
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 3, MARCH 2023 1223

RGB-T Semantic Segmentation With Location,
Activation, and Sharpening

Gongyang Li , Yike Wang, Zhi Liu , Senior Member, IEEE, Xinpeng Zhang , Member, IEEE,

and Dan Zeng , Senior Member, IEEE

Abstract— Semantic segmentation is important for scene
understanding. To address the scenes of adverse illumination
conditions of natural images, thermal infrared (TIR) images are
introduced. Most existing RGB-T semantic segmentation methods
follow three cross-modal fusion paradigms, i.e., encoder fusion,
decoder fusion, and feature fusion. Some methods, unfortunately,
ignore the properties of RGB and TIR features or the properties
of features at different levels. In this paper, we propose a novel
feature fusion-based network for RGB-T semantic segmentation,
named LASNet, which follows three steps of location, activation,
and sharpening. The highlight of LASNet is that we fully consider
the characteristics of cross-modal features at different levels, and
accordingly propose three specific modules for better segmenta-
tion. Concretely, we propose a Collaborative Location Module
(CLM) for high-level semantic features, aiming to locate all
potential objects. We propose a Complementary Activation Mod-
ule for middle-level features, aiming to activate exact regions of
different objects. We propose an Edge Sharpening Module (ESM)
for low-level texture features, aiming to sharpen the edges of
objects. Furthermore, in the training phase, we attach a location
supervision and an edge supervision after CLM and ESM, respec-
tively, and impose two semantic supervisions in the decoder part
to facilitate network convergence. Experimental results on two
public datasets demonstrate that the superiority of our LASNet
over relevant state-of-the-art methods. The code and results of
our method are available at https://github.com/MathLee/LASNet.

Index Terms— RGB-T semantic segmentation, discriminative
treatment, collaborative location, complementary activation, edge
sharpening.

I. INTRODUCTION

SEMANTIC segmentation [1], [2], [3], [4], also known
as scene parsing, is a fundamental topic in computer
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Fig. 1. Three typical cross-modal fusion paradigms for RGB-T semantic
segmentation, including encoder fusion [25], [26], [27], [28], [29], decoder
fusion [18], [30], [31], and feature fusion [32], [33], [34].

vision, and focuses on assigning a category label to each
pixel in a natural image, which is a dense prediction task.
It plays an important role in autonomous driving [5], [6],
medical analysis [7], remote sensing scene understanding [8]
and so on. In the past decade, many effective solutions [9],
[10], [11], [12], [13], [14], [15], [16], [17] for semantic
segmentation have been proposed. However, there are still
some hard scenes that unimodal image-based methods cannot
handle well, such as cluttered backgrounds, adverse illumi-
nation conditions (even darkness), and occlusions by fog or
smoke. Therefore, researchers additionally introduce thermal
infrared (TIR) images, and combine them with natural images
to handle the above hard scenes, forming an emerging task
called RGB-T semantic segmentation [18], [19]. TIR images
reflect the surface temperature of objects collected by the TIR
sensor, and are insensitive to illumination changes, making up
for the shortcomings of unimodal natural images [20], [21],
[22], [23], [24].

For multi-modal inputs, the key is how to effectively make
them complement each other. Therefore, researchers strive
to develop effective cross-modal fusion strategies for RGB
images and TIR images in RGB-T semantic segmentation.
In general, as shown in Fig. 1, there are currently three typical
cross-modal fusion paradigms for RGB-T semantic segmen-
tation, including encoder fusion [25], [26], [27], [28], [29],
decoder fusion [18], [30], [31], and feature fusion [32], [33],
[34]. Specifically, encoder fusion paradigm directly adopts
element-wise summation to achieve cross-modal feature fusion
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on the feature extraction stage. Decoder fusion paradigm usu-
ally adopts the same module to process cross-modal features at
different levels on the inference stage. Feature fusion paradigm
focuses on fusing multi-level cross-modal features between
encoder and decoder, and usually employs the same module.

The above three fusion paradigms have greatly promoted the
development of RGB-T semantic segmentation. However, the
disadvantages of them are obvious. The cross-modal feature
fusion operation of the encoder fusion paradigm is the simple
element-wise summation, ignoring the properties of RGB and
TIR features. The other two paradigms design specific modules
to fuse cross-modal features, and have the same problem
of using the unified module to process features at different
levels. In fact, features at different levels of convolutional
neural networks (CNNs) [35] have unique characteristics. The
indiscriminate treatment ignores the properties of features at
different levels and is suboptimal.

Driven by the aforementioned observation, in this paper,
we propose a novel LASNet for RGB-T semantic segmen-
tation, aiming to explore the characteristics of features at
different levels and to mine the common valuable content
contained in cross-modal features. We implement LASNet
through the feature fusion paradigm. Different from previous
methods, we achieve accurate segmentation via three steps
of object location, region activation, and edge sharpening.
We arrange these three steps reasonably according to the
characteristics of features at different levels. Furthermore,
we design three dedicated modules for these three steps instead
of the unified modules used by previous methods.

Specifically, we divide the basic cross-modal features
extracted by the backbone into three levels, i.e., high, mid-
dle, and low levels. For high-level features, we propose a
Collaborative Location Module (CLM), which builds pixel-
level correlations [36], [37] among semantic representations to
locate all potential objects. For middle-level features, we pro-
pose a Complementary Activation Module (CAM), which
builds on the attention mechanism [12], [38] to generate
informative features for exact region activation. For low-level
features, we propose an Edge Sharpening Module (ESM),
which extracts edges using multiple receptive fields to sharpen
objects of different sizes. In addition, we impose the location
supervision on CLM and the edge supervision on ESM to
improve the accuracy of object location and edge extraction.
In this way, the above three modules make good use of
different levels of features, facilitating the proposed LASNet
to generate satisfactory segmentation results.

