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Lightweight Distortion-Aware Network for Salient
Object Detection in Omnidirectional Images
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Abstract— Compared with 2D image salient object detec-
tion (SOD), SOD in omnidirectional images (or 360◦ images)
usually suffers from geometric distortion. Although existing
omnidirectional image SOD (ODI-SOD) methods have improved
the detection accuracy obviously, their application may be
cumbersome in real scenes due to their high computational
cost. To avoid distortion and reduce the computational cost
simultaneously in ODI-SOD, we propose a novel lightweight
distortion-aware network, named LDNet, in this letter. First,
to extract features with less distortion from ODIs, we integrate
the distortion-aware convolution and depth-wise separable convo-
lution (DSConv) into distortion-aware DSConv (DDSConv) and
replace the regular convolutions in the last two blocks of the
ResNet-18 with DDSConvs to obtain our lightweight backbone
network (LD-ResNet-18). To enhance spatial information in each
channel of the extracted features at each level comprehensively,
then, we propose a lightweight distortion-aware channel-wise
enhancement (DCE) module (only 0.05M parameters) including
DDSConvs with various dilation rates, channel shuffle operation
and attention mechanism, and employ a high-to-low dense con-
nection structure to modulate the enhanced multi-level features.
Besides, we design a distortion-aware self-correlation (DSC) mod-
ule (only 0.02M parameters) for mining the contextual depen-
dency of the features via a coarse-fine strategy, and the correlated
features are refined by DCE modules and integrated by another
dense connection structure. The final saliency map is predicted
from the densely integrated features. Compared with 12 state-of-
the-art methods on two public datasets, our lightweight LDNet
achieves competitive or even better performance with only 2.9M
parameters and 3.4G FLOPs, which balances the efficiency and
performance.

Index Terms— Lightweight salient object detection, omnidirec-
tional image, distortion-aware and depth-wise separable convo-
lution, distortion-aware self-correlation.
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I. INTRODUCTION

SALIENT object detection (SOD), of which the goal is
to highlight the visually attended objects or regions in

the image, is an essential step for many computer vision
tasks such as image segmentation [1], [2], [3], [4], visual
tracking [5], image retargeting [6], [7], [8] and image cap-
tioning [9]. Many SOD methods [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] in 2D images (TDI-SOD) with
the limited field of view, have reached good performances
benefiting from convolution neural networks (CNNs). Aim-
ing at omnidirectional images (namely 360◦ images), which
display the spatial information on the 3D spherical surfaces,
most existing CNN-based omnidirectional image (ODI) SOD
methods [20], [21] explore different schemes to mitigate the
geometric distortion caused by projecting ODIs to planes.
These ODI-SOD methods with strong backbone CNNs achieve
good performances, however, their computation and parameter
overheads are heavy. Although several lightweight TDI-SOD
methods [22], [23], [24], [25] have been proposed, applying
them directly to the ODI-SOD task may lead to suboptimal
accuracy due to the lack of solutions for the distortion of
equirectangular ODIs.

By replacing the normal convolution with depth-wise sep-
arable convolution (DSConv), the parameters of existing
lightweight backbone networks [26], [27], [28], [29] for dif-
ferent computer vision tasks are reduced significantly with-
out decreasing the feature representation ability. Similar to
lightweight TDI-SOD methods, however, these lightweight
backbone networks mainly focus on 2D scenes and neglect
the properties of ODIs. Thus, they may be not suitable
for ODI-SOD straightly. To avoid the distortion caused by
the equirectangular projection in polar regions of the ODIs,
previous methods deform the sampling locations of the regular
convolution kernels by the gnomonic projection and propose
distortion-aware convolution for classification [30], object
detection [31] and depth estimation [32] in ODIs.

Inspired by the distortion-aware convolution and DSConv,
in this letter, we propose a novel lightweight distortion-
aware network, namely LDNet, for ODI-SOD. The proposed
LDNet is the first lightweight ODI-SOD method to the
best of our knowledge. In LDNet, we lighten the vanilla
ResNet-18 [33] with the distortion-aware DSConv (DDSConv)
to balance parameters and distorted feature representation
capabilities of the network. To capture spatial semantic infor-
mation efficiently and sufficiently, we design a lightweight
distortion-aware channel-wise enhancement (DCE) module via
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Fig. 1. The overview of the proposed LDNet. The output features of lightweight distortion-aware ResNet-18 are first enhanced by the lightweight
distortion-aware channel-wise enhancement (DCE) modules at each level. Then, the enhanced multi-level features are modulated by the dense modulation
structure, and the densely modulated features are boosted by distortion-aware self-correlation (DSC) modules and DCE modules. Finally, the dense integration
structure aggregates multi-level refined features and produces the final saliency map.

