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Abstract—Salient object detection (SOD) in optical remote
sensing images (RSIs), or RSI-SOD, is an emerging topic in
understanding optical RSIs. However, due to the difference
between optical RSIs and natural scene images (NSIs), directly
applying NSI-SOD methods to optical RSIs fails to achieve sat-
isfactory results. In this article, we propose a novel adjacent
context coordination network (ACCoNet) to explore the coordi-
nation of adjacent features in an encoder-decoder architecture
for RSI-SOD. Specifically, ACCoNet consists of three parts: 1) an
encoder; 2) adjacent context coordination modules (ACCoMs);
and 3) a decoder. As the key component of ACCoNet, ACCoM
activates the salient regions of output features of the encoder
and transmits them to the decoder. ACCoM contains a local
branch and two adjacent branches to coordinate the multilevel
features simultaneously. The local branch highlights the salient
regions in an adaptive way, while the adjacent branches introduce
global information of adjacent levels to enhance salient regions. In
addition, to extend the capabilities of the classic decoder block
(i.e., several cascaded convolutional layers), we extend it with
two bifurcations and propose a bifurcation-aggregation block
(BAB) to capture the contextual information in the decoder.
Extensive experiments on two benchmark datasets demonstrate
that the proposed ACCoNet outperforms 22 state-of-the-art meth-
ods under nine evaluation metrics, and runs up to 81 fps on a
single NVIDIA Titan X GPU. The code and results of our method
are available at https://github.com/MathLee/ACCoNet.
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I. INTRODUCTION

ALIENT object detection (SOD) aims at distinguish-
Sing and highlighting visually attractive objects/regions
in a scene, which has been extended from natural scene
images (NSIs) [1]-[3] to videos [4], image groups [5], RGB-D
images [6], etc. It has many applications, such as object
segmentation [7], [8]; object tracking [9], [10]; quality assess-
ment [11], [12]; hyperspectral image classification [13]; etc.
Recently, SOD has been extended to optical remote sens-
ing images (RSIs) [14]-[22], and has produced encouraging
results. For conciseness, in the remainder of this article, we
use RSI-SOD for the task of SOD in optical RSIs.

During the past decades, SOD in NSIs [1]-[3], or NSI-SOD
in short, has made a remarkable progress, especially when
armed with deep learning techniques such as the convolutional
neural network (CNN) [24]. Naturally, researchers will con-
sider applying the mature NSI-SOD solutions to RSI-SOD.
However, there are significant differences in shooting devices,
scenes, and view orientations between NSIs and optical RSIs,
resulting in differences in their resolutions, object types, and
object scales [18], [20]. Consequently, direct migration of
NSI-SOD solutions to RSI-SOD often leads to unsatisfac-
tory performance. As shown in the last column of Fig. 1,
GateNet [23], which is a representative CNN-based NSI-SOD
method and retrained on optical RSIs, cannot highlight salient
objects in optical RSIs completely.

The existing specialized methods for RSI-SOD can be
divided into traditional methods and CNN-based methods.
Traditional methods rely heavily on specific handcrafted fea-
tures based on classical principles, such as color information
content [14], sparse representation [15], saliency feature anal-
ysis [16], and self-adaptive multiple feature fusion [17]. They
usually fail in complex scenes of optical RSIs. CNN-based
methods focus on exploring effective feature interaction strate-
gies to overcome the complex topology and unique scenes
of optical RSIs. The nested network [18] fuses multires-
olution features; the parallel down-up fusion network [19]
focuses on the cross-path interaction, which is from low-level
path/features to high-level path/features, between two adjacent
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Fig. 1. Saliency maps produced by our method and two state-of-the-art
methods, DAFNet [20] and GateNet [23], on optical RSIs.

features; and the dense attention fluid network (DAFNet) [20]
transfers shallow-layer attention cues of low-level features,
which capture edge and texture information, to deep lay-
ers, that is, high-level features, which capture semantic and
object location information. However, the influence of high-
level features on low-level features is ignored, the coverage in
feature interaction is insufficient, and the cascade structure of
decoder blocks is plain, which may lead to incomplete explo-
ration of the contextual information in optical RSIs. As shown
in the penultimate column of Fig. 1, the saliency maps of
DAFNet [20], which is currently the best specialized method,
lose sharp boundaries and finer details.

Inspired by the above observations, in this article, we pro-
pose a novel specialized solution for RSI-SOD, namely, adja-
cent context coordination network (ACCoNet), which focuses
on coordinating adjacent features and capturing contextual
information to adapt to diverse object types and object sizes in
optical RSIs. Our key idea is to comprehensively explore the
contextual information contained in adjacent features, expand
the coverage of feature interaction, and improve the context
capture capability of plain decoder blocks. Specifically, we
consider features processing of three adjacent blocks (i.e., the
current, previous, and subsequent blocks) in the backbone in
a special module. This way, the previous and subsequent fea-
tures can provide comprehensive global auxiliary information
to the current features. Besides, we introduce bifurcations into
plain decoder blocks to capture multiscale context and increase
the feature diversity.

In particular, we implement our ACCoNet in an encoder—
decoder architecture. ACCoNet is composed of an adja-
cent context coordination module (ACCoM) for three adja-
cent features and a bifurcation-aggregation block (BAB) for
the decoder. ACCoM consists of three branches, one for
local information and the other two for adjacent context.
Specifically, the local branch is responsible for modulating and
enhancing current features in an adaptive manner, while the
other two adjacent branches are responsible for assisting cur-
rent features with the previous and subsequent features through
the previous-to-current and subsequent-to-current interactions.
For BAB, we put a bifurcation after each cascaded convolu-
tional layer, and then aggregate these bifurcations to capture
diverse contexts. In this way, our ACCoNet achieves the best
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performance as compared with 22 state-of-the-art methods (an
average Sy of 93.64%, an average max Fg of 89.93%, and an
average max Eg of 97.62% on two datasets), and generates
the most accurate saliency maps, as exemplified in the middle
column of Fig. 1.

Our main contributions are summarized as follows.

1) We explore the coordination of adjacent features in an
encoder—decoder architecture for RSI-SOD, and pro-
pose a novel ACCoNet, which effectively promotes
the interaction of adjacent features for comprehensive
coordination and fully captures contextual information,
outperforming previous methods on public benchmarks.

2) We propose an ACCoM to coordinate cross-scale inter-
actions in the feature embedding provided by the
encoder and to deliver the valuable information to the
decoder.

3) We extend the cascade structure of classic decoder
blocks to the bifurcation-aggregation structure, and
propose a BAB to capture the multiscale contextual
information in the decoder.

The remaining parts of this article are organized as follows.
In Section II, we summarize the related works of NSI-SOD
and RSI-SOD. In Section III, we elaborate our ACCoNet. In
Section IV, we present the experiments and ablation studies of
our ACCoNet. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

In this section, we review the classic works of NSI-SOD
and RSI-SOD, including traditional methods and CNN-based
methods.

A. Salient Object Detection in NSIs

1) Traditional NSI-SOD Methods: SOD starts with
NSIs [25], and a lot of traditional methods [1] have inves-
tigated hand-crafted features for NSI-SOD. Traditional
NSI-SOD methods can been divided into three categories:
1) unsupervised methods [25]-[34]; 2) semisupervised
methods [35]; and 3) supervised methods [36]. Numerous
principles and technologies have been proposed for unsuper-
vised methods, such as center-surround differences [25]; the
maximal entropy random walk [26]; the saliency tree [27];
the regularized random walks ranking [28], [29]; directional
information [30]; the high-dimensional color transform [31];
the sparse graph [32]; the structured matrix decomposi-
tion [33]; the hybrid sparse learning [34]; etc. Compared
with unsupervised methods, there are relatively fewer semisu-
pervised and supervised methods in traditional methods.
Zhou et al. [35] first utilized a boundary homogeneity
model to generate pseudolabels. Then, based on a linear
feedback control system model, they presented an iterative
semisupervised learning framework to establish relationships
between control states and saliency map. Liang and Hu [36]
trained a support vector machine to select features through
the supervised learning, which removes redundant features
and speeds up model learning. Wang et al. [37] presented a
supervised multiple-instance learning framework for saliency
detection, which incorporates a set of low-, mid-, and
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high-level features to comprehensively predict the scores of
salient regions.