Our main contributions are summarized as follows:
• We fully explore the characteristics of cross-modal fea-

tures at different levels, and propose a novel LASNet for
RGB-T semantic segmentation, following three steps of
location, activation, and sharpening.

• We propose specific CLM, CAM, and ESM for high-,
middle-, and low-level cross-modal features, respectively,
which are responsible for object location, region activa-
tion, and edge sharpening. These three modules mine
the common valuable content contained in cross-modal
features at different levels to generate discriminative
features, facilitating accurate segmentation.

• We evaluate the proposed LASNet on MFNet dataset and
PSTNet dataset. The results demonstrate that our LASNet
outperforms state-of-the-art methods and show the rea-
sonableness of discriminative treatment of cross-modal
features at different levels in our LASNet.

The rest of this paper is organized as follows. In Sec. II,
we review the related work of RGB and multi-modal semantic
segmentation. In Sec. III, we elaborate the proposed LASNet.
In Sec. IV, we present comprehensive experiments and analy-
ses. Finally, in Sec. V, we conclude this work.

II. RELATED WORK

A. RGB Semantic Segmentation

Recently, with the help of CNNs, RGB semantic seg-
mentation (i.e., unimodal semantic segmentation) has made
amazing progress. Long et al. [1] proposed the milestone
Fully Convolutional Network (FCN), which is the first end-
to-end CNN-based semantic segmentation method. Subse-
quently, Noh et al. [2] and Badrinarayanan et al. [4] proposed
the Deconvolution Network (DeconvNet) and the encoder-
decoder architecture-based SegNet, respectively, which are
two other pioneering works. Inspired by the above works,
many technologies have been developed and applied for RGB
semantic segmentation, such as multi-scale strategy, contextual
dependency, and transformers.

As a representative work of multi-scale strategy,
Chen et al. proposed a series of methods, including
DeepLabV1 [3], DeepLabV2 [39], DeepLabV3 [40], and
DeepLabV3+ [41]. They introduced atrous convolutions to
capture multi-scale information. Furthermore, they proposed
atrous spatial pyramid pooling (ASPP), and made the
network deeper with atrous convolutions. Yang et al. [42]
proposed the Densely connected ASPP (DenseASPP)
to generate features with very large receptive fields.
Zhao et al. [9] adopted four pooling layers of different
sizes to capture the multi-scale global information, and
proposed the Pyramid Scene Parsing Network (PSPNet).
Ji et al. [43] adopted the spatial pyramid pooling to ensemble
multi-scale features in the encoding stage, and learned
boundary information in the decoding stage.

Some researchers focus on exploring contextual dependency
for RGB semantic segmentation. For example, Yuan and
Wang [44] introduced the self-attention mechanism to learn
the pixel-wise similarity maps to identify objects belong-
ing to the same category as the target pixel. Moreover,
Yuan et al. [45] built the pixel-region relation, and enhanced
the representation of each pixel by the object-contextual
representation for accurate segmentation. Fu et al. [12] pro-
posed Dual Attention Network (DANet) to model the global
dependencies in channel and spatial dimensions via self-
attention. Huang et al. [10] proposed the criss-cross attention
to capture contextual information in an efficient way. Similar
to [10], Weng et al. [15], and Liu et al. [46] focused on
the efficiency of algorithms, and developed real-time and
accurate segmentation methods. To better mine global contex-
tual dependencies, Strudel et al. [11] built the Segmenter on
ViT [47]. Xie et al. [14] proposed a cutting-edge Transformer
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framework, named SegFormer, with a lightweight All-MLP
decoder.

Overall, semantic segmentation in unimodal images has
achieved great success, but the above segmentation methods
often fail in challenging scenes, such as low contrast, cluttered
backgrounds, adverse illumination conditions, and occlusions
by fog or smoke. The researchers therefore introduce addi-
tional information to handle these difficult scenes, proposing
multi-modal semantic segmentation.

B. Multi-Modal Semantic Segmentation

In this paper, multi-modality data generally refers to RGB
images and depth maps or TIR images, i.e., RGB-D or
RGB-T. In addition to semantic segmentation, these two types
of multi-modal data have a wide range of applications in
computer vision, such as salient object detection [20], [48],
[49], [50], tracking [24], and glass segmentation [51], [52].
Obviously, depth maps and TIR images are different and have
their own characteristics. Depth maps contain rich geometric
distance information, while TIR images reflect the surface
temperature of objects.

1) RGB-D Semantic Segmentation: Depth maps are use-
ful for handling scenes with low contrast and disturbing
backgrounds. Cao et al. [54] directly concatenated RGB
image and depth map as the network input, and proposed
the shape-aware convolutional layer to construct a segmen-
tation network. Hazirbas et al. [55] fused RGB features
and depth features through element-wise summation in the
two-stream encoder. Differently, some researchers focus on
the fusion of different levels of features. For example,
Wang et al. [56] extracted RGB features and depth features
independently, and then learned common features from the
extracted high-level features to improve the segmentation
accuracy. Hu et al. [57] proposed an attention complemen-
tary module to enhance the independently extracted fea-
tures, and then adopted element-wise summation for simple
fusion. Moreover, Chen et al. [58] proposed a separation-
and-aggregation gate to fuse features at multiple levels, and
integrated the fused features into the encoder. There are other
approaches that do not follow the above structures. Wang and
Neumann [59] proposed depth-aware convolution and depth-
aware average pooling in a depth-aware CNN, integrating
geometry into CNN. Lin and Huang [60] proposed the zig-zag
architecture to construct context features of RGB image, and
then matched the image region and discrete depth map to
achieve the eventual segmentation.

