth saliency map of 360� equirectangular image, and GTB , GTD , GTF , GTL , GTR ,
and GTT respectively represent the ground truth saliency maps from back, down, front,
left, right and top viewports of the corresponding 360� cubemap images.
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directions of the real 3D visual world on the entire viewing sphere and
presents challenges to CNN-based ODI saliency prediction methods.

First, due to geometric distortion in its top and bottom regions caused
by the EquiRectangular Projection (ERP) [22], 360� equirectangular
image, which displays the 3D global semantic information of an ODI on
a 2D plane, has visual differences from typical 2D images. Differently,
360� cubemap images display the 360� scene by projecting an ODI onto
six viewport images (faces) of a cube, i.e., the CubeMap Projection
(CMP) [22], and introduce less distortion into these viewport images
(with 90� FoV). However, CMP leads to the lack of global information
and the discontinuities in boundaries between the faces of the projected
cube. Obviously, the above two representations, i.e., 360� equirectangular
and cubemap images, of ODIs are different from those of the typical 2D
images. If ODI saliency prediction methods overly depend on typical 2D
image data, theymay neglect the specific visual cues of ODIs and produce
inaccurate saliencymaps, such as [19,23,24]. As shown in Fig. 1, for exam-
ple, saliencymaps of SalNet360 [19] highlight ambiguous regions in ODIs.

Second, few existing ODI saliency prediction methods explore the
features of 360� equirectangular and cubemap viewport images ex-
tracted by CNNs at different levels cooperatively. Most existing CNN-
based ODI saliency prediction methods [17–19] only employ the final
saliency results predicted from a certain representation of ODI. Due to
ignoring the useful semantic features of other representations of ODIs
at intermediate levels in CNN, these methods may predict unfaithful
saliency distribution such as the results of SalGAN360 [17] and
MV-SalGAN360 [18] shown in Fig. 1.

Third, because observers usually do not pay attention to the north
and south pole regions of ODIs which correspond to the top and bottom
viewports of 360� cubemap images, the visual attention of observers on
different viewports are not uniform and this imbalanced visual atten-
tion distribution differs in diverse ODIs, as illustrated in Fig. 2. For
predicting visual saliency in the whole ODIs, thus, it may be reasonable
to adaptively aggregate the CNN features of each cubemap viewport
according to the imbalanced distribution of eye fixations.

To solve the problemsmentioned above, in this paper, we propose a
novel end-to-end semi-supervised Viewport Feature Network (VFNet)
for ODI saliency prediction. The semi-supervised framework is inspired
by Ouali et al. [25], and is proposed for alleviating the insufficiency of
labeled ODI saliency prediction data. For enforcing consistency of the
predictions of unlabeled ODIs between main and auxiliary saliency in-
ference networks in the VFNet, we perturb features by different forms
of perturbations andour proposedDropView, before injecting these fea-
tures into auxiliary saliency inference networks. In these saliency infer-
ence networks, we deploy trainable adaptive weights to combine the
saliency outputs predicted at different levels. For deeply correlating
the CNN features of different representations of ODIs and fitting
the non-uniform distribution of eye fixations over ODIs, we design a
Fig. 1. Saliency maps of our VFNet and three state-of-the-art supervised methods includ-
ing SalGAN360 [17], MV-SalGAN360 [18] and SalNet360 [19] on ODIs. The saliency maps
of our semi-supervised VFNet are visually closer to Ground Truth (GT) than those of
three fully-supervised methods.
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Viewport Feature Adaptive Integration (VFAI) module. We apply VFAI
modules to multiple levels of the shared feature encoding network in
the VFNet for integrating features of 360� equirectangular and cubemap
viewports. The training of labeled and unlabeled ODIs in the VFNet are
respectively supervised by labels and generated pseudo labels. The in-
ference stage only relies on the feature encoding network, viewport fea-
ture adaptive integration modules and the main saliency inference
network in the VFNet.

The contributions of this paper are summarized as follows:

• We propose a novel semi-supervised ODI saliency predictionmethod,
i.e., VFNet, which considers 360� equirectangular and cubemap fea-
tures simultaneously. Although VFNet is only trained on few labeled
and some unlabeled ODIs, compared with the state-of-the-art ODI sa-
liency prediction methods pre-trained on a large amount of labeled
2D image saliency prediction data, our VFNet achieves competitive
performance on two publicly available datasets under four evaluation
metrics.

• We propose a new form of perturbation, i.e., DropView, to fully utilize
the unlabeled ODIs. DropView focuses on randomly dropping the fea-
tures of a given cubemap viewport. It improves the generalization ca-
pability of the network by avoiding spatial over-reliance on a certain
region, which corresponds to a certain cubemap viewport, in the
360� equirectangular features.

• We propose a novel Viewport Feature Adaptive Integration (VFAI)
module to fit the non-uniformdistribution of visual attention over dif-
ferent viewports of ODIs and integrate 360� equirectangular and
cubemap features adaptively. By deploying the attention mechanism,
the VFAI module is able to keep the most valuable 360�

equirectangular and cubemap viewport features for the final saliency
prediction.