DDSConvs with different dilation rates, channel shuffle [28],
[29] and attention mechanism [34]. DCE modules are deployed
at different levels of the backbone network, and we use a dense
connection structure to modulate the feature flow in different
semantic levels. Furthermore, we introduce a distortion-aware
self-correlation (DSC) module to boost the densely modulated
features at multiple levels by a coarse-fine pattern. Finally, the
self-correlated features refined by DCE modules are integrated
by another reversely dense connection structure, and the final
saliency map is predicted from the densely interacted features.
In this way, the proposed LDNet achieves competitive per-
formance compared with 12 state-of-the-art CNN-based SOD
methods on two ODI-SOD datasets.

The main contributions of this letter are threefold:

• We propose a novel LDNet (only 2.9M parameters)
to explore the lightweight ODI-SOD for the first time.
In LDNet, we introduce DDSConv to lighten the network
and mitigate the distortion synchronously.

• We propose a lightweight distortion-aware channel-wise
enhancement module to mine the distorted multi-scale
semantic information in each channel of features of ODIs.

• To correlate the contextual semantic features of ODIs,
we propose a distortion-aware self-correlation module
based on a coarse-fine strategy.

The rest of this letter is organized as follows. we review the
ODI-SOD methods and the lightweight CNN-based TDI-SOD
methods in Sec. II. The proposed LDNet is detailed in
Sec. III. Then we present comprehensive experiments results
in Sec. IV. Finally, this letter is concluded in Sec. V.

II. RELATED WORK

A. CNN-Based Salient Object Detection in ODIs

Compared with the great progress of TDI-SOD achieved
in the past decades [35], CNN-based ODI-SOD has just
begun to gain increasing attention with the gradual prevalence
of consumer 360◦ cameras in recent years. Different from
TDIs, ODIs on the spheres suffer from noticeable geometric
distortion in the polar regions when projecting them to the
2D plane to obtain the equirectangular ODIs, which are suit-
able for processing by CNNs. Thus, the existing CNN-based
ODI-SOD methods have introduced different strategies to mit-
igate the distortion in the equirectangular projection of ODIs.

In [20], the first end-to-end ODI-SOD method is proposed.
The core strategy in the method to alleviate the distortion in
equirectangular projection is the distortion-adaptive module,
which cuts the equirectangular ODIs into multiple blocks
and assigns exclusive convolution kernels to different image
blocks, respectively. For leveraging the strengths of equirect-
angular and cubemap ODIs to alleviate the defect of the visual
attribute of their each other, in [21], a projection features
adaptation module is proposed to select and aggregate the
features from equirectangular and cubemap projections adap-
tively. In [36], a sample adaptive view transformer module,
designed for capturing various features under different views
of ODIs by different kinds of transformations, is proposed
to improve the ability of the feature toleration of distortion,
edge effects, and object scales in ODIs. Unlike the above
end-to-end ODI-SOD methods, in [37], the stage-wise ODI-
SOD method is proposed and divided into multiple sequential
tasks. To mitigate the distortion, this method adopts object-
level semantical saliency ranking, fine-level salient object
localization and pixel-wise saliency refinement to detect salient
objects in ODIs.

Through diverse strategies to mitigate distortion, the above
CNN-based ODI-SOD methods achieve satisfactory perfor-
mance. However, their large number of parameters and
heavy computational cost are unfriendly to deploy them
on practical applications. To this end, we propose LDNet
based on lightweight distortion-aware ResNet-18 [33] and
two lightweight distortion-aware modules, which improve the
capacity of the CNNs to extract the undistorted semantic
information from the distorted features while reducing the
computational cost significantly.