2) RGB-T Semantic Segmentation: TIR images are useful
for handling scenes with adverse illumination conditions and
occlusions by fog or smoke. We review existing RGB-T
semantic segmentation methods according to the three par-
adigms in Fig. 1. Sun et al. [25], [28] proposed the encoder
fusion paradigm, which integrates TIR features into RGB fea-
tures through element-wise summation and is similar to [55].
Following this paradigm, Guo et al. [26] proposed a specific
decoder with multi-level skip connections and the auxiliary
decoding module for segmentation. Deng et al. [27] introduced
a feature-enhanced attention module to fuse RGB and thermal

information at multiple levels in the encoder part. In the
decoder, Zhou et al. [29] concatenated all features extracted
from encoder, and proposed multi-label supervision to assist
semantic segmentation. Differently, Ha et al. [18] proposed
the decoder fusion paradigm, which adopts two independent
networks to extract RGB features and TIR features and
integrates them in the decoder. Zhang et al. [30] reduced
multi-modality difference in the independent encoders, and
achieved cross-modal feature fusion via the channel weighted
fusion module in the decoder. Zhou et al. [31] extracted
semantic information from high-level RGB and TIR features
via concatenation-attention operation, and proposed a hierar-
chical multimodal fusion module for multiscale fusion in the
decoder. Zhou et al. [32], [33], [34] separated the cross-modal
feature fusion from the encoder and decoder, proposing the
feature fusion paradigm. They adopted the multi-modal fusion
module to process RGB and TIR features at different levels,
and extracted global information from the high-level fused
features to guide the segmentation process of objects.

The above methods almost indiscriminately process features
at different levels. Only a few methods [31], [32], [33], [34]
designed specific modules for high-level features, but these
modules are based on some simple fusion strategies. In this
paper, we fully explore the characteristics of cross-modal
features at different levels, and propose CLM, CAM, and
ESM for high-, middle-, and low-level cross-modal features,
respectively. Our three modules are specially tailored to the
characteristics of different levels of features. Based on three
specific modules and the feature fusion paradigm, we pro-
pose a complete solution, i.e., LASNet, for RGB-T semantic
segmentation.

III. PROPOSED METHOD

In this section, we present the proposed LASNet in detail.
In Sec. III-A, we introduce the network overview of LASNet.
In Sec. III-B, Sec. III-C, and Sec. III-D, we elaborate the
proposed CLM, CAM, and ESM, respectively. In Sec. III-E,
we present the loss function.

A. Network Overview

As depicted in Fig. 2, the proposed LASNet is based on
the feature fusion paradigm, including a feature extractor,
three specific modules, and a decoder. For feature extractor,
we adopt two parallel ResNet-152 [53] backbones, named
RGB branch and TIR branch, to extract cross-modal fea-
tures from RGB image and TIR image. We denote the five
convolution blocks in RGB branch and TIR branch as Ri

and Ti (i = 1, 2, 3, 4, 5), respectively, and the corresponding

output RGB and TIR features as { f̂
i
r, f̂

i
t } ∈ R

hi×wi×ci . The
input size is denoted as H × W , so hi is H

2i , wi is W
2i ,

and ci ∈ {64, 256, 512, 1024, 2048}. Here, the RGB branch
and the TIR branch share parameters, which not only keeps
the extracted features in the same feature space, but also
reduces the number of parameters. Furthermore, we employ
two identical convolutional layers (i.e., shared parameters) to

project the same level of RGB and TIR features, f̂
i
r and f̂

i
t ,
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Fig. 2. Pipeline of the proposed LASNet. Overall, LASNet follows the feature fusion paradigm, and consists of three parts, including a feature extractor, three
specific modules, and a decoder. Here, we adopt the ResNet-152 [53] as the backbone, and construct a parallel ResNet-152 structure for feature extraction,
generating five-level basic cross-modal features. Then, we arrange Collaborative Location Module (CLM), Complementary Activation Module (CAM), and
Edge Sharpening Module (ESM) for the high-, middle-, and low-level features, respectively. CLM enhances the location representation of all potential objects.
CAM activates exact regions of different objects in three intermediate levels of features. ESM sharpens the edges of objects. Finally, according to the output
features of the above three modules, we generate the segmentation result Ssem in the decoder.

Fig. 3. Illustration of the Collaborative Location Module (CLM).

to f i
r and f i

t , respectively, with fewer channels (i.e., ci ∈
{64, 128, 256, 256, 512}) to reduce computational cost.

We divide the extracted basic cross-modal features into three
levels, that is, { f 5

r , f 5
t } are the high level, { f 2∼4

r , f 2∼4
t } are

the middle level, and { f 1
r , f 1

t } are the low level. We arrange
CLM, CAM, and ESM for these three levels of features to
achieve object location, region activation, and edge sharpen-
ing, respectively. Concretely, CLM can enhance the location
representation of all potential objects with the help of loca-
tion supervision. CAM can activate multi-level exact regions
of different objects. ESM can extract edge information of
objects with the help of edge supervision. These three specific
modules are the core components of our LASNet, implement-
ing three important segmentation-friendly functions. With the
informative features generated by the above modules from the
five-level features, we achieve the accurate segmentation result
Ssem in a general decoder, which is composed of five decoder
blocks, and each decoder block includes a dropout layer, two
convolutional layers, and an upsampling operation.