2) CNN-Based NSI-SOD Methods: Different from tradi-
tional methods, most CNN-based NSI-SOD methods [2], [3]
are based on supervised learning, and they greatly improve
the detection accuracy. A large number of well-known strate-
gies of feature processing have been proposed, such as the
multilevel and multiscale feature interaction [38], [39]; the fea-
ture suppress and balance [23]; the sparse and dense labeling
aggregation [40]; the edge-aware feature fusion [41], [42]; and
the global context-aware aggregation [43], [44]. In addition,
many popular mechanisms in the deep learning community are
applied to NSI-SOD, such as the deep supervision [45], [46];
the recurrent mechanism [47], [48]; the attention mecha-
nism [44], [49]-[51]; the generative adversarial learning [52];
and the adversarial attack [53]. Differently, Li et al. [54]
focused on the detection speed and proposed the depthwise
nonlocal network, which achieves competitive performance
using a single CPU thread. Liu er al. [55] explored a
lightweight architecture for NSI-SOD and imitated the primate
visual cortex in their network via hierarchical visual perception
learning.

The above NSI-SOD methods have a great influence on
RSI-SOD methods. However, due to the essential differences
between NSIs and optical RSIs, these RSI-SOD methods have
made specific modifications to the hand-crafted features or
the CNN feature processing strategies of original NSI-SOD
methods.

B. Salient Object Detection in Optical RSIs

As an emerging field, the SOD in optical RSIs, that is, RSI-
SOD, has attracted more and more attention. Zhang et al. [14]
first performed the color information content analysis on
the input optical RSI to get the saliency scores of each
color component, and then they constructed the saliency map
based on these saliency scores. Zhao et al. [15] obtained
low-level features via the global cues and background prior,
and the sparse representation was introduced to transform
low-level features to high-level features for saliency map
integration. Zhang et al. [16] combined the superpixel seg-
mentation and statistical saliency feature analysis for RSI-
SOD. Zhang et al. [17] fused the features of color, inten-
sity, texture, and global contrast adaptively based on the
low-rank matrix recovery to generate the saliency map.
Faur et al. [56] combined the mean-shift-based segmentation
and the rate distortion-based optimization together for salient
RSI segmentation.

Different from the above traditional RSI-SOD methods,
CNN-based RSI-SOD solutions explore the unique charac-
teristics from optical RSI data, and have made a promising
progress. Li et al. [18] constructed a challenging dataset for
RSI-SOD. They proposed an LV-shaped network, where the
L-shaped two-stream pyramid module receives input images
of five resolutions and the V-shaped nested connections struc-
ture infers salient objects based on multiresolution features.
Li et al. [19] designed five parallel paths with dense con-
nections, which exploit the in-path and cross-path information
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contained in two adjacent features to detect diversely scaled
salient objects in optical RSIs. Zhang et al. [20] first estab-
lished shallow-to-deep connections between different levels
through dense attention fluid structure, and then they exploited
global-context information to achieve feature alignment and
reinforcement. Zhang and Ma [21] combined the weakly
and fully supervised learning for RSI-SOD. They obtained
pseudoannotations based on a classification network and the
gradient-weighted class activation mapping to train the feed-
back saliency analysis network. Tu er al. [57] proposed a
multiscale joint region and boundary model for RSI-SOD.
Following [18], Zhou et al. [58] proposed a three inputs-based
edge-aware feature integration network.

Aside from the above studies, there are some works on
tasks related to RSI-SOD, such as airport detection [59];
building extraction [60]; residential areas extraction [61]; ship
detection [62]; oil tank detection [63], [64]; and region-of-
interest detection/extraction [65]-[68]. These methods show
good performance in specific scenes of optical RSIs, but may
not generalize well to various optical RSI scenes, resulting in
poor performance in RSI-SOD.

As we know, the salient objects in optical RSIs usu-
ally have complex geometry structures, variable sizes, and
uncertain quantities, and are often accompanied with occlu-
sion, shadows, and abnormal illumination. The specialized
methods mentioned above put forward meaningful solutions
to the characteristics of optical RSIs. However, we believe
that the contextual information in optical RSIs needs to
be further explored, which is important to overcome these
challenging scenes. We thoroughly explore the contextual
information in both encoder and decoder of our ACCoNet.
Concretely, the previous-to-current and subsequent-to-current
feature interactions are established among three adjacent
blocks in the encoder, and the cascade structure is updated
to the bifurcation-aggregation structure in the decoder.

III. METHODOLOGY

In this section, we elaborate the proposed ACCoNet. In
Section III-A, we clarify the network overview and motivation
of our ACCoNet. In Section III-B, we present our ACCoM in
detail. In Section III-C, we give the detailed formulas of our
BAB. In Section III-D, we introduce the loss function.

A. Network Overview and Motivation

The proposed ACCoNet is based on the encoder—decoder
architecture, which has shown outstanding ability in pixel-level
prediction tasks, such as semantic segmentation [69], medical
image segmentation [70], NSI-SOD [23], [43], and RGB-D
SOD [71]-[73]. As shown in Fig. 2, ACCoNet consists of an
encoder network, several ACCoM components, and a decoder
network with BABs.

1) Encoder Network: Following [69] and [71]-[73], we
adopt the plain VGG-16 [74] as our basic encoder network,
where the last max-pooling layer and three fully connected
layers are truncated. As shown at the top of Fig. 2, our
encoder network consists of five blocks, denoted by E’ (¢ €
{1,2,3,4,5} is the block index), and we adopt the feature
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Pipeline of the proposed ACCoNet, which is comprised of three key parts: the encoder network, the ACCoM, and the decoder network with BABs.

First, the encoder network extracts the basic features at five scales. Then, these basic features are fed to five ACCoMs to coordinate the feature activation.
Finally, the output contextual features of ACCoM are transmitted to the decoder, which employs BABs to further capture contextual information, for inferring
the salient objects. Notably, in the training phase, we adopt the deep supervision strategy, and attach the pixel-level supervision to each decoder block. GT

denotes ground truth.

map of the last convolutional layer of each block, that is,
convl-2, conv2-2, conv3-3, conv4-3, and conv5-3, denoted by
fLoe Rivwexa (¢ 5345 = {64, 128,256,512, 512}), for
subsequent processing. The input size of our encoder network
is 256 x 256 x 3, so h; = (256/2"~1) and w; = (256/2!"1).

2) Adjacent Context Coordination Module: Contextual
information is crucial for RSI-SOD. It exists not only in one
feature level but also in features at adjacent levels. Using con-
volutional layers with different convolution kernels in parallel
is a popular strategy to capture local and global contents within
one feature level. This is conducive to capturing salient objects
with variable sizes or uncertain quantities in optical RSIs.
Introducing feature interaction among features at adjacent lev-
els is an effective strategy to capture cross-level contextual
complementary information. This is effective for refining the
details and determining the location of salient objects in opti-
cal RSIs. Thus motivated, we explore the above two kinds of
contextual information with these two mentioned strategies.
Since high-level features provide a lot of semantic clues and
low-level features provide a lot of fine details, we coordinate
cross-scale features from the current, previous, and subsequent
blocks.

In practice, we design three branches (i.e., one local branch
and two adjacent branches) in ACCoM. The local branch is
based on the first strategy. Moreover, it is equipped with the

attention mechanism for further feature modulation in an adap-
tive way. The two adjacent branches are based on the second
strategy, and consist of the previous-to-current branch and the
subsequent-to-current branch. Since that the previous and sub-
sequent features are different in scale from the current features,
the two adjacent branches provide cross-scale information via
two spatial attention (SA) maps to align salient regions twice.
Comprehensive coordination enables the proposed ACCoM
to transmit valuable contextual information to the decoder.
Notably, as shown in Fig. 2, for ACCoM-1 and ACCoM-5,
due to their special position, we can only make one adjacent
branch in them. We present ACCoM in detail in Section III-B,
and assess its effectiveness in Section IV-C.

3) Bifurcation-Aggregation Block: The decoder network is
in charge of inferring the salient objects. Generally, the clas-
sic decoder network [69], [70] is comprised of five plain
decoder blocks, in which the convolutional layers are cas-
caded. However, the inference ability of the cascade structure
depends more on the features transmitted by the encoder, and
the cascade structure is not sensitive to the unique scenes of
optical RSIs, which may damage the inference accuracy of
salient objects of the decoder network. As previously men-
tioned, contextual information is crucial for RSI-SOD, so we
further explore them in the decoder. We introduce dilated
convolutions [75] as bifurcations after the first two cascaded
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convolutional layers, and then aggregate the information from
the two bifurcations and the original one via the concatenation-
convolution operation. In this way, the bifurcation-aggregation
structure enriches the topology of the decoder through two
dilated convolutions, expands the receptive field of features,
and captures rich contextual information, which is beneficial
for inferring the salient objects. We present BAB in detail in
Section III-C, and show its ablation studies in Section I'V-C.