2. Related work

2.1. ODI saliency prediction

1) 2D image saliency prediction methods adaptation. The research of
2D visual saliency prediction has made great progress in the past de-
cades [2–6]. In contrast, because of the gradual prevalence of affordable
360� cameras and the development of Virtual Reality (VR) applications,
saliency prediction of ODIs has just begun to gain increasing attention in
recent years. However, directly applying 2D image saliency prediction
methods to ODIs may suffer from geometric distortion and discontinu-
ities caused by ERP and CMP. Thus, several methods have explored to
properly extend existing 2D image saliency predictionmethods to ODIs.

In [26], a fused saliencymap post-processingmethod is proposed for
ODI saliency prediction. This method applies a 2D saliency prediction
method to ODIs directly and linearly combines the saliency maps pre-
dicted from several shifted ODIs for mitigating the center prior limita-
tion. Furthermore, Lebreton et al. [23] propose a projected saliency
framework which integrates the saliency maps predicted by existing
2D image saliency methods, i.e., GBVS [3] and BMS [4], and utilizes the
interactions between a given viewport and its neighbouring regions.
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In [22], to discover the attention-catching regions of ODIs, a double cube
projection is introduced to project the ODI onto two cubes. Thismethod
combines the cubemap saliency maps predicted by traditional 2D sa-
liency prediction methods via a weighted average. To mitigate the dis-
continuities of border, Startsev et al. [24] incorporate CMP with ERP to
alleviate border effects caused by directly applying a 2D saliency
method to 360� equirectangular images.

Although these methods extended from 2D saliency prediction
methods have achieved promising performance to some extent, some
attributes of typical 2D images built-in these methods may not satisfy
the features of ODI saliencyprediction, e.g., the non-uniformeyefixation
distribution over the different viewports of ODIs.

2) ODI saliency prediction methods. Benefiting from the development
of deep learning,most tailored ODI saliency predictionmethods are able
to learn exclusive features of ODIs from training data. Monroy et al. [19]
propose a two-stage CNN-based method which includes a backbone
network and a saliency refinement network. The method is trained on
2D images and patches randomly sampled from ODIs. Chao et al. [17]
propose a 360� saliency predictionmethod fined-tuned on 2D image sa-
liency prediction method SalGAN [27] by fusing 360� equirectangular
saliency map and the corresponding 360� cubemap saliency maps. In
[18], a multi-FoV viewport-based 360� visual saliency predictor is built
by combining three different types of viewport saliency maps, and
then trained by an adaptively weighted loss.

These tailor-made methods mentioned above explore to integrate
the saliency maps predicted from different representations of ODIs,
they ignore the interaction of intermediate features of different repre-
sentations of ODIs, which are extracted by CNNs. Moreover, most of
these methods required the network to be pre-trained on the labeled
data-heavy 2D image dataset [15] for saliency prediction, and this
time-consuming strategy may lead the learned features to overfit typi-
cal 2D images.

In this work, we pay attention to mine the exclusive features of ODIs
extracted by CNN. To match the non-uniform eye fixations distribution
of ODIs, we explore to modulate the features extracted from 360�

equirectangular and cubemap images inside CNN collaboratively. To re-
duce the over-reliance on 2D images and alleviate the lack of labeled
data of ODIs, we only utilize labeled and unlabeled ODIs to train our
VFNet via semi-supervised learning.

2.2. Semi-supervised learning

For reducing the huge cost in annotating training data, many efforts
based on semi-supervised learning have been exploited in various com-
puter vision tasks [28–32]. In this paper, we adopt the consistency reg-
ularization method as our semi-supervised learning framework. This
method is under the cluster assumption, i.e., the predictions of unla-
beled samples should not have significant varianceswhen a formof per-
turbation is applied to these examples.

To enforce consistency over different perturbed features, several
works have provided different effective solutions. Laine et al. [33] pro-
pose a Π-Model which imposes consistency over perturbed inputs by
data augmentation and dropout for more stable predictions over unla-
beled data. Furthermore, a temporal ensembling method proposed in
[33] enforces consistency by averaging previous predictions through
moving weighting. Mean teacher model [34] explores to average the
modelweights instead of predictions for consistency regularization. Dif-
ferent from adding perturbations to input, Ouali et al. [25] demonstrate
that perturbations injected into hidden representations (outputs of
encoding network) canmake the class boundaries of cluster assumption
maintain in the low-density region and improve the stability of semi-
supervised learning for semantic segmentation.

Inspired by the experiments in [25], we also apply different pertur-
bations to the intermediate features, and then send the perturbed fea-
tures into auxiliary saliency inference networks in the VFNet.
Furthermore, we apply the same type of perturbation to features at
3

multiple levels in VFNet to achieve saliency prediction with improved
stability.
2.3. Different forms of perturbations

For perturbing the inputs, features or predictions in consistency reg-
ularization, different formsof perturbationshave been adopted in previ-
ousmethods. Themost common form is Dropout [35], which avoids the
overfitting of the network by dropping the features in the network ran-
domly, leading to a breakthrough in image classification [36]. This work
has inspired a series of regularization methods for the training of the
neural network.