B. Collaborative Location Module

As we all know, high-level features contain rich seman-
tic information, and have strong representations for object

location. And cross-modal RGB and TIR features are com-
plementary, which is more conducive to locating objects.
Inspired by the object segmentation works which explore
the correlation (i.e., co-attention [61]) of target objects in
consecutive video frames [36] (i.e., cross-frame) and fea-
tures of successive levels [37] (i.e., cross-level), we pro-
pose Collaborative Location Module to model the pixel-level
correlation of cross-modal high-level semantic features to
collaboratively determine the object location. In addition,
we mine the valuable representation from two types of feature
combinations (i.e., summation and multiplication) in the CLM.
We illustrate the CLM in Fig. 3. The input features of the
CLM are f 5

r and f 5
t . The whole process of CLM can be

divided into cross-modal correlation modeling and correlation
combinations.

1) Cross-Modal Correlation Modeling: In low illumination
environments, objects in the RGB image are drowned in
the background, as the input RGB image in Fig. 2, but are
evident in the TIR image. We believe that the multiplication
operation can highlight drowned regions of RGB features with
the evident content of TIR features in the product features,
and simultaneously extract the coexistence information of
two features. Therefore, we first perform the element-wise
multiplication operation on f 5

r and f 5
t , generating f 5

mul ∈
R

h5×w5×c5 . In Fig. 4, we visualize f 5
r , f 5

t , and f 5
mul. In the

first two cases of nighttime, the persons and objects are almost
invisible in RGB images, but are obvious in TIR images.
This makes the object regions in f 5

r indistinguishable, but
the object regions in f 5

t can be easily highlighted, resulting in
the object regions in the product features f 5

mul are highlighted
more accurately than those in f 5

r . In the last two cases, the
object regions in f 5

t and f 5
r are relatively clear. Through

the multiplication operation, the common objects in f 5
t and

f 5
r can be extracted, resulting in that f 5

mul can highlight the
objects.
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Fig. 4. Feature visualization of f 5
r , f 5

t , and f 5
mul in CLM. Here,

we superimpose f 5
r , f 5

t , and f 5
mul on RGB image, TIR image, and ground

truth (GT), respectively. Please zoom-in for details.

Then, we model the pixel-level correlation of { f 5
mul, f 5

r }
and { f 5

mul, f 5
t }, respectively, to collaboratively identify objects

in cross-modal features, which can be formulated as follows:
f 5

r−corr = Corr( f 5
mul, f 5

r ),

f 5
t−corr = Corr( f 5

mul, f 5
t ), (1)

where { f 5
r−corr, f 5

t−corr} ∈ R
h5×w5×c5 are the cross-modal

correlation features, and Corr(·) is the co-attention opera-
tion [61]. Here, taking f 5

mul and f 5
r as an example, the

co-attention operation computes the spatial dependencies of
f 5

mul and f 5
r through the matrix multiplication, producing an

affinity matrix, and then transfers the valuable information of
the affinity matrix to f 5

r .
2) Correlation Combinations: f 5

r−corr and f 5
t−corr have a

strong representation of the object location, and there are
differences between them. How to effectively fuse them is
important. In addition to the multiplication operation men-
tioned before, we believe that the summation operation can
extract comprehensive features and reduce information leak-
age. Therefore, we adopt a hybrid scheme to combine the
cross-modal correlation features as follows:

f 5
clm = ( f 5

r−corr ⊕ f 5
t−corr) � ( f 5

r−corr ⊗ f 5
t−corr), (2)

where f 5
clm ∈ R

h5×w5×c5 is the output feature of the CLM,
⊕/⊗ and � are the element-wise multiplication/summation
and concatenation, respectively, and we omit the convolutional
layer.

Through the above collaborative multiplication and summa-
tion operations, we can obtain informative features of object
location. Furthermore, as shown in Fig. 3, we attach a location
head (LocHead) after the CLM, and impose the location
supervision to achieve more accurate object location.

C. Complementary Activation Module

Middle-level cross-modal features (i.e., { f 2∼4
r , f 2∼4

t })
occupy the majority and play the role of gradually refining
objects and restoring the resolution. Since we locate all
potential objects in high-level features, we try to specifically

Fig. 5. Illustration of the Complementary Activation Module (CAM).

activate exact regions of objects in middle-level features with
different scales and propose Complementary Activation Mod-
ule to achieve it. Concretely, our CAM is based on the attention
mechanism [12], [38], which can activate specific feature
regions [38] and establish stronger connections between fea-
tures [12]. We continue to take advantage of the two types
of complementary feature combinations, i.e., summation and
multiplication, to mine the common valuable content.

We illustrate the CLM in Fig. 5, whose inputs are f i
r

and f i
t . In general, the CLM contains two steps of feature

combinations and feature activation. First, we achieve feature
combinations by element-wise multiplication and summation,
generating { f i

mul, f i
sum}i=2,3,4 ∈ R

hi×wi×ci . Since f i
mul rep-

resents the coexistence information and f i
sum represents the

comprehensive information without omission, we make an
attempt to enhance the broad f i

sum with the pithy f i
mul for

fine region activation. Notably, to preserve the high-response
regions of f i

mul, we forgo smoothing it with the convolutional
layer. We apply a convolutional layer to f i

sum for feature
normalization.