B. Adjacent Context Coordination Module

ACCoM is the key component in ACCoNet. It connects the
encoder and the decoder, and its details are illustrated in Fig. 2.
There are usually three branches in ACCoM (e.g., ACCoM-2,
ACCoM-3 and ACCoM-4): one local branch (the middle one
in ACCoM) and two adjacent branches (the left and right ones
in ACCoM). While ACCoM-1 and ACCoM-5 only contain two
branches: one local branch and one adjacent branch. Thus, we
generally define the processing of ACCoM as F(-), which is
formulated as follows:

F(fL, fit), r=1
tecom = § FUC L ALY, 1=2,3.4 (1)
F(Fo ' fL). t=5

where f1 ... € R>Wixc jg the output feature of ACCoM-t,
and f 2_1, L, and f ffl are the previous, current, and subsequent
features, respectively.

1) Local Branch: The local branch operates on the current
features f. € RAxwix¢: - and contains two main operations.
First, we apply four dilated convolutions [75] (rather than
normal convolutional layers) with different dilation rates in
parallel to fé, which is defined as follows:

£ =DConvg(fg; wg;3,r">, ie(1,2,3,4
where fé’ci € R i the output feature of each dilated
convolution, DConv,, (*; *, *) is the dilated convolution with
batch normalization (BN) [76] and ReLU activation function
o, ngx 5 18 the parameters with 3 x 3 kernel, and r =1iis the
dilation rate. This can effectively traverse regions of different
sizes in f.

Then, we summarize these output features using the
concatenation-convolution operation, obtaining features with
rich contextual cues, that is, f% € RAxwixer wwhich is defined
as follows:

t t,1 pt,2 p1,3 pt,4. t
fe =ConVU(Concat<fdc, I ,fdc),W3X3>

where Concat(-) is the cross-channel concatenation, and
Conv, (%; %) is the normal convolutional layer with BN
and ReLU activation function. The subsequent operations in
ACCoM are based on f~.

However, the summary operation is relatively straightfor-
ward, resulting in some redundant information in f. We adopt
the subtle channel attention (CA) and SA [77], [78] to fur-
ther purify f% in an adaptive manner, which is formulated as
follows:

3)

Floc = SA(CA(f?) Ofc) ®f¢ (4)
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Optical RSI

Fig. 3. Feature visualization of each branch in ACCoM-3. Zoom-in for
viewing details.

where f] . € R/ >wixer ig the output feature of the local branch,
©® is the channelwise multiplication, and ® is the elemen-
twise multiplication. Specifically, we implement CA with a
spatialwise global max pooling (GMP), a fully connected layer
with ReLU activation function and a fully connected layer
with sigmoid activation function; and we implement SA with
a channelwise GMP and a convolutional layer with the sig-
moid activation function. Such an adaptive modulation process
selects valuable contents from f%.

2) Adjacent Branch(es): The adjacent branches contribute
two types of assistance to f%. The first one is the previous-to-
current branch, which can be computed as

= SA(Down(f;—l)) ®f, 1=23,45 (5

where f;,c € Rh>wixe s the output feature of the previous-
to-current branch, and Down(-) is the 2x downsampling
implemented by max-pooling. This branch brings alignment
information with fine details to f%.

The second one is the subsequent-to-current branch, which
can be computed as

- SA(Up( g+1>)) ®f, t=1234 (6

where %, € Riw>"<< is the output feature of the subsequent-
to-current branch, and Up(:) is the 2x upsampling imple-
mented by bilinear interpolation. This branch brings alignment
information with object location to f%.

3) Branches Integration: After the above effective coordi-
nation, we integrate the output features of these three (or two)
branches with the original current features as follows:

ffoc@féc@f{ev =1
tccom = | Floc © (Fpe OFLc) @FL 1=2,3,4
f{oceaf]t)c@fg’ =5

where @ is the elementwise summation and the original cur-

rent features are regarded as the basic content. In summary,

ff_: is coordinated by various contents, which greatly enhances
g t

the robustness and stability of f7 .-

In Fig. 3, we visualize features in ACCoM-3. It shows that
with all branches (i.e., f]30c’ fgc, and fsc) working together,
ACCoM accurately activates each salient region through com-
prehensive coordination, making the salient objects in f gccom
more obvious than those in f>.

@)
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TABLE I
DETAILED PARAMETERS OF TWO BIFURCATIONS (I.E., DILATED
CONVOLUTIONS) IN BAB, INCLUDING KERNEL SIZE, CHANNEL
NUMBER, DILATION RATE, AND THE SIZE OF OUTPUT FEATURE.
FOR INSTANCE, (3 x 3, 64, 64) DENOTES THAT THE KERNEL
S1ZE Is 3 x 3, THE INPUT CHANNEL NUMBER IS 64, AND
THE OUTPUT CHANNEL NUMBER IS 64

Aspects ‘ Dilated conv. ‘ r! ‘ 2 ‘ Output size
BAB-1 (3 x 3,64,64) 5 3 [256 x 256 x 64]
BAB-2 | (3x3,128,128) | 5 | 3 | [128 x 128 x 12§]
BAB-3 | (3x3,256,256) | 5 | 3 [64 x 64 x 256]
BAB-4 (3 x 3,512,512) 3 2 [32 x 32 x 512]
BAB-5 | (3x3,512,512) | 3 | 2 [16 x 16 x 512]

C. Bifurcation-Aggregation Block

BAB is the basic unit of the decoder. It processes the features
from the current ACCoM and the previous BAB, and finally,
infers the mask of salient objects. We define the processing of
BAB as B(-), which is formulated as follows:

fbab { B( accom’ DeCOHV(fg-gg)), t=1,2,3,4 ®)

t=5
where fﬁab is the output feature of BAB-#, and Deconv(-) is the
deconvolution layer with BN and ReLU activation function.
For convenience, we define the features generated by the
three cascaded convolutional layers in BAB-t as fb (e
{1, 2, 3}). So the output feature of two bifurcations (i.e., f{_)’ilf)
can be computed as

fiy =DConv, (Fil: Wiky, /). 1=12 )

in which we adopt the dilated convolution to expand the recep-
tive field and capture contextual cues from f.. .. In practice,
considering the difference in feature resolution of each BAB,
we set different dilation rates of bifurcations for different
BABs. The detailed parameters are shown in Table 1.

Then, we adopt the concatenation-convolution operation to
aggregate these two bifurcations and the original f{fc as

r 1,1 p1,2 p1,3
Soan = Conve (Concat(f bif> i S b—c) W3><3)

This way, BAB further scans regions with different sizes based
on f1...m at the inference stage, which can be well adapted to
the characteristics of changes in the shape, size, and quantity
of salient objects in optical RSIs.

accom) ’

(10)

D. Loss Function

As shown at the bottom of Fig. 2, in the training phase,
we attach the pixel-level supervision to each decoder block
(i.e., the deep supervision strategy [79]) for quick convergency.
Specifically, we arrange a convolutional layer after BAB-¢
to generate the intermediate/final saliency map, denoted as
Sf. For S’, we combine the pixel-level binary cross-entropy
(BCE) loss with the map-level intersection-over-union (IoU)
loss [73], [80] for comprehensive and complementary content
enhancement. We formulate the total loss function L as
p(S'). GT))

L= Z t(Up(S"), GT) + L, (U an
=1

where Lgce( -) is the BCE loss, LI (-,-) is the ToU loss,
and GT is the ground truth. In this way, the deep super-
vision strategy with hybrid losses not only stabilizes our
ACCoNet training process but also improves the detection

accuracy.

IV. EXPERIMENTAL RESULTS
A. Experimental Protocol

1) Datasets: We evaluate the proposed method on two
recently proposed datasets for RSI-SOD.

ORSSD [18] is the first publicly available dataset for
RSI-SOD, collected from the Google Earth and some exist-
ing RSI datasets. It contains 800 optical RSIs and pro-
vides corresponding pixelwise annotation for each image.
Among these optical RSIs, 600 images are used as
training set and the remaining 200 images as testing
set.

EORSSD [20] is the largest public dataset for RSI-SOD.
It extends the original ORSSD dataset to 2000 images
with corresponding pixelwise GTs. Among these, 1400
images are used as training set and 600 images as testing
set.