B. Lightweight CNN-Based Salient Object Detection in TDIs

Lightweight SOD in TDIs is a burgeoning computer vision
task which aims to lessen the parameter and computational
cost of the CNN-based models and achieve comparable perfor-
mance to the CNN-based methods [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] with a large number of parameters
and computational cost. In [23], a stereoscopically attentive
multi-scale module is proposed, and this lightweight method
is designed by multi-level and multi-scale learning. Similarly,
in [22], a hierarchical visual perception (HVP) module based
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on dense connections is proposed, and the method composed
of the lightweight HVP modules and residual attention is
designed for learning multi-scale contexts effectively. In [24],
the method based on lightweight VGG-16 [38] and feature
correlation module is proposed for 2D optical remote sensing
images SOD, and the dense lightweight refinement block is
designed for the coarse saliency map generated by the fea-
ture correlation module. In [39], an extremely-downsampled
block is proposed to learn a better global view of the whole
image and accurately localize the salient objects, and a scale-
correlated pyramid convolution is designed for better multi-
level feature fusion.

The above lightweight SOD methods focused on the 2D
scenes employ depth-wise separable convolution (DSConv)
[26], [27], [28], [29] to reduce the number of parameters and
computational cost of the CNNs. Due to far less distortion
in TDIs, the convolution sampling locations of the normal
DSConv can extract the features without geometry distortion
from TDIs. Different from TDIs, however, the equirectangular
ODIs, which are projected from the sphere surface to the 2D
plane, have significant distortion and are unsuitable for feature
extraction by the normal DSConvs. To enable the convolution
kernels to adjust their spatial sampling patterns according to
their different locations on the sphere, the distortion-aware
convolution [30], [31], [32], which adapts the spatial sampling
locations of standard convolution kernel in the equirectangular
ODIs by the gnomonic projection of ODIs on the sphere,
extracts the undistorted features from equirectangular ODIs
with noticeable geometry distortion. To extract undistorted
features from equirectangular ODIs and reduce the amount of
parameters and computational cost of the proposed LDNet,
inspired by the above insights, we combine DSConv with
distortion-aware convolution and propose the Distortion-aware
DSConv (DDSConv). The difference between DDSConv and
DSConv is that the spatial sampling pattern of depth-wise con-
volution in DSConv is the same as the spatial sampling pattern
of distortion-aware convolution. We employ the DDSConv
to lighten the vanilla ResNet-18 as our backbone network.
Moreover, two lightweight and effective modules based on the
DDSConv, i.e., DCE and DSC, are proposed to enhance multi-
scale channel features and mine the correlation of semantic
context, respectively.

III. PROPOSED METHOD

A. Network Overview

As shown in Fig. 1, the proposed LDNet consists of four
main components: a lightweight distortion-aware backbone
network (LD-ResNet-18) for feature extraction, DCE modules,
DSC modules, and dense modulation and integration for
multi-level features. In LD-ResNet-18, we replace the regular
convolutions in the last two blocks of vanilla ResNet-18 with
the DDSConv to slim the network. To mitigate the distortion
in CNN-extracted features of ODI while reducing parameters,
the DDSConv is constructed by distorting kernel sampling
locations of the 3 × 3 depth-wise convolution in DSConv.
In this way, the amount of parameters of LD-ResNet-18
(2.2M) is only 18.8% of vanilla ResNet-18 (11.7M).

Fig. 2. Structures of the DCE and DSC modules.

Features extracted from LD-ResNet-18 at the l-th level,
termed {Fl

B ∈ Rcl×hl×wl | l ∈ {1, 2, 3, 4, 5}}, are first refined
by DCE modules for abundant spatial semantic information,
where cl , hl and wl are the number of channels, height and
width, respectively. To interact with the feature Fl

B enhanced
by DCE modules at different levels, we employ a dense multi-
level structure inspired by DenseNet [40], [41]. This dense
connection structure modulates the low-level features extracted
from regular convolutions by high-level features to suit the
distortion of ODIs, and it comprises DDSConv, upsampling
and element-wise summation at each level, as shown in Fig. 1.
Then, we design a DSC module for the multi-level modulated
features, and DCE modules are equipped following these DSC
modules for feature refinement. Finally, we deploy a dense
connection structure with the reverse direction of the previous
for integrating multi-level features and predicting the final
saliency map.