Second, we apply the spatial attention [38] to f i
mul to obtain

the pithy spatial attention map, and use this map to highlight
the target regions in f i

sum, generating f i
sa ∈ R

hi×wi×ci . In addi-
tion, we introduce the channel self-attention [12] to model the
channel-wise dependencies of f i

sa, generating the output fea-
ture of CAM, f i

cam ∈ R
hi×wi×ci . Using two types of attention

mechanisms in spatial and channel domains can enhance the
robustness of discriminative feature representations.

To sum up, we briefly formulate the above process as
follows:
f i

cam = C S A
�
S A( f i

r ⊗ f i
t )⊗conv( f i

r ⊕ f i
t )

�
, i = 2, 3, 4,

(3)

where S A(·) and C S A(·) are spatial attention and channel self-
attention, respectively, and conv(·) is the convolutional layer.
As shown in Fig. 2, the CAM is arranged on three levels
of cross-modal features, which is conducive to mining the
multi-level complementary information and can activate the
same regions of objects at different scales.

D. Edge Sharpening Module

In semantic segmentation, there are usually multiple objects
of different categories in an RGB-T pair, and their sizes
are varied. In CLM and CAM, we successfully explore the
common valuable content of high- and middle-level features.
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Fig. 6. Illustration of the Edge Sharpening Module (ESM).

Low-level features contain rich texture information, which
can describe the details of objects. Therefore, we propose
Edge Sharpening Module for low-level features to explore the
common valuable content and perceive details with different
receptive fields.

We illustrate the ESM in Fig. 6, whose inputs are f 1
r and

f 1
t . Similar to CLM, the ESM contains feature combinations

and multi-head dilated convolutions. Feature combinations
are achieved by element-wise multiplication and summa-
tion (accompanied by the convolutional layer), producing
{ f 1

mul, f 1
sum} ∈ R

h1×w1×c1 . Then, we add f 1
mul and f 1

sum, and
design a parallel structure with dilated convolutions [62] to
extract multi-scale detail information. Finally, we aggregate
multi-scale features by concatenation, generating the output
feature of ESM, f 1

esm ∈ R
h1×w1×c1 . We briefly summarize the

above process as follows:
f 1

esm = M H DC
�
conv( f 1

r ⊗ f 1
t ) ⊕ conv( f 1

r ⊕ f 1
t )

�
, (4)

where M H DC(·) represents the multi-head dilated
convolutions.

As shown in Fig. 6, similar to CLM, we attach an edge head
(EdgeHead) after the ESM, and impose the edge supervision to
achieve more accurate edge information. Moreover, consider-
ing that f 1

esm is used to sharpen the edges of objects, we attach
a semantic head (SemHead) after the second decoder block
(i.e., D2) and impose the semantic supervision to improve the
accuracy of feature representation for object regions, as shown
in Fig. 2. In this way, f 1

esm can better sharpen the edges of
object regions in the output feature of D2.

E. Loss Function

As shown in Fig. 2, in addition to the semantic supervision
on D2, the decoder also has a semantic supervision on the
final segmentation result Ssem . Therefore, during the training
phase, our LASNet has a total of four supervisions, including
a location supervision, an edge supervision, and two semantic
supervisions. Specifically, for the location supervision (Lloc),
the edge supervision (Leg) and the semantic supervision on
D2 (Lsem2), we adopt the widely used weighted cross-entropy
loss. For the final semantic supervision (Lsem), we adopt a
hybrid loss, including the weighted cross-entropy loss and the
Lovasz-softmax loss [65]. To make the network more focused
on the semantic segmentation result, we reduce the attention
of the location supervision by empirically setting a coefficient
of 0.5 for it. Compared to the semantic supervision, the edge

supervision has a small loss that does not affect the semantic
segmentation result, so we do not adjust it.

Here, we summarize the total training loss function Ltotal

as follows:⎧⎪⎨
⎪⎩

Ltotal = 0.5Lloc + Leg + Lsem2 + Lsem,

Lloc/eg/sem2 = �wbce(up(Sloc/eg/sem2), GTloc/eg/sem),

Lsem = �wbce(Ssem, GTsem) + �Lovasz(Ssem, GTsem),

(5)

where Sloc/Seg is generated by the LocHead/EdgeHead, Ssem2
and Ssem are generated by the SemHead, and GT is the
corresponding ground truth. We implement the above predicted
heads using a convolutional layer. Notably, existing RGB-T
semantic segmentation datasets only provide the ground truth
of semantic segmentation, so we make GTloc and GTeg

algorithmically. We assign the background class of GTsem

as background with value of zero and the other classes as
foreground with value of one, obtaining the binary location
ground truth GTloc. We extract the edges of all classes except
the background class, and set the pixel values in the edges
to one and others to zero, composing the binary edge ground
truth GTeg . With the effective training loss, our LASNet can
converge well and produce satisfactory segmentation results.

IV. EXPERIMENTS

A. Experimental Protocol

1) Datasets: We train and evaluate the proposed method on
MFNet dataset [18] and PST900 dataset [19].

MFNet dataset1 contains 1,569 RGB-T image pairs
captured by the InfReC R500 camera and corresponding
pixel-level semantic annotations. 820 RGB-T image pairs are
taken at daytime, and the remaining 749 pairs are at nighttime.
The resolution of all RGB and TIR images is 480 × 640.
In addition to the background class, this dataset contains eight
classes, including car, person, bike, curve, car stop, guardrail,
color cone, and bump. All RGB-T image pairs are divided
into three parts, of which 784 pairs (410 daytime images
and 374 nighttime images) are used for training, 392 pairs
(205 daytime images and 187 nighttime images) for validation,
and 393 pairs (205 daytime images and 188 nighttime images)
for testing.