2) Network Training Details: We implement the proposed
ACCoNet by PyTorch [81] with an NVIDIA Titan X GPU.
In the training and testing phases, the input optical RSIs are
resized into 256 x 256. We adopt the parameters of the pre-
trained VGG-16 model [74] to initialize the parameters of the
encoder network in our ACCoNet, while the parameters of all
other newly added layers are initialized by the normal dis-
tribution [82]. We set the initial learning rate to le™*, and
it will be divided by 10 after 30 epochs. Due to the limita-
tion of GPU memory, we set the batch size to 6. We use the
Adam optimizer [83] for network optimization. For data aug-
mentation, we adopt the flipping and rotation, producing seven
additional variants of the original training data. Specifically, on
the EORSSD dataset [20], we train our ACCoNet with 11200
augmented pairs for 39 epochs. On the ORSSD dataset [18],
we train our ACCoNet with 4800 augmented pairs for 54
epochs.

3) Evaluation Metrics: We adopt nine widely used eval-
uation metrics, including S-measure (Sy, o« = 0.5) [84],
maximum, mean, and adaptive F-measure (Fg, ,32 = 0.3) [85],
maximum, mean, and adaptive E-measure (Eg) [86], mean
absolute error (MAE, M), and precision—recall (PR) curve, to
comprehensively measure the performance of our ACCoNet
and other compared methods. Specifically, S-measure simulta-
neously measures the region-aware and object-aware structural
similarity. F-measure is the weighted harmonic mean of
precision and recall, and we pay more attention to precision in
this article. E-measure jointly considers the local pixel-level
match information and the global image-level statistics. MAE
evaluates the average pixel-level errors. PR curve presents the
correlation between precision and recall. The evaluation tool!
provided by Fan et al. [6] is adopted by us for convenient
evaluation.

1 http://dpfan.net/d3netbenchmark/
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TABLE 11
QUANTITATIVE COMPARISON OF OUR METHOD AND OTHER 22 STATE-OF-THE-ART METHODS, INCLUDING FIVE TRADITIONAL NSI-SOD METHODS,
TEN CNN-BASED NSI-SOD METHODS, AND SEVEN RSI-SOD METHODS, ON TWO POPULAR DATASETS IN TERMS OF S-MEASURE, MAXIMUM, MEAN
AND ADAPTIVE F-MEASURE, MAXIMUM, MEAN AND ADAPTIVE E-MEASURE, AND MAE. WE ALSO REPORT THE FRAMES PER SECOND (FPS) OF
ALL METHODS. 1 AND | INDICATE LARGER AND SMALLER IS BETTER, RESPECTIVELY. THE TOP THREE RESULTS ARE MARKED IN Red, Blue, AND
Green, RESPECTIVELY. ' MEANS THE DEEP LEARNING-BASED METHOD. FOR SIMPLICITY, R3. IS R3NET, PoOL. Is POOLNET, EG. Is EGNET, MI.
Is MINET, GATE. IS GATENET, LV. Is LVNET, DAF. Is DAFNET, MJRB. Is MIRBM, EMFI. Is EMFINET, AND ACCO. Is ACCONET

Traditional NSI-SOD Methods

CNN-based NSI-SOD Methods

RSI-SOD Methods

RRWRHDCT DSG SMDRCRR|DSSTRADF! R3.T PFANT Pool.t EG.T GCPAT MLT ITSD' Gate.t| VOS CMCSMFF LV." DAE.f MIRB. EMFLf|ACCo.t
2015 2016 2017 2017 2018 [2017 2018 2018 2019 2019 2019 2020 2020 2020 2020 [2018 2019 2019 2019 2021 2022 2022 | 2022
Metric| [28] [31] [32] [33] [29] |[45] [471 [48] [491 [43] [ [44] [391 [421 [23]1 |[59] [63]1 [171 [18] [20] [57]  [58] | Ours
FPS 03 7 06 - 03|38 7 2 - - 23 12 16 25| - - - 14 26 32 25 | 8l
So 15992 5971 .6420.7101 .6007 |.7868 .8179 .8184 .8348 .8207 .8601 .8869 .9040 .9050 .9114|5082.5798 .5401 .8630 9197 9290 | .9290
max Fg 1.3993 5407 .5232.5884 .3995|.6849 7446 7498 7454 .7545.7880 .8347 .8344 8523 .8566|2765.3268 .5176.7794 8614 .8720 | .8837
Simean Fjg 1| 3686 4018 .4597.5473 3685 |.5801 .6582 .6302 .6766 .6406 .6967 .7905 8174 8221 .8228|2107.2692 2992 7328 .7845 .8486 | .8552
S adp Fjg 1] 3344 2658 4012.4081 .3347 | 4597 4933 4165 .5471 4611.5379 6723 7421 7109 [.1836.2007 .2083 .6284 .6427 7066 .7984 | 7969
£ max Eg 1].6894 7861 .7260.7697 .6882 9186 .9140 .9483 .9266 .9292.9570 .9524 .9442 9556 .9610 |.5982.6803 .7744 .9254 .9861 .9646 9727
S mean E¢ 1| .5943 6376 .6594.7286 .5946 | 7631 8567 .8294 8638 .8193 .8775 9167 .9346 19385|.4886.5894 5197 .8801 .9291 9350 .9604 | .9653
adp Eg 1].5639 .5192 .6188.6416 .5636 6933 7261 .6462 7738 .6836 .7566 .8647 9103 .8909 [4767.4890 .5014 .8445 8446 8897 .9501 | .9450
M || 1677 .1088 .1246.0771 .1644 0186 .0168 .0171 .0160 .0210.0110 .0102 .0093 .0106 .0095[.2096.1057 .1434 .0146 .0060 0099 0074
Sa 1 6835 .6197 .7195.7640 .6849 |.8262 .8259 .8141 .8613 .8403 .8721 .9026 .9040 .9050 .9186|.5366.6033 .5312 .8815 .9191 .9366 | .9437
max Fg 1].5590 5257 .6238.6692 .5591 |.7467 .7619 7456 .8131 .7706 .8332 .8687 .8761 .8735 .8871(.3471.3913 .4417 .8263 88429002 | .9149
Zmean Fg 1] .5125 4235 .5747.6214 5126|6962 .6856 7383 .7308 .6999 .7500 .8433 .8574 .8502 2717.3454 2684 .7995 .8511 .8566 .8856 | .8971
o adp Fj 1| 4874 3722 .5657.5568 4876|6206 .5730 7379 .6722 .6166 .6452 7861 8068 .8229(2633.3108 .2496 .7506 .7876 .8022 .8617 | .8806
2 max Eg 1 .7649 7719 .7912.8230 .7651 |.8860 .9130 .8913 .9519 .9343.9731 .9509 .9545 .9601 .9664 |6514.7064 7402 .9456 9771 .9623 9796
Smean Eg 1].7017 .6495 .7337.7745 7021 | 8362 .8298 .8681 .8553 .8650.9013 .9341 9454 .9482 9538 |5352.6417 .4920.9259 9415 9671 | .9754
adp Eg 1].6949 .6291 .7532.7682 .6950 | 8085 7678 .8887 .8504 .8124.8226 .9205 .9423 9335 5826.5996 .5676 .9195 9360 9328 .9663 | .9721
M || .1324 1309 .1041.0715 .1277 0363 .0382 .0399 .0243 .0358 .0216 .0168 .0144 .0165 .0137|2151.1267 .1854 .0207 0163 .0109 | .0088
. . 1 1
B. Comparison With State of the Arts —
1) Comparison Methods: Following the two popular RSI- i i
SOD benchmarks [18], [20], we compare our method with éoe éog \
e ) ~ g O8[—DAFNet 8 98/[—MJRBM
22 state-of: .the art NS; SOD and RSI-SOD methods for a £ |70\ |- -GateNet
comprehensive evaluation. Concretely, these compared meth- 0.7H—MJIRBM 0.71|—DAFNet
- .. EMFINet EMFINet
ods include five traditional NSI-SOD methods (RRWR [28], ours ours
HDCT [31], DSG [32], SMD [33], and RCRR [29]), ten %% o2 o2 o6 o8 1 %% o2 o2 o6 o8 1
CNN-based NSI-SOD methods (DSS [45], RADF [47], Rf;a)” R‘(‘%";
R3Net [48], PFAN [49], PoolNet [43], EGNet [41],
GCPA [44], MINet [39], ITSD [42], and GateNet [23]), three Fig. 4. Quantitative performance comparison on PR curve in two

traditional RSI-SOD methods (VOS [59], CMC [63], and
SMFF [17]), and four recent CNN-based RSI-SOD methods
(LVNet [18], DAFNet [20], MIRBM [57], and EMFINet [58]).
Notably, except for GCPA [44], MINet [39], ITSD [42], and
GateNet [23], the saliency maps of all the other compared
methods are provided by Zhang er al[20]* and/or by the
authors. Following [18] and [20], we fine-tune GCPA [44],
MINet [39], ITSD [42], and GateNet [23] with their default
hyperparameter settings using the same training data as our
method on the two datasets.