In [37], the subset ofweightswithin the network are randomly set to
zero instead of randomly setting the selected activations to zero within
each layer, which is proposed in [35]. Similarly, Larsson et al. [38] ex-
plore to set an entire layer in the neural network to zero rather than
only a particular activation unit in training. As for CNNs, Tompson
et al. [39] introduced a structural noise, i.e., SpatialDropout, to regularize
the spatially correlated features activations by dropping entire channels
from a feature map. Furthermore, Ghiasi et al. [40] proposed a struc-
tured dropout, i.e., DropBlock, to drop all the units in contiguously spa-
tial regions of feature maps together during training, which obtains
encouraging performance in several computer vision tasks.

Althoughmany efforts have beenmade to improve dropout in 2D vi-
sual tasks, few methods have explored to achieve the dropout effect in
360� visual tasks. Inspired byDropBlock [40], we design a novel dropout
form, namely DropView, and inject this perturbation of 3D spatial corre-
lation to the CNN features of ODIs. Concretely, before the auxiliary sa-
liency inference network, we randomly drop a given cubemap
viewport feature and project the dropped cubemap viewport features
to equirectangular features by the cubemap-to-equirectangular projec-
tion. In thisway,we enforce the network to learn features from themost
important viewports to improve the representation ability of the net-
work.
3. Methodology

3.1. Network overview

As shown in Fig. 3, the proposed VFNet consists of a shared Feature
Encoding (FE) network, Viewport Feature Adaptive Integration (VFAI)
modules, Perturbation Modules (PMs), the Main Saliency Inference
(MSI) network, and Auxiliary Saliency Inference (ASI) networks.

1) Shared feature encoding network. Considering the computational
efficiency, we employ relatively shallow ResNet-34 [41] based Feature
Pyramid Network (FPN) [42] for feature encoding and preliminary
integration of semantic information. As shown in Fig. 3, the 360�

equirectangular image and the corresponding 360� cubemap images
are encoded through the shared FE network simultaneously. Following
the design of FPN, outputs of the shared FE network are equirectangular

features F l
E and six cubemap features F l

C ¼ fF l,f
C jf ∈ fB,D, F , L,R, Tgg

which correspond to the back, down, front, left, right and top viewport
features of the cube, where l ∈ f1, 2, 3, 4g is the l-th stage and the same
as FPN.

2) Viewport feature adaptive integration module. Based on the obser-
vation of the imbalanced visual saliency in different 360� cubemap
viewports shown in Fig. 2, adaptively emphasizing or suppressing fea-
tures belonging to different viewports may benefit the whole network
to predict visual saliency stably. Hence, we aim at correlating 360�

equirectangular and cubemap viewport features and adaptively inte-
grating the features in different viewports by attention mechanism in
the Viewport Feature Adaptive Integration (VFAI) module. As shown
in Fig. 3, VFAImodule is the core component and is equipped to different
semantic levels in the shared FE network. We introduce the VFAI
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Fig. 3.Pipeline of theproposedVFNet. Our VFNet contains four key stages: Feature Encoding (FE), Viewport Feature Adaptive Integration (VFAI), PerturbationModules (PMs) and Saliency
Inference (SI). First, FE network extracts features from labeled and unlabeled 360� equirectangular images with their corresponding 360� cubemap images simultaneously. Then, VFAI
modules adaptively integrate these extracted features by FE network at different levels. Next, these integrated features at different levels in VFAI modules are perturbed in PMs block
by different perturbations. Finally,Main Saliency Inference (MSI) network generates saliencymaps for labeled and unlabeled images from the features integrated in VFAImodules directly.
Besides, Auxiliary Saliency Inference (ASI) networks produce the saliency maps of unlabeled images from the perturbed features.
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module in detail in Section 3.2, and examine the effectiveness of the
VFAI module and its components in Section 4.5.

3) DropView perturbation. To improve the robustness of the VFNet
for small changes, following [25], the consistency training strategy in
our semi-supervised learning framework enforces the consistency of re-
sults between theMSI network and ASI networks over different pertur-
bations as illustrated in Fig. 3. Focusing on ODIs, particularly, we
propose DropView for perturbing spatial correlation of the features be-
tween different 360� cubemap viewports. Furthermore, we apply the
same type of perturbation to output features of the VFAI modules at dif-
ferent levels for improving the effectiveness of perturbations. We pro-
vide the details of the DropView perturbation in Section 3.3, and
examine the effectiveness of this module and its components in
Section 4.5.

4) Saliency inference networks. The saliency inference (SI) networks
are designed for adaptively combining the saliency information of fea-
tures at different levels of the network. These saliency inference blocks

in SI networks are represented as SIflg. For capturing the most valuable
saliency information at different levels, we introduce trainable adaptive
weights to weight the saliency maps produced at different levels. The
final result of saliency prediction is obtained by combining theweighted
saliency information at different levels through up-sampling opera-
tions. This adaptively weighting structure is applied in both MSI and
ASI networks and the structure is elaborated in Section 3.4.
E
2
C