B. Distortion-Aware Channel-Wise Enhancement Module

Considering the amount of parameters and distortion
of features simultaneously, as shown in Fig. 2, we pro-
pose a lightweight distortion-aware channel-wise enhancement
(DCE) module, which explores spatial features of each channel
jointly and regulates channel features adaptively, to refine
{Fl

B | l ∈ {1, 2, 3, 4, 5}} at multiple levels of LD-ResNet-18.
Specifically, we first handle Fl

B with four channel-
wise 3 × 3 DDSConvs with different dilation rates r ∈

{1, 2, 3, 6}.For each channel-wise DDSConv, the weights of
each channel share the same values. We then integrate Fr,l

dds
outputted from these dilated DDSConvs by element-wise
summation to obtain rich spatial information of each channel.
To adaptively enhance the contributory spatial features in each
channel, we employ a 3 × 3 DDSConv to the summated
feature Fl

s , and a SoftMax function along channel dimen-
sion is deployed to produce the spatial attention map Al

s ∈

[0, 1]
4×hl×wl . Each channel of Al

s , i.e., Ar,l
s ∈ [0, 1]

1×hl×wl ,
are broadcasted into [0, 1]cl×hl×wl , and Ar,l

s selectively regu-
lates the spatial features of each channel, which are produced
by these four dilated DDSConvs correspondingly. Besides,
only focusing on the spatial feature of single channel may
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neglect the dependencies of the features between different
channels. Thus, we impose a global average pooling layer and
a 1 × 1 convolution layer with ReLU [42] activation function
to Fl

s , generating the channel attention map Al
c ∈ Rcl×1×1.

In this way, the multi-scale features on each channel and the
features between different channels in Fl

B are integrated, i.e.,

Fl
i =

∑
r∈{1,2,3,6}

Al
c ⊚ Ar,l

s ⊚ Fr,l
dds, (1)

where Fl
i is the integrated feature and ⊚ is element-wise

multiplication.
To further improve the information flow among different

channels in Fl
i obtained by the above adaptive channel-wise

enhancement, we introduce the channel shuffle operation [28],
[29] ChanShuf(·) following a 1 × 1 regular convolution layer
Conv1×1(·). Eventually, the DCE module produces the final
enhanced feature Fl

DCE by identity mapping as follows:

Fl
DCE = Conv1×1(ChanShuf(Fl

i )) ⊕ Fl
B, (2)

where ⊕ is the element-wise summation. Next, the enhanced
Fl
DCE at each level is modulated by the dense modulation

structure as shown in Fig. 1, and the multi-level modulated
features are denoted as {Fl

DM ∈ Rcl×hl×wl | l ∈ {1, 2, 3, 4, 5}}.

C. Distortion-Aware Self-Correlation Module

To efficiently exploit the contextual dependencies of the dis-
torted features, we propose a distortion-aware self-correlation
module via correlating the fine-grained features with coarse-
grained features at each level, as shown in Fig. 2. The fine-
grained feature (obtained in the middle part of the DSC module
in Fig. 2) keeps the original resolution, and we adopt the
adaptive distortion-aware max-/avg-pooling (the left/right part
of the DSC module in Fig. 2) to alleviate the distortion in
generating the coarse-grained features with reduced resolution.
The coarse-fine self-correlation balances the computational
cost and feature relevancy, and the parallel max/avg-pooling
is deployed for a more robust feature correlation. As shown
in Fig. 2, since the processes of the left and right parts in the
DSC module are similar, we elaborate on the left part (i.e., the
Distortion-aware MaxPooling part) below.

Concretely, we first apply a regular 1 × 1 convolution layer
on the inputted feature Fl

DM of the DSC module to reduce its
channel number from cl to cl

4 . Then, we exploit a multi-scale
scheme in distortion-aware max-pooling to obtain sufficient
coarse-grained features {Fp,l

dmp ∈ R
cl
4 ×p×2p

| p ∈ {1, 2, 3, 6}},

which will be reshaped to R
cl
4 ×2p2

and concatenated together
to produce Fl

dmp ∈ R
cl
4 ×2(12

+22
+32

+62). Here, we implement
the distortion-aware max-pooling by deforming the regular
adaptive max-pooling sampling locations like the deforma-
tion in DDSConv. The fine-grained feature Fl

f , obtained by
reducing the channel number of Fl

DM to cl
4 via another regular

1 × 1 convolution layer, is reshaped directly and transposed
to R(hlwl )×

cl
4 . We obtain the coarse-fine self-correlation matrix

ml
m via matrix multiplication ⊗, which calculates the rele-

vance between fine-grained and coarse-grained features, i.e.,

ml
m = (Rsp(Fl

f ))
T

⊗ Fl
dmp, (3)

where Rsp(·) and T are reshaping and transposing operations,
respectively.