2) Quantitative Comparison on EORSSD: We present the
quantitative comparison of EORSSD [20] in terms of Sy, Fg,
Ee¢, and M in the upper part of Table II. Among the eight
metrics in Table II, our method ranks first in four metrics
and second in other four metrics. Overall, on the EORSSD
dataset, our method performs the best among all compared
methods. EMFINet [58] is the best among the seven exist-
ing RSI-SOD methods, and GateNet [23] is the best among

2https:// github.com/rmcong/DAFNet_TIP20

datasets. The top five methods are shown in color. Zoom-in for details.
(a) EORSSD [20]. (b) ORSSD [18].

existing NSI-SOD methods. In comparison to EMFINet, our
method performs marginally lower in terms of adp Fg and adp
E¢, but surpasses EMFINet by 1.17% on max Fg. Compared
with GateNet, our method greatly outperforms it by 2.71%,
3.24%, 5.41%, and 8.60% on max Fg, mean Fpg, adp E¢, and
adp Fpg, respectively. In addition, we show the PR curve in
Fig. 4(a), and our method is better than all compared methods.
3) Quantitative Comparison on ORSSD: The quantitative
comparison of ORSSD [18] on eight metrics is shown at the
bottom part of Table II, and the PR curve is shown in Fig. 4(b).
Our method consistently outperforms all compared methods
among all nine quantitative metrics. Notably, compared with
the second best method, the performance gain of our method
reaches 1.89% on adp Fg, 1.47% on max Fg, and 1.15% on
mean Fg. Among all the compared methods, ours is the only
method whose M is lower than 0.0100, that is, 0.0088.
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Visual comparisons with eight representative state-of-the-art methods, including two CNN-based RSI-SOD methods (DAFNet [20] and LVNet [18]),

four CNN-based NSI-SOD methods (GateNet [23], ITSD [42], MINet [39], and GCPA [44]), one traditional RSI-SOD method (CMC [63]), and one traditional
NSI-SOD method (SMD [33]). Zoom-in for the best view, especially for tiny object and multiple tiny objects.

According to the quantitative comparison on the two
datasets, our method is the best method for RSI-SOD. In addi-
tion, comparing the specialized RSI-SOD methods and the
NSI-SOD methods in the same period, we can find that the
specialized methods are better than the NSI-SOD methods,
which indicates that the development of specialized methods
is necessary and urgent.

4) Visual Comparison: We show some qualitative results in
Fig. 5, including several representative and challenging scenes
of optical RSIs, such as object with shadows, tiny object,
multiple objects, multiple tiny objects, and irregular geometry
structure.

For the first scene, shadows are usually connected with
salient objects, which will interfere with the detection and
highlight inaccurate regions on the saliency map. We can
clearly observe that in the second example, LVNet, GateNet,
ITSD, CMC, and SMD are in this dilemma, but our method
can highlight the plane more accurately.

The second scene is unique to optical RSIs and is different
from the scene with the small object in NSIs. In this scene,

optical RSIs contain much smaller object, that is, the tiny
object. Such extreme scene invalidates traditional methods
and two CNN-based NSI-SOD methods, that is, CMC, SMD,
MINet, and GCPA. The first two methods detect wrong objects
in the first example, and the latter two methods fail to detect
any objects in the second example. Besides, other methods can
only roughly determine the location of the tiny object but the
details cannot be described well. Our method can capture the
tiny object with fine details.

Scene with multiple objects has always been the diffi-
culty of the SOD task. In the first example, MINet misses
an object. Although other methods detect all objects, objects
are incomplete. In the second example, due to the com-
plexity of the scene, GateNet, ITSD, MINet, CMC, and
SMD incorrectly detect more regions. On the contrary, our
method locates all objects finely without any redundant
regions.

The fourth scene is a combination of the second and third
scenes, which puts forward higher requirements for the SOD
method. All representative compared methods appear to miss

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 24,2022 at 02:52:23 UTC from IEEE Xplore. Restrictions apply.



534

TABLE III
ABLATION ANALYSES ON MEASURING THE OVERALL CONTRIBUTIONS
OF ACCOM AND BAB IN ACCONET. BASELINE IS THE
ENCODER-DECODER NETWORK. THE BEST RESULT
IN EACH COLUMN IS Bold

) EORSSD [20] ORSSD [18]
No. |Baseline ACCoM BAB

maxFg M maxE¢|maxFg M maxEg

1 v 8642 0093 .9547 | .8832 .0138 .9566

2 v v 8819 .0076 .9673 | .9117 .0098 .9766

3 v v || 8777 .0086 9655 | .8987 .0131 .9661

4 v v v || 8837 .0074 9727 | 9149 .0088 .9796

the detection of some objects, while our method distinguishes
all tiny objects.

The last scene refers specifically to the river. Rivers often
have very complex irregular geometric structures and span the
entire image. They have different widths in different positions,
which is not friendly to some methods, causing LVNet, ITSD,
and MINet to detect only part of the river. Thanks to our
method thoroughly explores the contextual information in both
encoder and decoder, which is particularly advantageous for
variable object scales, object shapes, and object quantities in
optical RSIs, our method can overcome the above common
and complex scenes in optical RSIs.

5) Speed Comparison: In Table II, we report the speed
of 15 compared methods and ours.> Our method reaches a
fast processing speed of 81 fps on a GPU, which ranks first
among 16 compared methods and is more than three times
that of the second best method EFMINet (i.e., 25 fps). Based
on the above comprehensive comparison, our method shows
remarkable detection accuracy and astonishing speed.

C. Ablation Studies

In this section, we conduct thorough ablation studies on
EORSSD [20] and ORSSD [18] to investigate the impact of
the two vital components in our method. Specifically, we ana-
lyze: 1) the overall contributions of ACCoM and BAB in
ACCoNet; 2) the effectiveness of two types of branches in
ACCoM; 3) the rationality of the dilated convolution-based
bifurcations in BAB; 4) the complementarity between BCE
and IoU in loss function; and 5) the flexibility of our method.
For each variant, we strictly modify only one part at a time and
retrain the variant on the two datasets using the same training
settings as in Section IV-A.

1) Overall Contributions of ACCoM and BAB in ACCoNet:
As shown in Table III, to measure the overall contribu-
tions of the proposed ACCoM and BAB to ACCoNet, we
offer three variants: 1) the encoder—decoder network (i.e.,
“Baseline”); 2) the baseline network with only ACCoMs
(i.e., “Baseline+ACCoM”); and 3) the baseline network with

3The speed of RRWR, HDCT, DSG, RCRR, DSS, RADF, R3Net, and
LVNet are borrowed from [18], the speed of GCPA, MINet, ITSD, GateNet,
and MJRBM is obtained by our test, and the speed of DAFNet and EFMINet
is obtained from original papers.
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Optical RSI GT Ba

Ba+BAB  Ba+ACCoM Ours

Fig. 6.  Visual examples of ablation studies. “Ba” represents the basic
encoder—decoder network. Zoom-in for details.

only BABs (i.e., “Baseline+ACCoM”). Besides, the com-
plete ACCoNet is “Baseline+ACCoM+BAB.” We report the
quantitative results in Table III.

On the EORSSD dataset, we observe that “Baseline”
only achieves 86.42% on max Fg, 0.0093 on M, and
95.47% on max Eg. ACCoM increases “Baseline” by 1.76%,
0.0017, and 1.26% on these three metrics, respectively, while
BAB increases “Baseline” by 1.35%, 0.0007, and 1.08%
on these three metrics, respectively. With the joint coopera-
tion of ACCoM and BAB, our complete ACCoNet improves
“Baseline” by 1.95%, 0.0017, and 1.80% on these three met-
rics, respectively. The trends on the ORSSD dataset are the
same as that on the EORSSD dataset. Notably, our complete
ACCoNet improves “Baseline” by 3.17%, 0.0050, and 2.30%
on max Fg, M, and max E, respectively, which more clearly
validates the effectiveness of each proposed module.

In addition, we show saliency maps of these three variants
and our method in Fig. 6. In the first and second examples,
“Ba” (i.e., “Baseline”) misses an object. In the first exam-
ple, both ACCoM and BAB complete the missing object.
Differently, in the second example, only BAB completes the
missing object. This means that as long as ACCoM or BAB
can complete the missing object, the complete ACCoNet (i.e.,
“Ours”) can get accurate saliency maps. In the third exam-
ple, “Ba” mistakenly highlights the background region. BAB
suppresses part of the background and ACCoM suppresses
more background, resulting in a satisfactory saliency map of
“Ours.” The above quantitative and qualitative analysis con-
firms that both ACCoM and BAB are important for ACCoNet,
and the contextual information explored by these two modules
is conducive to the detection of salient objects in optical RSIs.