C
2

E

M
S

F

Element-wise Multiplication

Element-wise Summation

Conv3×3+ReLU

C S

C Concatenat

MSF Multi-Scale Fusion C2E Cubemap-to-E

Fig. 4. Structure of the VFAI module. The VFAI modules are equipped at different levels in the
equirectangular image and its 360� cubemap images by FE network at the l-th level.
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5) Hybrid objective function. Motivated by previous works [43,44],
we employ a hybrid bootstrapping loss containing Kullback–Leibler Di-
vergence (KLD) [45], Pearson’s Correlation Coefficient (CC) [46] and
Normalized Scanpath Saliency (NSS) [47] in the supervised learning.
Aiming at unlabeled ODIs in the training phase, we adopt the summa-
tion of KLD andMean Squared Error (MSE) as the unsupervised consis-
tency regularizers over predictions of the MSI network and these ASI
networks as shown in Fig. 3. The total objective function of the training
stage is the summation of the loss of supervision and the weighted un-
supervised regularizer. Following [33], the weight of unsupervised
regularizer ramps up starting from zero to a fixedweight along an expo-
nential curve. We present the formulation and ablation study of the hy-
brid objective function in Sections 3.5 and 4.5, respectively.
3.2. Viewport feature adaptive integration module

Viewport Feature Adaptive Integration (VFAI) module is the key
component bridging feature encoding and saliency inference stages.
This module is responsible for the feature integration of different
viewports in the network. In the following, we elaborate VFAI module

VFAIflg at the l-th level of the VFNet shown in Fig. 4.

The sizes of output equirectangular features F l
E and six cubemap fea-

tures F l
C at the l-th ðl ∈ f1, 2, 3, 4gÞ level of FE network are c� hl �wl
C
A

+AvgPooling

C
2

E

M
S

F

ion S SoftMax Function

CA Channel Attention

quirectangular E2C Equirectangular-to-Cubemap

VFNet. The input features of the l-th VFAI module in the VFNet are extracted from 360�



Fig. 5. Visualization of the DropView. In this example, the output feature F2
VA of VFAIf2g

module is processed by the DropView. By E2C projection, equirectangular feature F2
VA is

projected to six cubemapviewport featuresP2,B
C ,P2,D

C ,P2,F
C ,P2,L

C ,P2,R
C andP2,T

C . Then, the fea-

ture of the left cubemap viewport P2,L
C is randomly dropped out by the randommaskM to

generate the dropped cubemap viewport feature P2,S
C . Finally, F2,n

P represents the feature
perturbed by the DropView.
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and c� hl
2 � wl

4 , respectively, and the number c of channel is 64. In the

VFAIflg, we first conduct Cubemap-to-Equirectangular (C2E) projection

PC!Eð�Þ to obtain the projected equirectangular features F l
C2E which

have the same sizewith F l
E . The element-wise summation “⊕” between

F l
C2E and F l

E is used for integrating these two types of features. For cap-
turing more usable global and local information, we apply Multi-Scale
Fusion operation MSFð�Þ, which resembles the atrous spatial pyramid

pooling module [48], to the features combined by F l
E and F l

C2E . The op-
erations can be formulated as:

F l
C2E ¼ PC!EðF l

CÞ,
F l
M ¼ MSFðF l

E ⊕ F l
C2EÞ:

ð1Þ

As the structure illustrated in Fig. 4, we use Equirectangular-to-

Cubemap (E2C) projection PE!Cð�Þ to project the interacted F l
M to six

cubemap features fF l,f
M jf ∈ fB,D, F , L,R, Tgg in the VFAIflg. To extract

the dominant features of every cubemap viewport, we apply the 3�3
convolutional layerwith ReLUactivation function to compress the chan-

nel of each F l,f
M to 1, and the spatial-wise global average pooling opera-

tion GAPð�Þ is equipped following the ReLU activation function. Next,
we concatenate these extracted features along channel dimension and
obtain the viewport attention of each cubemap viewport feature by
channel-wise SoftMax activation function softmaxð�Þ, namely

Al
V ¼ softmaxðCatðfGAPðConvρ3�3ðF l,f

MÞÞgÞÞ, ð2Þ

where Convρ3�3ð�Þ is the 3�3 convolutional layer with ReLU activation
function ρð�Þ, Catð�Þ is the channel-wise concatenation operation, and
Al
V ∈ ½0, 1�6�1�1 is the attention of six different cubemap viewports.
To expand the attention of six different cubemap viewports to the

sizes of cubemap viewport features, we further exploit the broadcasting

operation to Al
V along the height and width of features. These six ex-

panded attention maps fAl,f
V g are then re-projected to the

equirectangular attention map Al
VA by C2E projection. i.e.,

Al
VA ¼ PC!EðfAl,f

V gÞ: ð3Þ

We apply Channel Attention [49] operation CAð�Þ in the VFAI module
shown in Fig. 4 and define it as:

CAðF l
MÞ ¼ Convσ1�1ðGAPðF l

MÞ⊕GMPðF l
MÞÞ, ð4Þ

where Convσ1�1ð�Þ is the 1�1 convolutional layer with the sigmoid acti-
vation function σð�Þ and GMPð�Þ is the spatial-wise global maximum
pooling operation.

At the end of the VFAIflg, we multiply F l
M with its channel attention

and the equirectangular viewport attentionmap Al
VA, andwe also adopt

residual connection and MSF operation to obtain the final integrated
features F l

VA at different levels. This adaptation process can be computed
as:

F l
VA ¼ MSFðCAðF l

MÞ⊗Al
VA ⊗ F l

M ⊕ F l
MÞ, ð5Þ

where “⊗ ” is the element-wise multiplication.