PST900 dataset2 contains 894 aligned RGB and TIR image
pairs, where RGB images are captured by a Stereolabs ZED
Mini stereo camera and TIR images are captured by a FLIR
Boson 320 camera. The resolution of all RGB and TIR images
is 1280 × 720. This dataset contains four classes of hand-
drill, backpack, fire-extinguisher and survivor, and a default
background class. This dataset is divided into two parts for
training and testing, of which 597 pairs3 constitute the training
set and 288 pairs constitute the testing set.

2) Evaluation Metrics: We adopt two widely used quanti-
tative evaluation metrics to evaluate the segmenattion perfor-
mance of our method and all compared methods, including

1https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
2https://github.com/ShreyasSkandanS/pst900_thermal_rgb
3Notably, there are actually only 597 pairs in the training set of previous

works [19], [29], [31], [34] rather than 606 pairs.
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TABLE I

QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF MFNET DATASET. THE VALUE 0.0 REPRESENTS THAT THERE ARE NO TRUE POSITIVES.
‘-’ MEANS THAT THE AUTHORS DO NOT PROVIDE THE CORRESPONDING RESULTS. THE TOP TWO RESULTS IN

EACH COLUMN ARE HIGHLIGHTED IN RED AND BLUE

mean accuracy (mAcc) and mean intersection over union
(mIoU), which can be respectively calculated as follows:

m Acc = 1

C

C�
k=1

T Pk

T Pk + F Nk
, (6)

m IoU = 1

C

C�
k=1

T Pk

T Pk + F Pk + F Nk
, (7)

where C is the total number of classes including background
class, which is respectively set to nine and five in the MFNet
dataset and PST900 dataset, and T Pk , F Pk and F Nk represent
the true positives, false positives and false negatives of class k,
respectively. The higher the two metrics, the better.

3) Implementation Details: We implement the pro-
posed LASNet on the PyTorch [66] with an NVIDIA
GTX 3090 GPU (24GB RAM). For the MFNet dataset and
PST900 dataset, we train and test the proposed LASNet
according to the dataset partition described earlier. During
the training phase, we keep the original resolution of RGB
image and TIR image for network input, use the random
flipping and cropping for data augmentation, and adopt the
Ranger optimizer with the batch size of 4 and the initial
learning rate of 5e−5. The parameters of the feature extractor
are initialized by the pre-trained ResNet-152 model [53], and
the parameters of other newly added convolutional layers
are initialized through the “Kaiming” method [67]. For both
datasets, we train the proposed LASNet for 200 epochs.

During the testing phase, we directly input the RGB-T image
pair with original resolution into the trained LASNet without
any post-processing to obtain the segmentation result.

B. Comparison With State-of-the-Arts

We compare our LASNet with relevant state-of-the-art
RGB/RGB-D/RGB-T semantic segmentation methods. For a
fair comparison, following previous works [30], [34], we also
modify some RGB semantic segmentation methods to adapt
to RGB-T image pairs. We retrain the RGB, RGB-D, and
modified RGB methods with their default parameter settings
on the same training set as our method on two datasets.
We obtain the segmentation maps of other RGB-T methods
through the public benchmarks or codes.

1) Comparison on the MFNet Dataset: On the MFNet
dataset, we compare our LASNet with 14 state-of-the-art
methods, including two RGB semantic segmentation meth-
ods (i.e., DANet [12] and HRNet [63]) and their modi-
fied RGB-T versions, four RGB-D semantic segmentation
methods (i.e., FuseNet [55], D-CNN [59], ACNet [57], and
SA-Gate [58]), and eight RGB-T semantic segmentation meth-
ods (i.e., MFNet [18], two versions of RTFNet [25], PST-
Net [19], MLFNet [26], FuseSeg [28], ABMDRNet [30],
MMNet [64], and EGFNet [34]).

We report the quantitative performance of our method and
all compared methods on the MFNet dataset in Tab. I, includ-
ing performance of eight classes and overall performance.
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Fig. 7. Visual comparisons of our method and eight representative state-of-the-art methods in daytime (the first four cases) and nighttime (the last four cases)
on the test set of MFNet. HRNet-T represents the modified HRNet for RGB-T image pairs. Please zoom-in for the best view.

TABLE II

QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF MFNET DATASET

IN DAYTIME AND NIGHTTIME. THE BEST RESULT IN EACH COLUMN IS

HIGHLIGHTED IN RED

Overall, our method achieves the best performance in terms of
two metrics, especially on mAcc. Across all 18 metrics, our
method achieves seven first places and four second places,

demonstrating a competitive adaptability to different scenes.
Concretely, on mAcc, our method outperforms the second
best method (i.e., EGFNet) by a large margin, reaching 2.7%.
On mIoU, our method outperforms the second best method
(i.e., EGFNet and ABMDRNet) by 0.1%. Among all classes,
our method performs very well on the class of car stop,
surpassing EGFNet by 8.1% and 5.8% on mAcc and mIoU,
respectively.

In addition, we report the quantitative performance of some
available methods on the test set of MFNet dataset in daytime
and nighttime in Tab. II. Our method shows its superiority in
both scenes, especially in the nighttime scene. This means that
the three steps (i.e., object location, region activation, and edge
sharpening) of our method is successful and can make full use
of TIR images to handle low illumination scenes. The above
quantitative analysis clearly demonstrates the effectiveness of
our LASNet on the MFNet dataset.