2) Effectiveness of Two Types of Branches in ACCoM:
To investigate the effectiveness of two types of branches in
ACCoM, we provide two variants: 1) removing the local
branch in ACCoM (i.e., w/o LB) and 2) removing the adjacent
branches in ACCoM (i.e., w/o AB). The ablation results are
reported in the third and fourth rows of Table IV.

We discover that the performances of w/o LB and w/o AB
are worse than ours, which demonstrates that these two types
of branches are effective. Concretely, on the ORSSD dataset,
the performance of w/o LB is degraded, for example, max
Fg: 91.49% — 90.29%, M: 0.0088 — 0.0113, max E;:
97.96% — 96.91%, while the performance of w/o AB drops
slightly, for example, max Fg: 91.49% — 90.72%, M: 0.0088
— 0.0108, max E¢: 97.96% — 97.39%. The same trend is
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TABLE IV
ABLATION RESULTS ON CONFIRMING THE EFFECTIVENESS OF TWO
TYPES OF BRANCHES IN ACCOM AND THE RATIONALITY OF THE
DILATED CONVOLUTION-BASED BIFURCATIONS IN BAB.
THE BEST RESULT IN EACH COLUMN IS Bold

EORSSD [20] ORSSD [18]
Models
maxFg T M | maxE¢ T|maxFg 1 M | maxE¢ 1

ACCoNet (Ours)|| .8837 .0074 .9727 9149 .0088 .9796

w/o LB .8800 .0079  .9681 9029 .0113 9691

w/o AB .8830 .0075 .9704 9072 .0108 .9739

w/ DC .8831 .0075 .9727 9136 .0093  .9790

w/ NC .8834 .0074 9716 9144 .0090 .9783

w/o LB: ACCoM without local branch. w/o AB: ACCoM without adjacent branches.

w/ DC: two bifurcations of BAB are direct connection operations.

w/ NC: two bifurcations of BAB are normal convolutional layers.

Optlcal RSI

w/o AB

Optical RSI GT

Fig. 7. Visual examples of two variants, w/o LB and w/o AB.

observed on the EORSSD dataset. The reason is that the fea-
ture modulation of adjacent branches is based on fé, which
belongs to the local branch. If we remove the local branch,
the global assistance provided by two adjacent features will
act on f%, which cannot exert the maximum effect of global
assistance. Thus, we conclude that the local branch is the core
of ACCoM.

Specifically, in Fig. 7, we show saliency maps of these two
variants and our complete method to visually evaluate the role
of the local branch and the adjacent branches. As shown in
the first three examples of Fig. 7, the saliency maps of w/o LB
miss objects in the case of multiple salient objects (the first two
examples), and cannot detect the complete object in the case of
large salient object (the third one). This is because after remov-
ing the local branch, the location information of salient objects
will be reduced, resulting in two types of missed detections.
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TABLE V
ABLATION STUDY ON EVALUATING THE COMPLEMENTARITY
BETWEEN BCE AND IOU IN LOSS FUNCTION. THE
BEST RESULT IN EACH COLUMN IS Bold

EORSSD [20] ORSSD [18]
No. |BCE IoU

maxFg T M | maxE¢ 1|maxFg T M | maxEg 1
1]V 8731 0085 9666 | .9018 .0117 .9703
2 v || 8801 .0081 9711 | 9027 .0105 .9747
30V V|| 8837 0074 9727 | 9149 .0088 .9796

Differently, for the saliency maps of w/o AB, the salient objects
are basically located accurately, but the details are not perfectly
outlined, such as the regions occluded by the tree (the fourth
one), the airplane tail (the fifth one), and the slender river (the
last one). After removing the adjacent branches, the cross-level
contextual complementary information is discarded, causing
the damage of the salient object details. In summary, the local
branch is good for scenes with multiple salient objects and
large salient object, while the adjacent branches are good for
scenes containing salient objects with fine details.

3) Rationality of the Dilated Convolution-Based
Bifurcations in BAB: To validate the rationality of the
dilated convolution-based bifurcations in BAB, we conduct
two variants: 1) replacing dilated convolutions by direct
connection operations (i.e., w/ DC) and 2) replacing dilated
convolutions by normal convolutional layers (i.e., w/ NC).
The ablation results are reported in the last two rows of
Table IV.

In general, we find that the performance gap between these
two variants and our original BAB is small. However, with
direct connection operations, BAB cannot fully demonstrate
its ability to capture contextual information, which leads to
performance degradation, for example, max Fg: 88.31% (w/
DC) versus 88.37% (Ours) on the EORSSD and 91.36% (w/
DC) versus 91.49% (Ours) on the ORSSD. The normal convo-
lutional layers slightly improve the ability of BAB compared
to direct connection operations, for example, max Fg: 88.31%
(w/ DC) — 88.34% (w/ NC) on the EORSSD and 91.36%
w/ DC) — 91.44% (w/ NC) on the ORSSD. In summary,
the dilated convolution-based bifurcations can capture better
various contextual information with different receptive fields
in the decoder.

4) Complementarity Between BCE and IoU in Loss
Function: To prove the complementarity between BCE and
IoU in loss function, we provide two variants: 1) training our
method with only BCE loss and 2) training our method with
only IoU loss. We report the quantitative results in Table V.

As shown in Table V, training our ACCoNet with only BCE
loss or IoU loss can achieve promising performance, but the
performance of these two variants is worse than that of our
complete loss function. This is because BCE loss is a pixel-
level supervision, and IoU loss is a map-level supervision. The
two losses train the network from different aspects, and they
can complement each other. Combining the two losses to train
our method together is conducive to keeping the completeness
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TABLE VI
PERFORMANCE ON DIFFERENT ENCODER
BACKBONES OF OUR ACCONET

EORSSD [20] ORSSD [18]
Models
maxFg T M | maxE¢ 1|maxFg T M | maxE¢ 1
ACCoNet-VGG .8837 .0074 9727 9149 .0088 .9796
ACCoNet-ResNet || .8821 .0067 .9759 9149 .0087 .9819

of salient objects. This composite loss function is popular in
the field of SOD [58], [73], [80].

5) Flexibility of Our Method: To demonstrate the flexibility
of our method, we provide a variant, namely, ACCoNet-
ResNet, which adopts ResNet-50 [87] as the encoder back-
bone, and report the performance in Table VI. As shown in
Table VI, with the more powerful encoder backbone ResNet-
50, the performance of ACCoNet-ResNet is improved on most
evaluation metrics as compared with our original method, that
is, ACCoNet-VGG in Table VI, whose encoder backbone is
VGG-16. We can conclude that our method shows strong
adaptability to different encoder backbones.

V. CONCLUSION

In this article, we investigated the contextual knowledge
in an encoder—decoder architecture and proposed an effec-
tive ACCoNet for RSI-SOD. We believed that the contextual
information is beneficial to tackle variable object scales, object
shapes, and object quantities in RSI-SOD. In the encoder,
we proposed the ACCoM to coordinate the adjacent fea-
tures (i.e., the current, previous, and subsequent features) and
explored adjacent information for salient regions activation. In
the decoder, we proposed the BAB to capture the multiscale
contents for salient regions inference. Both ACCoMs and
BABs learn contextual information to improve the repre-
sentation of salient objects. In particular, we employed the
deep supervision with hybrid losses to stabilize the network
training. Extensive experiments, including quantitative, visual,
and speed comparisons and ablation studies, demonstrate that
the proposed method is superior to 22 relevant state-of-
the-art methods, and the two proposed modules contribute
significantly to performance.

REFERENCES

[11 A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection:
A benchmark,” IEEE Trans. Image Process., vol. 24, pp. 5706-5722,
2015.

[2] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li, “Salient object
detection: A survey,” Comput. Vis. Media, vol. 5, no. 2, pp. 117-150,
Jun. 2019.

[3] W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient
object detection in the deep learning era: An in-depth survey,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Jan. 12, 2021,
doi: 10.1109/TPAMI.2021.3051099.

[4] W. Wang, J. Shen, J. Xie, M.-M. Cheng, H. Ling, and A. Borji,
“Revisiting video saliency prediction in the deep learning era,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 220-237, Jan. 2021.