3.3. DropView perturbation

We adopt several existing perturbation functions, such as DropOut
[35], SpatialDropout [39], DropBlock [40], FeatureDrop [25] and
FeatureNoise [25], to features of unlabeled ODIs in the VFNet for consis-
tency training, here we also propose a new DropView perturbation for
the unlabeled ODIs in the consistency regularization framework
5

shown in Fig. 3. We provide the details of DropView and visualize the
processing of the features in this module in Fig. 5 for a clear illustration.

In the proposed DropView, the features generated by VFAI modules

F l
VA are projected to fPl,f

C g by E2C projection. Then, a random mask M,

which has the same size as each Pl,f
C , is generated, and every element

of this random mask is zero. Next, the randomly selected feature Pl,S
C is

dropped by multiplying the random mask M, i.e., every element in the

dropped Pl,S
C is set to zero. The elements in Pl,R

C which is the set of unse-
lected features remain their original values. Here, the probability of ran-
dom selection pd obeys the discrete uniform distribution pd ∼DUð1, 6Þ
(pðd, 6Þ ¼ 1

6 ,d ¼ 1, 2, . . . , 6), i.e., every cubemap viewport feature Pl,f
C

has equal probability to be dropped. Finally, we re-project the randomly
dropped and remaining cubemap viewport features to 360�

equirectangular features F l,n
P by C2E projection. Hence, values of the re-

gion in equirectangular feature corresponding to the dropped cubemap
viewport feature are set to zero as shown in Fig. 5. The above operations
can be formulated as:

F l,n
P ¼ PC!EðfPl,S

C ⊗Mg∪Pl,R
C Þ: ð6Þ

In this way, the spatial correlation of different cubemap viewports of

F l,n
P is perturbed before weighted integration by SI Network. Thus, the

VFNet can concentrate on general features instead of the features of a
certain cubemap viewport, and the representation ability of VFNet can
be improved.

3.4. Saliency inference networks

As shown in Fig. 3, MSI network predicts the saliency maps of both

labeled and unlabeled ODIs from F l
VA directly. The saliency maps of la-

beled ODIs predicted by MSI network are under the supervision re-
vealed by labels. Besides, the saliency maps of unlabeled ODIs
predicted by MSI network will conduct the consistency training with
the results predicted by ASI networks. Notably, the results of ASI net-

works are predicted from the perturbed features F l,n
P . We elaborate SI

networks in Fig. 6.
Concretely, we first denote the summation of trainable adaptive sca-

lar weights wl, i.e.,



Fig. 6.Details of the SI Network. The structure of MSI and ASI networks is identical, which
consists of four SI branches. All SI branches share a common structure and predict the sa-
liency information at different levels of VFNet. After weighting the saliency prediction at
different levels by the four trainable weightsw1,w2,w3 andw4, the final saliency predic-
tion is obtained by up-sampling the weighted saliency information and element-wise
summation.
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X4
l¼1

wl ¼ 1; ð7Þ

where 0 ⩽ wl ⩽ 1. To extract saliency information at every level, the SI
branches SIflgð�Þ are then equipped for prediction. Every SIflgð�Þ consists
of a 3�3 convolutional layer, a ReLU activation function, a 1�1
convolutional layer and a sigmoid activation function sequentially. Be-
sides, two batch normalization layers are inserted between
convolutional layers and activation functions, respectively. Here, the
amount of output channel of the 1�1 convolutional layer before the sig-
moid activation function is one and is consistent with that of the final
saliency map. The details of SIflgð�Þ have been illustrated in Fig. 6. These
operations can be expressed as:

SlM ¼ SIflgðF l
VAÞ,

Sl,nA ¼ SIflgðF l,n
P Þ,

ð8Þ

where SlM and Sl,nA are the saliency predictions of the l-th level of theMSI
network and the n-th ASI network, correspondingly.

At the end of SI networks, the saliency information at different levels
is weighted by the trainableweights learned from the data, and thefinal
saliencymaps are obtainedby adding theseweighted saliencymaps and
up-sampling operation UPð�Þ, which is

SM ¼ UP
�X4

l¼1

UP
�
wl ⊗ SlM

��
;

SnA ¼ UP
�X4

l¼1

UP
�
wl ⊗ Sl;nA

��
;

ð9Þ

where SM is thefinal saliency prediction from theMSI network, SnA is the
final saliency prediction from the n-th ASI network, and
n ∈ f1, 2, 3, 4, 5, 6g indicates the ASI networks which process the F l,n

P
perturbed by DropOut [35], SpatialDropout [39], DropBlock [40],
FeatureDrop [25], FeatureNoise [25] and our DropView perturbation
accordingly.

3.5. Hybrid objective function

1) Bootstrapping loss function of supervision. To handle the training of
labeled ODIs in the FE network, VFAI modules and MSI network, we
adopt KLD [45], CC [46] and NSS [47] to establish the loss of supervision.