Furthermore, to visually compare the segmentation results,
we show the segmentation results of our method and eight rep-
resentative state-of-the-art methods in daytime and nighttime
on the test set of MFNet in Fig. 7. The the first four cases
belong to daytime, and the the last four belong to nighttime.
In these four daytime cases with cluttered backgrounds, our
method can accurately identify and locate all categories of
objects in the first three cases, while other methods miss or
mis-segment objects. This benefits from the CLM and CAM in
our method, where the CLM is responsible for accurate loca-
tion and the CAM is responsible for exact region activation.
In the last case of the daytime scene, the objects segmented by
our method are more complete than those of other methods,
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TABLE III

QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF PST900 DATASET. ‘-’ MEANS THAT THE AUTHORS DO NOT PROVIDE THE CORRESPONDING
RESULTS. THE TOP TWO RESULTS IN EACH COLUMN ARE HIGHLIGHTED IN RED AND BLUE

which benefits from the precise activation of CAM and the
edge sharpening of ESM. In these four nighttime cases with
adverse illumination conditions, it is obvious that the objects
are mostly barely visible in the RGB images, but clearly in
the TIR images. Thanks to the valuable information mined
by the three proposed modules from cross-modal features,
our method achieves satisfactory segmentation results in all
difficult nighttime scenes even in small object scenes (the last
case). In summary, our method can handle both challenging
scenes to generate good segmentation results, showing strong
generalization.

2) Comparison on the PST900 Dataset: On the PST900
dataset, we compare our LASNet with 10 state-of-the-
art methods, including three RGB semantic segmentation
methods (i.e., ERFNet [68], CCNet [10], and Efficient-
FCN [46]) and their modified RGB-T versions, two RGB-
D semantic segmentation methods (i.e., ACNet [57] and
SA-Gate [58]), and five RGB-T semantic segmentation
methods (i.e., MFNet [18], PSTNet [19], MFFENet [29],
EGFNet [34], and MTANet [31]).

We report the quantitative performance of our method and
all compared methods on the PST900 dataset in Tab. III,
including performance of five classes and overall performance.
Overall, our method achieves competitive performance on the
PST900 dataset. Across all 12 metrics, our method achieves
four first places and six second places. Specifically, our method
ranks first on mIoU, outperforming the second-place SA-Gate
by 5.35%. Our method ranks second on mAcc, 2.46% lower
than EGFNet, but 5.89% ahead of EGFNet on mIoU. Notably,
our method improves the IoU score for the fire-extinguisher
class by an astonishing 9.00%. The above analysis demon-
strates the effectiveness of our LASNet on the PST900 dataset,
as well as its applicability on different datasets.

C. Ablation Studies

We conduct comprehensive ablation experiments to evaluate
the effectiveness of each module of our LASNet on the
MFNet dataset. Specifically, we evaluate the individual and
joint contributions of the three modules, the effectiveness of
each component of ESM, CAM and CLM, and the validity
of auxiliary location supervision and edge supervision. For
all ablation experiments, we train the variant with the same
parameter and dataset settings as described in Sec. IV-A, and
adopt mIoU to evaluate the performance.

1) The Individual and Joint Contributions of the Three
Modules: We propose ESM, CAM and CLM to achieve three
steps of location, activation and sharpening with discriminative
feature processing. Here, we provide four variants to assess
the individual contribution of the three modules: 1) Baseline,
where we employ element-wise summation to fuse RGB and
TIR features instead of three modules, 2) Baseline+ESM,
3) Baseline+CAM, and 4) Baseline+CLM. The quantitative
results are reported in Tab. IV. “Baseline” only achieves
48.3% on mIoU, which is 6.6% lower than our full LASNet,
demonstrating that the three modules can indeed improve
the segmentation accuracy. With the help of ESM, CAM or
CLM, No.2, No.3, and No.4 variants improve the performance
compared to “Baseline”, respectively.

Furthermore, we provide three variants to assess the
joint contribution of the three modules in Tab. IV:
5) Baseline+CAM+CLM, 6) Baseline+ESM+CLM, and
7) Baseline+ESM+CAM. With the cooperation of two mod-
ules, the performance of the above three variants is further
improved compared to that of a single module. The perfect
cooperation of the three modules makes the excellent full
LASNet, reaching 54.9%. The above analysis shows that
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TABLE IV

QUANTITATIVE RESULTS (%) OF ASSESSING THE INDIVIDUAL AND JOINT
CONTRIBUTIONS OF THE THREE MODULES IN LASNET.

THE BEST ONE IS RED

TABLE V

QUANTITATIVE RESULTS (%) OF ASSESSING THE EFFECTIVENESS OF
EACH COMPONENT OF ESM, CAM, AND CLM. THE BEST ONE IS RED

the proposed modules are valid and contribute to the final
segmentation performance.

2) The Effectiveness of Each Component of ESM: To assess
the effectiveness of each component of ESM, we provide
three variants of ESM in the upper part of Tab. V: 1) remov-
ing the feature combination of multiplication, i.e., w/o mul,
2) removing the feature combination of summation, i.e., w/o
sum, and 3) replacing multi-head dilated convolutions with a
convolutional layer, i.e., w/o MHDC. We observe that mining
multi-scale details information in only one feature combination
(multiplication or summation) is unsatisfactory, resulting in
performance degradation. The similar performance of w/o mul
and w/o sum, i.e., 53.3% and 53.2%, indicates these two types
of feature combinations are equally important in ESM. w/o
MHDC means that only the single-scale detail information can
be extracted, which is not conducive to detecting the edges of
objects of different scales. Therefore, the performance of w/o
MHDC drops.