We exploit SoftMax function to normalize ml
m along its

rows and columns together, and conduct ⊗ between the
normalized correlation matrix and multi-scale coarse-grained
Fl

dmp after T. The correlated feature Fl
m,corr , which depends

on multi-scale salient features, can be captured by

Fl
m,corr = SoftMax(ml

m) ⊗ (Fl
dmp)

T. (4)

Similar to the left part, the right part of DSC module
(i.e., the Distortion-aware AvgPooling part) produces another
correlated feature Fl

a,corr , which represents the correlation
between the fine-grained features and the coarse-grained com-
prehensive features via distortion-aware average pooling. The
coarse-fine self-correlated feature Fl

corr is obtained by impos-
ing element-wise summation to the transposed Fl

m,corr and
Fl

a,corr . We reshape Fl
corr to R

cl
4 ×hl×wl and employ a 1 × 1

regular convolution layer to recover the channel of Fl
corr from

cl
4 to cl . Lastly, the channel-recovered Fl

corr ∈ Rcl×hl×wl and
Fl
DM are concatenated and fused via another 1 × 1 regular

convolution layer, which decreases the number of channels
from 2cl to cl . The feature outputted from the DSC module is

Fl
DSC = Conv1×1(Cat(Conv1×1(Rsp(Fl

corr )), Fl
DM)), (5)

where Cat(·) is the concatenation operation. We equip the
DCE module after the DSC module at each level for feature
refinement. Another dense connection structure, which has the
reverse fusion direction with the previous dense modulation,
is deployed for integrating the features at each level as shown
in Fig. 1. The final saliency map S is predicted from the
densely integrated features by a regular 1 × 1 convolution
layer with sigmoid activation function and upsampling.

D. Implementation Details

To train the proposed LDNet efficiently, we combine binary
cross-entropy loss, intersection over union loss and SSIM
loss [11] as the total loss function of saliency supervision.

We train and test our LDNet on the PyTorch [43] platform
with an NVIDIA Titan RTX GPU (24G memory). The weights
of the first three blocks of LD-ResNet-18 are initialized by
the pre-trained ResNet-18 [33] model on ImageNet [44], and
other newly added DDSConvs and 1 × 1 regular convolution
layers are initialized by the normal distribution proposed
in [45]. In the training phase, we resize the input size of
ODIs to 672 × 336 and adopt the Adam optimization strat-
egy [46]. We set the training batch size to 8 and the initial
learning rate to 0.001. Besides, we adopt the ‘poly’ policy
described in [47] to adjust the learning rate. The end-to-end
training converges ∼50 epochs, and our code is available at
https://github.com/DreaMKHuang/LDNet.git.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) Datasets: We train and test our LDNet on 360-SSOD
and 360-SOD datasets, respectively. In 360-SSOD [37], there
are 1,105 ODIs with corresponding ground truths, which
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TABLE I
QUANTITATIVE PERFORMANCE COMPARISON OF OUR METHOD AND

OTHER STATE-OF-THE-ART METHODS.↑ (↓) INDICATES THE LARGER
(SMALLER) IS BETTER.THE TOP THREE RESULTS ARE MARKED IN

RED, BLUE AND GREEN ACCORDINGLY

contain 850 ODIs for training and 255 ODIs for testing. In
360-SOD [20], there are 500 ODIs with corresponding ground
truths, including 400 training ODIs and 100 testing ODIs.

2) Evaluation Metrics: For evaluating the proposed LDNet,
we employ six evaluation metrics to evaluate our method
and other compared methods, including S-measure (Sα, α =

0.5) [48], adaptive F-measure (Fa
β , β2

= 0.3) [49], adaptive
E-measure (Ea

ξ ) [50] and Mean Absolute Error (M) for detec-
tion accuracy and parameter amount (#Param) and floating
point operations per second (FLOPs) with a batch size of 1
(without I/O time) in inference stage.

B. Comparison With State-of-the-Art Methods

1) Compared Methods: We compare our method with
12 state-of-the-art ODI/TDI SOD methods comprehensively,
including six large CNN-based methods for 2D SOD
(R3Net [10], BASNet [11], MLFI-MSFF [12], CPDNet [13],
GCPANet [15], and MINet [14]), two large CNN-based
ODI-SOD methods (DDS [20] and FANet [21]) and four
lightweight 2D SOD methods (SAMNet [23], HVPNet [22],
CorrNet [24] and EDN [39]). For a fair comparison, we utilize
CNN-based SOD methods with their default parameters and
re-train them on the training sets of 360-SSOD and 360-SOD,
respectively, like our method.