Specifically, the loss LL can be expressed as

LL ¼ ‘kldðSM,L,G
SÞ � ‘ccðSM,L,G

SÞ � ‘nssðSM,L,G
FÞ, ð10Þ

where ‘kldð�Þ is the KLD loss function, ‘ccð�Þ is the CC loss function, ‘nssð�Þ
is the NSS loss function, SM,L is the saliency map of the labeled ODI pre-
dicted by the MSI network, and GS and GF are fixation density map and
binary fixation location map of the corresponding label, respectively.
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To keep the training stability on difficult saliency information, we
follow the work [43,44] and modify LL to the bootstrapped loss, i.e.,

LB
L ¼ IðSM,L < λÞ�LL, ð11Þ

where Ið�Þ is the indicator function. In this function, the loss of pixel
values of the predicted saliencymap over λwould be set to zero. There-
fore, in every iteration,we only focus on the loss over the pixels with sa-
liency values less thanλ. Then less salient pixels are gradually taken into
consideration when the training processes. Here, we set λ to 0.7.

2) Unsupervised regularizer. In the training phase, we utilize unla-
beled ODIs to improve the representation capability of the network.
Since there are no fixation ground truths of the unlabeled data, we ex-
ploit unsupervised regularizers to constrain the training between the
saliencymaps of unlabeled ODIs predicted byMSI network and ASI net-
works.

Specifically, we combine KLD ‘kldð�Þ and MSE ‘mseð�Þ to train the un-
labeled data. The unsupervised regularizer can be denoted as:

Ln
U ¼ ‘kldðSnA, SM,UÞ þ ‘mseðSnA, SM,UÞ, ð12Þ

where Ln
U is the unsupervised regularizer of the n-th ASI network, and

SM,U is the saliency map of unlabeled ODIs predicted by MSI network
which serves as a pseudo label for the unlabeled data in the consistency
regularization. The total unsupervised regularizersLU canbe expressed as

LU ¼
X6
n¼1

Ln
U : ð13Þ

3) Total objective function.We train our semi-supervised VFNet in an
end-to-end manner. For mitigating the initial noisy predictions of the
MSI network, we exploit ωU to weight the unsupervised term, i.e.,

LT ¼ LB
L þωU �LU : ð14Þ

Following [33,25],ωU ramps up starting from zero along an exponential
curve to a fixed value ηU . In this paper, we set ηU to one, and the ramp-
up period is the first eight epochs.

4. Experiments

4.1. Datasets

1) Training datasets. We train the proposed VFNet on the following
two publicly available datasets.

Salient360!2017 [20] is one of themost popular ODI saliency predic-
tion dataset. It includes 20 ODIs for head movement, 40 ODIs for head
and eye movement. The images in this dataset are with various resolu-
tions, and the fixation density labels are blurred by a Gaussian of 3.34�

visual angle. For comparing with other methods fairly, we follow previ-
ous works [18,17] and adopt these 40 ODIs with head and eye move-
ment visual fixation labels as the labeled data to train our VFNet.

360-SOD [53] includes 500ODIs for 360� saliency detection and pro-
vides binary pixel-wise segmentation ground truths. However, there
are no fixation location and density labels in this dataset, and the
amount of data in [53] is much smaller than that of the 2D image sa-
liency prediction dataset [15]. We utilize the whole dataset, which con-
tains scene-similar ODIs, as the unlabeled training data of the proposed
VFNet method.

2) Evaluation datasets. We evaluate the proposed VFNet and other
state-of-the-art methods on the following two publicly available
datasets in this paper.

Salient360!2017 [20] also contains 25 ODIs including both “head”,
and “head and eye movement” eye fixations as evaluation data. For a
fair comparison, we adopt these 25 ODIs to evaluate the performance
of our VFNet and the compared saliency prediction methods.
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Saliency-in-VR [21] consists of 22 ODIs including indoor and out-
door scenes. In this dataset, fixations are captured under the “VR”, “VR
seated”, and “desktop” condition. We follow the compared methods
and only employ the fixation label of the VR condition. We utilize this
whole dataset for evaluating the performance of various saliency pre-
dictionmethods. Here, thefixation density labels in this dataset are gen-
erated by convolving a Gaussian with 1� visual angle.

4.2. Implementation details

1) Training protocol. We implement the proposed VFNet by PyTorch
[54] frameworkwith anNVIDIA Titan RTXGPU. At the training phase, all
the training 360� equirectangular images and their corresponding 360�

cubemap images are respectively resized to 512� 256 and 128� 128,
and the 360� equirectangular images are augmented by randomly flip-
ping. The initial parameters of the shared FE network are adopted
from the pre-trained ResNet-34 model [41] trained on ImageNet [55].
The normal distribution [56] is employed to initialize the parameters
of all the newly added convolutional layers. We utilize the Stochastic
Gradient Descent (SGD) algorithm for training our VFNet in an end-
to-end way.

The batch sizes of labeled and unlabeled data are set to four, and the
initial learning rate is set to 0.001. We utilize themomentum of 0.9 and
theweight decay of 0.0001. Besides,we adopt the ‘poly’policy described
in [57] to adjust the learning rate. Finally, the training converges after ∼
40 epochs.

2) Testing protocol. At the testing stage, all the perturbations and cor-
responding ASI networks are removed and the saliency maps are pre-
dicted by MSI network.