[51 R.Cong,J. Lei, H. Fu, M.-M. Cheng, W. Lin, and Q. Huang, “Review of
visual saliency detection with comprehensive information,” IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 10, pp. 2941-2959, Oct. 2019.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 1, JANUARY 2023

[6] D.-P. Fan, Z. Lin, Z. Zhang, M. Zhu, and M.-M. Cheng, “Rethinking
RGB-D salient object detection: Models, data sets, and large-scale
benchmarks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5,
pp. 2075-2089, May 2021.

[71 G. Li, Z. Liu, R. Shi, and W. Wei, “Constrained fixation point based
segmentation via deep neural network,” Neurocomputing, vol. 368,
pp. 180-187, Nov. 2019.

[8] G. Li et al., “Personal fixations-based object segmentation with object
localization and boundary preservation,” IEEE Trans. Image Process.,
vol. 30, pp. 1461-1475, 2021.

[9] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,” in Proc.
ICML, Jul. 2015, pp. 597-606.

[10] P. Zhang, W. Liu, D. Wang, Y. Lei, H. Wang, and H. Lu, “Non-
rigid object tracking via deep multi-scale spatial-temporal discriminative
saliency maps,” Pattern Recognit., vol. 100, Apr. 2020, Art. no. 107130.

[11] K. Gu et al, “Saliency-guided quality assessment of screen con-
tent images,” IEEE Trans. Multimedia, vol. 18, no. 6, pp. 1098-1110,
Jun. 2016.

[12] S. Yang, Q. Jiang, W. Lin, and Y. Wang, “SGDNet: An end-to-end
saliency-guided deep neural network for no-reference image quality
assessment,” in Proc. ACM MM, Oct. 2019, pp. 1383-1391.

[13] Q. Wang, J. Lin, and Y. Yuan, “Salient band selection for hyperspectral
image classification via manifold ranking,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 6, pp. 1279-1289, Jun. 2016.

[14] L. Zhang, S. Wang, and X. Li, “Salient region detection in remote sens-
ing images based on color information content,” in Proc. IEEE IGARSS,
Jul. 2015, pp. 1877-1880.

[15] D. Zhao, J. Wang, J. Shi, and Z. Jiang, “Sparsity-guided saliency detec-
tion for remote sensing images,” J. Appl. Remote Sens., vol. 9, no. 1,
pp. 1-14, Sep. 2015.

[16] L. Zhang, Y. Wang, and Y. Sun, “Salient target detection based on the
combination of super-pixel and statistical saliency feature analysis for
remote sensing images,” in Proc. IEEE ICIP, Oct. 2018, pp. 2336-2340.

[17] L. Zhang, Y. Liu, and J. Zhang, “Saliency detection based on self-
adaptive multiple feature fusion for remote sensing images,” Int. J.
Remote Sens., vol. 40, no. 22, pp. 8270-8297, May 2019.

[18] C. Li, R. Cong, J. Hou, S. Zhang, Y. Qian, and S. Kwong, “Nested
network with two-stream pyramid for salient object detection in optical
remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 57,
no. 11, pp. 9156-9166, Nov. 2019.

[19] C. Li et al., “A parallel down-up fusion network for salient object
detection in optical remote sensing images,” Neurocomputing, vol. 415,
pp. 411420, Nov. 2020.

[20] Q. Zhang et al., “Dense attention fluid network for salient object detec-
tion in optical remote sensing images,” IEEE Trans. Image Process.,
vol. 30, pp. 1305-1317, 2021.

[21] L. Zhang and J. Ma, “Salient object detection based on progressively
supervised learning for remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 11, pp. 9682-9696, Nov. 2021.

[22] G. Li, Z. Liu, W. Lin, and H. Ling, “Multi-content complementation
network for salient object detection in optical remote sensing images,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-13, Feb. 2022.

[23] X. Zhao, Y. Pang, L. Zhang, H. Lu, and L. Zhang, “Suppress and bal-
ance: A simple gated network for salient object detection,” in Proc.
ECCV, Aug. 2020, pp. 35-51.

[24] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541-551, Dec. 1989.

[25] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual atten-
tion for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 20, no. 11, pp. 1254-1259, Nov. 1998.

[26] J.-G. Yu, J. Zhao, J. Tian, and Y. Tan, “Maximal entropy random walk
for region-based visual saliency,” IEEE Trans. Cybern., vol. 44, no. 9,
pp. 1661-1672, Sep. 2014.

[27] Z. Liu, W. Zou, and O. Le Meur, “Saliency tree: A novel saliency detec-
tion framework,” IEEE Trans. Image Process., vol. 23, pp. 1937-1952,
2014.

[28] C. Li, Y. Yuan, W. Cai, Y. Xia, and D. D. Feng, “Robust saliency
detection via regularized random walks ranking,” in Proc. IEEE CVPR,
Jun. 2015, pp. 2710-2717.

[29] Y. Yuan, C. Li, J. Kim, W. Cai, and D. D. Feng, “Reversion correc-
tion and regularized random walk ranking for saliency detection,” IEEE
Trans. Image Process., vol. 27, pp. 1311-1322, 2018.

[30] M. Jian, K.-M. Lam, J. Dong, and L. Shen, “Visual-patch-attention-
aware saliency detection,” [EEE Trans. Cybern., vol. 45, no. 8,
pp. 1575-1586, Aug. 2015.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 24,2022 at 02:52:23 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TPAMI.2021.3051099

LI et al.: ACCoNet FOR RSI-SOD

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Kim, D. Han, Y.-W. Tai, and J. Kim, “Salient region detection via
high-dimensional color transform and local spatial support,” IEEE Trans.
Image Process., vol. 25, pp. 9-23, 2016.

L. Zhou, Z. Yang, Z. Zhou, and D. Hu, “Salient region detection using
diffusion process on a two-layer sparse graph,” IEEE Trans. Image
Process., vol. 26, pp. 5882-5894, 2017.

H. Peng, B. Li, H. Ling, W. Hu, W. Xiong, and S. J. Maybank, “Salient
object detection via structured matrix decomposition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 818-832, Apr. 2017.

S. Wang, S. Yang, M. Wang, and L. Jiao, “New contour cue-
based hybrid sparse learning for salient object detection,” [EEE
Trans. Cybern., vol. 51, no. 8, pp. 42124226, Aug. 2021,
doi: 10.1109/TCYB.2018.2881482.

Y. Zhou, S. Huo, W. Xiang, C. Hou, and S.-Y. Kung, “Semi-supervised
salient object detection using a linear feedback control system model,”
IEEE Trans. Cybern., vol. 49, no. 4, pp. 11731185, Apr. 2019.

M. Liang and X. Hu, “Feature selection in supervised saliency
prediction,” IEEE Trans. Cybern., vol. 45, no. 5, pp. 914-926,
May 2015.

Q. Wang, Y. Yuan, P. Yan, and X. Li, “Saliency detection by multiple-
instance learning,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 660-672,
Apr. 2013.

M. Huang, Z. Liu, L. Ye, X. Zhou, and Y. Wang, “Saliency detec-
tion via multi-level integration and multi-scale fusion neural networks,”
Neurocomputing, vol. 364, pp. 310-321, Oct. 2019.

Y. Pang, X. Zhao, L. Zhang, and H. Lu, “Multi-scale interactive
network for salient object detection,” in Proc. IEEE CVPR, Jun. 2020,
pp. 9410-9419.

K. Yan, X. Wang, J. Kim, and D. Feng, “A new aggregation of DNN
sparse and dense labeling for saliency detection,” IEEE Trans. Cybern.,
vol. 51, no. 12, pp. 5907-5920, Dec. 2021.

J. Zhao, J.-J. Liu, D.-P. Fan, Y. Cao, J. Yang, and M.-M. Cheng, “EGNet:
Edge guidance network for salient object detection,” in Proc. IEEE
ICCV, Oct. 2019, pp. 8779-8788.

H. Zhou, X. Xie, J.-H. Lai, Z. Chen, and L. Yang, “Interactive two-
stream decoder for accurate and fast saliency detection,” in Proc. IEEE
CVPR, Jun. 2020, pp. 9138-9147.

J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple pooling-
based design for real-time salient object detection,” in Proc. IEEE CVPR,
Jun. 2019, pp. 3912-3921.

Z. Chen, Q. Xu, R. Cong, and Q. Huang, “Global context-aware progres-
sive aggregation network for salient object detection,” in Proc. AAAI,
Feb. 2020, pp. 10599-10606.

Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr, “Deeply
supervised salient object detection with short connections,” in Proc.
IEEE CVPR, Jul. 2017, pp. 5300-5309.