TABLE VI

QUANTITATIVE RESULTS (%) OF ILLUSTRATING THE ADVANTAGES OF
THE COMBINATION OF THE ELEMENT-WISE MULTIPLICATION AND

THE ELEMENT-WISE SUMMATION IN OUR THREE MODULES.
M MEANS THE ELEMENT-WISE MULTIPLICATION, S MEANS

THE ELEMENT-WISE SUMMATION, AND C MEANS THE
CONCATENATION. THE BEST ONE IS RED

3) The Effectiveness of Each Component of CAM: In
CAM, we enhance f i

sum with f i
mul for fine region activation.

To assess the effectiveness of this process, we provide a vari-
ant, which removes the feature combination of multiplication
and employs self-enhancement on f i

sum, i.e., w/o mul2. The
results shown in Tab. V illustrate that the self-enhancement of
f i

sum is sub-optimal, and that the multiplication operation can
extract more compact information that is conducive to accurate
region activation. Besides, we remove the spatial attention,
i.e., w/o SA, to prove the effectiveness of the pithy spatial
attention map in region activation. Moreover, we remove the
channel self-attention, i.e., w/o CSA, to illustrate the impor-
tance of establishing channel-wise dependencies for region
activation. The dropped performance of w/o SA and w/o CSA
in Tab. V means that using one kind of attention alone is
insufficient, and that combining the attention of two different
domains is powerful for exploring discriminative information.

4) The Effectiveness of Each Component of CLM: To assess
the effectiveness of each component of CLM, we provide three
variants of CLM in the bottom part of Tab. V: 1) removing the
cross-modal correlation modeling, i.e., w/o Corr, 2) removing
the correlation combination of multiplication, i.e., w/o mul3,
and 3) removing the correlation combination of summation,
i.e., w/o sum3. w/o Corr discards building cross-modal pixel-
level correlations that can collaboratively locate objects, so its
performance drops by 2.6%, which is the worst in Tab. V. This
indicates that the cross-modal correlation model is extremely
important. It is sub-optimal to use only one combination
operation to fuse cross-modal correlations, resulting in a 1.7%
performance drop for w/o mul3 and a 1.9% performance
drop for w/o sum3. This phenomenon is the same as the
performance degradation of w/o mul and w/o sum of ESM,
which justifies the rationality of our LASNet in exploring the
common valuable content of cross-modal features at different
levels through multiplication and summation.

5) The Advantages of the Combination of the Element-Wise
Multiplication and the Element-Wise Summation in Our Three
Modules: To assess the advantages of the combination of the
element-wise multiplication and the element-wise summation
in our three modules, we provide five variants for feature
integration in Tab. VI (M, S, and C means the element-
wise multiplication, the element-wise summation, and the
concatenation, respectively): 1) C+S means replacing M with
C and keeping S, 2) M+C, 3) S+M, 4) S+C, and 5) C+M.
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TABLE VII

QUANTITATIVE RESULTS (%) OF ASSESSING THE VALIDITY OF
AUXILIARY LOCATION SUPERVISION (LOCSUP) AND EDGE

SUPERVISION (EDGESUP). THE NUMBER IN PARENTHESES

IS THE COEFFICIENT OF LOCSUP. THE BEST ONE IS RED

Here, we define our original structure as M+S. We observe
that the performance of all five variants is inferior to our
M+S, which illustrates the optimality of our combination of
M and S. We believe that the better performance of M+S can
be attributed to 1) the reasonable use of the coexistence infor-
mation mined by M and the comprehensive information mined
by S, and 2) successful extraction of complementary infor-
mation of the above information for segmentation. Besides,
the reasons for the poor performance of other variants may
be as follows: 1) the concatenation is a general operation for
feature integration, but its generated features cannot effectively
express the complementary information of the cross-model
features, and 2) the position of operations affects the extraction
of complementary information, and the exchange of position
will lead to the failure to extract effective complementary
information.

6) The Validity of Auxiliary Location Supervision and Edge
Supervision: It is important to employ proper supervision in
the training phase, which can improve the segmentation accu-
racy without increasing the computational cost in the inference
phase. To assess the validity of auxiliary location supervision
and edge supervision attached to CLM and ESM, we provide
three combinations of supervision with default coefficients
in Tab. VII: 1) removing both supervisions, 2) keeping only
location supervision, and 3) keeping only edge supervision.
We observe that discarding one or all of the supervision is
not good for the final segmentation performance. Under the
effective guidance of both supervisions, CLM and ESM can
enhance the representation of object location and fine edges,
contributing to the final segmentation results of our LASNet.
Moreover, to prove the rationality of coefficient setting of
location supervision, we provide a variant of the location
supervision with a coefficient of 1. As shown in Tab. VII,
we observe a 1.0% decrease in the performance of the last
variant, which means that it is reasonable to reduce the weight
of location supervision.

V. CONCLUSION

In this paper, we follow the feature fusion paradigm, and
propose LASNet for RGB-T semantic segmentation. The main
idea of LASNet is to process RGB and TIR features at
different levels with specific modules. Therefore, we propose

three plug-and-play modules for LASNet, namely CLM,
CAM, and ESM, which are responsible for object location,
region activation and edge sharpening, respectively. In these
three modules, we focus on extracting the complementary
information between the two feature combinations of multi-
plication and summation rather than directly extracting the
complementary information between RGB and TIR features,
which is different from previous methods. The tight integration
of the paradigm and the three modules results in our com-
plete solution. Comprehensive ablation studies demonstrate
the effectiveness of the above three modules, and extensive
comparisons demonstrate the superiority of our LASNet.
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