4.3. Evaluation metrics

Weadopt fourmost common saliency predictionmetrics to evaluate
all methods, which include Kullback–Leibler Divergence (KLD) [45],
Pearson’s Correlation coefficient (CC) [46], Normalized Scanpath
Saliency (NSS) [47], and the Area Under the receiver operating charac-
teristic Curve (AUC) variant from Judd et al. [58] (AUCJ). The evaluation
tool1 and default configurations are from Gutiérrez et al. [59].

We adopt the above metrics to quantitatively evaluate the perfor-
mance of our method and other compared methods from different
aspects.

4.4. Comparison with state-of-the-art methods

1) Comparedmethods.We compare ourmethodwith six state-of-the-
art ODI saliency prediction methods including BMS360 [23], GBVS360
[23], SalNet360 [19], SalGAN360 [17], MV-SalGAN360 [18] and MC-AEB
[52], and four state-of-the-art visual saliency methods for 2D images in-
cluding MLNet [2], SAM [6], TranSalNet [50] and SalFBNet [51].

Specifically, BMS360 [23], GBVS360 [23] are the ODIs saliency pre-
diction methods extended from traditional 2D saliency prediction
methods BMS [4] and GBVS [3]. SalNet360 [19], SalGAN360 [17], MV-
SalGAN360 [18] and MC-AEB [52] are the CNN-based ODI saliency pre-
diction methods. The CNN-based methods (SalNet360, SalGAN360 and
MV-SalGAN360) are pre-trained on the SALICON [15] dataset which
contains 10,000 typical 2D images for training, 5,000 typical 2D images
for validation, and 5,000 typical 2D images for testing. Compared with
the entire 360-SOD [53] dataset fully adopted as unlabeled data to
train our VFNet, the amount of the training data of SALICON (10,000)
is much larger than that of the 360-SOD [53] dataset (500). For a fair
comparison, we fine-tune the default trained 2D image saliency predic-
tion methods MLNet, ResNet-based SAM, TranSalNet and SalFBNet on
the training set of Salient360!2017 [20] dataset, i.e., the 40 ODIs with
1 https://salient360.ls2n.fr/.
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head and eye movement eye fixation labels. As for the methods for
ODIs, we use the saliency maps and the parameters provided by the
authors.

2) Quantitative comparison. We conduct quantitative performance
comparison of our method and the methods [2,6,17–19,23] mentioned
above on Salient360!2017 [20] and Saliency-in-VR [21] dataset in
terms of four metrics in Table 1.

Concretely, on the Salient360!2017 dataset, our method shows sim-
ilar performance to the best methods in terms of KLD, CC,NSS and AUCJ .
The SAM method fine-tuned on the Salient360!2017 dataset achieves
the best performance in terms of KLD and CC. However, in terms of
NSS and AUCJ , it has an obvious percentage gap with our method.
SalGAN360 shows the best performance in the remaining metrics, NSS
and AUCJ , while our method performs better in terms of KLD and CC,
and the percentage gain compared with SalGAN360 reaches 4.6% for
KLD and 1.7% for CC. Our semi-supervisedmethod shows balanced per-
formance on these four differentmetrics. On the Saliency-in-VR dataset,
ourmethod achieves the best performance in terms of KLD, CC and NSS.
Compared with the second best method on this dataset, the percentage
gain of our method reaches 1.5% for KLD, 1.9% for CC, and 12.7% for
NSS. Meanwhile, our method performs almost similar to the best
method in terms of AUCJ .

Overall, our semi-supervised method shows comparable perfor-
mance on Salient360!2017 dataset and performs better on the
Saliency-in-VR dataset, it achieves the optimal ranking on these two
datasets.

3) Visual comparison. In Fig. 7, we present visual comparisons of the
investigated methods for several typical scenes in ODI saliency predic-
tion. For the first easy scene, most methods can predict the visually sa-
lient regions of the image including our semi-supervised VFNet. For
the second scene, our VFNet can predict the visual saliency accurately
although the non-uniform eye fixations distribute over different

viewports. For example, our saliency map in the 3rd row not only en-
hances the salient regions in the ODI but also suppresses the regions
with few eye fixations. For the last scene, the eye fixations are distrib-
uted in multiple viewports. Our semi-supervised method can still effec-
tively highlight the visually salient regions as those fully-supervised
methods. In addition, in the top and bottom regions of 360�

equirectangular images, our method can suppress the background in-

formation stably, such as the paintings and display case in the 6th row.

4.5. Ablation studies

In this subsection,we provide comprehensive ablation studies of our
VFNet on Salient360!2017 [20] and Saliency-in-VR [21] datasets, and
verify the contribution of every key component in our method. Specifi-
cally, we investigate 1) the importance of the VFAI module, 2) the ne-
cessity of the DropView in the consistency training, 3) the
effectiveness of the multi-level form of perturbation, and 4) the useful-
ness of bootstrapping hybrid loss of supervision. At each time, we
change one component and re-train the corresponding variants with
the same training set and hyper-parameters in Sections 4.1 and 4.2.

1. The importance of the VFAI module. To study the importance of
VFAImodule in VFNet,we explore two straightforward variants as base-
lines: 1) replacing VFAI module with element-wise summation and
convolution operations (i.e., AC) to fuse the equirectangular and
projected equirectangular features, and 2) removing the viewport fea-
ture adaptive integration operation but maintaining Multi-Scale Fusion
(MSF) and Channel Attention (CA) (i.e., MC) in VFAI module.