2) Computational Complexity and Quantitative Compari-
son.: We report #Param, FLOPs, Sα , Fa

β , Ea
ξ and M com-

parison of our method and the compared methods in Tab. I.
Compared with CNN-based SOD methods, the #param and
FLOPs of our method are much smaller than them still with
competitive performance on 360-SSOD and 360-SOD datasets.
Compared with two lightweight methods, i.e., SAMNet and
HVPNet, the #param and FLOPs of our method are slightly
inferior. However, the quantitative performance of our method
on the two datasets significantly outperforms these two meth-
ods. As the first lightweight ODI-SOD method, our LDNet is
efficient and promising.

3) Visual Comparison: We present the visual comparisons
of the investigated methods in Fig. 3. As shown in the 1st

and 2nd columns of Fig. 3, most methods can predict the
salient objects in relatively easy scenes accurately. In the
3rd and 4th columns of Fig. 3, our method detects more

Fig. 3. Visual comparisons of our LDNet with 12 CNN-based SOD methods.

accurate salient objects and eliminates ambiguous objects.
In the last two columns of Fig. 3 with cluttered backgrounds,
our method detects salient objects correctly and suppresses
cluttered backgrounds simultaneously. Overall, our method
shows stably superior detection ability in different scenes.

C. Ablation Studies

We provide comprehensive ablation studies to verify the
contribution of 1) the effectiveness of the DCE module, 2) the
importance of the DSC module, 3) the necessity of the dense
modulation structure and dense integration structure, and 4) the
rationality of the proposed DDSConv. Each variant experiment
is rigorously re-trained with the same parameter settings and
datasets as in Sec. III-D and Sec. IV-A.

We report the computational complexity and quantitative
performance of all these variants in Tab. II. Specifically,
in variant w/o DCE, we remove the DCE modules from each
level to illustrate the effectiveness of the DCE module. To eval-
uate the importance of the DSC module, in w/o DSC, the
output features of dense modulation structure at each level are
refined by DCE modules directly. We present the quantitative
performance of w/o DM, which is modified by removing
the dense modulation structure from the LDNet. In w/o DI,
we replace the dense integration structure with upsampling
and element-wise summation. To prove the rationality of the
DDSConv, we replace the DDSConvs in LDNet with DSConv
to obtain the variant w/ DSConv.

Although minimal computational cost increased, as shown
in Tab. II, enhancing distortion-aware channel-wise features at
each level, refining features at each level by distortion-aware
self-correlation based on coarse-fine strategy, modulating and
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TABLE II
ABLATION STUDY FOR THE PROPOSED LDNET

integrating multi-level features densely, and the DDSConvs are
effective and rational for the lightweight ODI-SOD.

D. Discussion

Here, we discuss the weaknesses of our method and
our future work. We summarize the weaknesses as follows:
1) due to the convolution sampling pattern of the DDSConv
needing to be computed according to the latitude and longitude
of its locations on the sphere, compared with other methods
adopting the uniform convolution sampling locations as shown
in Tab. I, the running speed of our method is slowed down, and
2) equirectangular ODIs introduce image borders and damage
the continuity of the objects in ODIs on the sphere factitiously,
which falsifies the final saliency maps predicted by our trained
method. Hence, in future works, we will work on the fol-
lowing two directions: 1) we will speed up the convolution
sampling pattern of DDSConv in a more efficient way, and
2) we will introduce equirectangular ODIs projected by dif-
ferent angles into our method to further alleviate the discon-
tinuities in the generated saliency map.

V. CONCLUSION

In this letter, we propose a novel and efficient lightweight
framework, LDNet, for ODI-SOD. In LDNet, we first employ
distortion-aware DSConvs (DDSConv) and lighten the vanilla
ResNet-18 by replacing the regular 3 × 3 convolutions in
the last two blocks with DDSConvs. Then, we propose a
lightweight distortion-aware channel-wise feature enhance-
ment module to mine more efficient spatial semantic fea-
tures at each level. To explore the contextual correlation
among features at each level, besides, we introduce an effi-
cient distortion-aware self-correlation module via a coarse-fine
strategy. Finally, to integrate multi-level features effectively
and predict the final saliency map accurately, we employ
dense modulation and integration structures at different stages
in the LDNet. Comprehensive experiments demonstrate that
our LDNet, only with 2.9M parameters and 3.4G FLOPs,
is competitive to state-of-the-art large CNN-based methods
and outperforms the lightweight SOD methods significantly
on two ODI-SOD datasets.
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