As shown in Table 2, the performance of both variants is severely
damaged. Furthermore, the comparison between the proposed VFNet
and the variant MC indicates that cubemap viewport feature adaptive
integration is critical in theVFAImodulewhichfits the non-uniformdis-
tribution of eye fixations over ODIs by adaptively and further improves
the performance of VFNet on all metrics on both two datasets.



Table 1
Quantitative performance comparison of our method and other state-of-the-art methods on Salient360!2017 [20] and Saliency-in-VR [21] datasets. " (↓) indicates the larger (smaller) is
better. The top three results are marked in , and accordingly.
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2. The necessity of the DropView in consistency training. To vali-
date the necessity of the DropView in consistency training, we remove
the DropView and only use DropOut [35], SpatialDropout [39],
DropBlock [40], FeatureDrop [25] and FeatureNoise [25] as the
perturbations.

The performance ofw/o DV shown in Table 2 illustrates that the pro-
posed DropView can further improve the performance of VFNet on both
two datasets by perturbing the spatial correlation of different viewports
of ODIs.

3. The effectiveness of the multi-level form of perturbation. To
explore the effectiveness of injecting a given type of perturbation mod-
ule into input features of the given ASI network at different levels, we
offer a variantwhich conducts trainableweighted summation described
in Section 3.4 on the output features of different levels in VFAI modules
and then perturbs these added features before the ASI networks, i.e.,w/o
MLP. From Table 2, we see that the performance is degraded when the
multi-level form of perturbation is removed. It confirms perturbing
multi-level features by a given perturbation function in one specific
ASI network is reasonable.

4. The usefulness of bootstrapping hybrid loss of supervision. In
MSI network, we adopt bootstrapping hybrid loss function for training
with the labeled data. To investigate its usefulness, we conduct a normal
form of the hybrid loss, i.e.,w/o BH, inMSI network and train the variant.
As reported in Table 2, the performance degradation ofw/o BH validates
that the bootstrapping hybrid loss function policy benefits predicting vi-
sual saliency in ODIs. Besides, we also explore the labeled data only for
Fig. 7. Visual comparisons of our VFNet with nine latest ODI saliency prediction methods, in
SalNet360 [19], SalGAN360 [17], and MV-SalGAN360 [18] on Salient360!2017 [20] and Salienc
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training our VFNet, i.e., we only maintain the FE network, VFAI modules
and MSI network, and then train this variant (w/o UL) with the 40 360�

equirectangular images in Salient360!2017 dataset. As shown in
Table 2, the performance of w/o UL is also degraded on Salient360!
2017 and Saliency-in-VR datasets. Specifically, we observe that w/o UL
has a smaller percentage gap with VFNet (Ours) on Salient360!2017
dataset than on Saliency-in-VR dataset. This demonstrates training
with a small amount of training data may cause overfitting on a given
dataset and damage the generalizability of method cross datasets.

5. Conclusion

In this paper, we propose a novel and effective semi-supervised
Viewport Feature Network (VFNet) for omnidirectional image (ODI) sa-
liency prediction. VFNet is equipped with consistency regularization
framework for training with the labeled and unlabeled data in an end-
to-end way. In particular, the proposed DropView provides a new per-
turbation form, which is imposed on the intermediate features of unla-
beled ODIs, for enhancing the representation capacity of the VFNet.
Furthermore, the proposed Viewport Feature Adaptive Integration
(VFAI)module is a vitalmedium for feature encoding and saliency infer-
ence in the VFNet. This module is in charge of interacting 360�

equirectangular and cubemap features and adaptively integrating the
features based on the distribution of eye fixations in omnidirectional
scenes. Comprehensive experiments, including comparison analyses
and ablation studies, demonstrate that our VFNet is competitive with
cluding MLNet [2], SAM [6], TranSalNet [50], SalFBNet [51], BMS360 [23], GBVS360 [23],
y-in-VR [21] datasets.



Table 2
Ablation analyses for the importance of VFAImodule, the necessity of DropView in consis-
tency training, the effectiveness of themulti-level form of perturbation and the usefulness
of bootstrapping hybrid loss of supervision. The best result in each column is in bold.

Models Salient360!2017 [20] Saliency-in-VR [21]

KLD↓ CC" NSS" AUCJ" KLD↓ CC" NSS" AUCJ"
VFNet (Ours) 0:361 0:651 0:921 0:733 1:057 0:537 2:039 0:859
AC 0.418 0.631 0.869 0.721 1.193 0.500 1.840 0.850
MC 0.371 0.642 0.872 0.718 1.126 0.503 1.832 0.856
w=o DV 0.363 0:651 0.874 0.722 1.137 0.511 1.860 0.857
w=o MLP 0.377 0.639 0.858 0.719 1.110 0.512 1.893 0.857
w=o BH 0.394 0.623 0.860 0.714 1.159 0.499 1.870 0.849
w=o UL 0.371 0.649 0:921 0.728 1.124 0.503 1.809 0.855
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state-of-the-art ODI saliency prediction methods based on fully-
supervised learning, and shows a balanced performance on different
datasets.
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