Y. Liu, M.-M. Cheng, X.-Y. Zhang, G.-Y. Nie, and M. Wang,
“DNA: Deeply supervised nonlinear aggregation for salient object
detection,” [EEE Trans. Cybern., early access, Feb. 2, 2021,
doi: 10.1109/TCYB.2021.3051350.

X. Hu, L. Zhu, J. Qin, C.-W. Fu, and P.-A. Heng, “Recurrently aggregat-
ing deep features for salient object detection,” in Proc. AAAI, Feb. 2018,
pp. 6943-6950.

Z. Deng et al., “R3Net: Recurrent residual refinement network for
saliency detection,” in Proc. IJCAI, Jul. 2018, pp. 684—690.

T. Zhao and X. Wu, “Pyramid feature attention network for saliency
detection,” in Proc. IEEE CVPR, Jun. 2019, pp. 3080-3089.

J. Li, Z. Pan, Q. Liu, Y. Cui, and Y. Sun, “Complementarity-aware
attention network for salient object detection,” IEEE Trans. Cybern.,
vol. 52, no. 2, pp. 873-886, Feb. 2022.

S. Chen, B. Wang, X. Tan, and X. Hu, “Embedding attention and residual
network for accurate salient object detection,” IEEE Trans. Cybern.,
vol. 50, no. 5, pp. 2050-2062, May 2020.

Y. Wu, Z. Liu, and X. Zhou, “Saliency detection using adversarial learn-
ing networks,” J. Vis. Commun. Image Represent., vol. 67, Feb. 2020,
Art. no. 102761.

H. Li, G. Li, and Y. Yu, “ROSA: Robust salient object detection
against adversarial attacks,” IEEE Trans. Cybern., vol. 50, no. 11,
pp. 4835-4847, Nov. 2020.

H. Li, G. Li, B. Yang, G. Chen, L. Lin, and Y. Yu, “Depthwise nonlocal
module for fast salient object detection using a single thread,” IEEE
Trans. Cybern., vol. 51, no. 12, pp. 6188-6199, Dec. 2021.

Y. Liu, Y.-C. Gu, X.-Y. Zhang, W. Wang, and M.-M. Cheng,
“Lightweight salient object detection via hierarchical visual percep-
tion learning,” IEEE Trans. Cybern., vol. 51, no. 9, pp. 4439-4449,
Sep. 2021.

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]
[75]

[76]

[77]

(78]

(791

537

D. Faur, I. Gavat, and M. Datcu, “Salient remote sensing image seg-
mentation based on rate-distortion measure,” IEEE Geosci. Remote Sens.
Lett., vol. 6, no. 4, pp. 855-859, Oct. 2009.

Z. Tu, C. Wang, C. Li, M. Fan, H. Zhao, and B. Luo, “ORSI salient
object detection via multiscale joint region and boundary model,” IEEE
Trans. Geosci. Remote Sens., vol. 60, pp. 1-13, Jan. 2022.

X. Zhou, K. Shen, Z. Liu, C. Gong, J. Zhang, and C. Yan, “Edge-
aware multiscale feature integration network for salient object detection
in optical remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1-15, Jan. 2022.

Q. Zhang, L. Zhang, W. Shi, and Y. Liu, “Airport extraction via
complementary saliency analysis and saliency-oriented active contour
model,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 7, pp. 1085-1089,
Jul. 2018.

E. Li, S. Xu, W. Meng, and X. Zhang, “Building extraction from
remotely sensed images by integrating saliency cue,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 906-919,
Mar. 2017.

L. Zhang, A. Li, Z. Zhang, and K. Yang, “Global and local saliency
analysis for the extraction of residential areas in high-spatial-resolution
remote sensing image,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7,
pp. 3750-3763, Jul. 2016.

C. Dong, J. Liu, F. Xu, and C. Liu, “Ship detection from optical remote
sensing images using multi-scale analysis and Fourier HOG descriptor,”
Remote Sens., vol. 11, no. 13, pp. 1-19, Jun. 2019.

Z. Liu, D. Zhao, Z. Shi, and Z. Jiang, “Unsupervised saliency model
with color Markov chain for oil tank detection,” Remote Sens., vol. 11,
no. 9, pp. 1-18, May 2019.

M. Jing, D. Zhao, M. Zhou, Y. Gao, Z. Jiang, and Z. Shi, “Unsupervised
oil tank detection by shape-guide saliency model,” IEEE Geosci. Remote
Sens. Lett., vol. 16, no. 3, pp. 477-481, Mar. 2019.

L. Zhang and K. Yang, “Region-of-interest extraction based on
frequency domain analysis and salient region detection for remote
sensing image,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5,
pp. 916-920, May 2014.

L. Ma, B. Du, H. Chen, and N. Q. Soomro, “Region-of-interest detec-
tion via superpixel-to-pixel saliency analysis for remote sensing image,”
IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1752-1756,
Dec. 2016.

T. Li, J. Zhang, X. Lu, and Y. Zhang, “SDBD: A hierarchical region-of-
interest detection approach in large-scale remote sensing image,” I[EEE
Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 699-703, May 2017.

G. Liu, L. Qi, Y. Tie, and L. Ma, “Region-of-interest detection based
on statistical distinctiveness for panchromatic remote sensing images,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 2, pp. 271-275, Feb. 2019.
V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495,
Dec. 2017.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. MICCAI,
Oct. 2015, pp. 234-241.

G. Li, Z. Liu, and H. Ling, “ICNet: Information conversion network for
RGB-D based salient object detection,” IEEE Trans. Image Process.,
vol. 29, pp. 4873-4884, 2020.

G. Li, Z. Liu, L. Ye, Y. Wang, and H. Ling, “Cross-modal weight-
ing network for RGB-D salient object detection,” in Proc. ECCV,
Aug. 2020, pp. 665-681.

G. Li, Z. Liu, M. Chen, Z. Bai, W. Lin, and H. Ling, “Hierarchical
alternate interaction network for RGB-D salient object detection,” IEEE
Trans. Image Process., vol. 30, pp. 3528-3542, 2021.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, May 2015, pp. 1-14.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in Proc. ICLR, May 2016, pp. 1-13.

S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. ICML,
vol. 37, Jul. 2015, pp. 448-456.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp- 2011-2023, Aug. 2020.

S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. ECCV, Sep. 2018, pp. 3—19.

S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. IEEE
ICCV, Dec. 2015, pp. 1395-1403.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 24,2022 at 02:52:23 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TCYB.2018.2881482
http://dx.doi.org/10.1109/TCYB.2021.3051350

538

[80] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand,
“BASNet: Boundary-aware salient object detection,” in Proc. IEEE
CVPR, Jun. 2019, pp. 7479-7489.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. NeurIPS, Dec. 2019, pp. 8024-8035.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. IEEE ICCV, Dec. 2015, pp. 1026-1034.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in Proc. ICLR, May 2015, pp. 1-15.

D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, and A. Borji, “Structure-
measure: A new way to evaluate foreground maps,” in Proc. IEEE ICCV,
Oct. 2017, pp. 4548-4557.

R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-
tuned salient region detection,” in Proc. IEEE CVPR, Jun. 2009,
pp. 1597-1604.

D.-P. Fan, C. Gong, Y. Cao, B. Ren, M.-M. Cheng, and A. Borji,
“Enhanced-alignment measure for binary foreground map evaluation,”
in Proc. IJCAI, Jul. 2018, pp. 698-704.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, Jun. 2016, pp. 770-778.

[81]

(82]

(83]

[84]

[85]

[86]

(871

Gongyang Li received the B.E. degree from
Shanghai Normal University, Shanghai, China, in
2016. He is currently pursuing the Ph.D. degree
with the School of Communication and Information
Engineering, Shanghai University, Shanghai.

His research interests include image/video object
segmentation and saliency detection.

Zhi Liu (Senior Member, IEEE) received the B.E.
and M.E. degrees from Tianjin University, Tianjin,
China, in 1999 and 2002, respectively, and the Ph.D.
degree from the Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University,
Shanghai, China, in 2005.

He is currently a Professor with the School
of Communication and Information Engineering,

{ Shanghai University, Shanghai. From August 2012
/ - to August 2014, he was a Visiting Researcher

with the SIROCCO Team, IRISA/INRIA, Rennes,
France, with the support by EU FP7 Marie Curie Actions. He has pub-
lished more than 200 refereed technical papers in international journals and
conferences. His research interests include image/video processing, machine
learning, computer vision, and multimedia communication.

Prof. Liu was a TPC Member/Session Chair of ICIP 2017, PCM 2016,
VCIP 2016, ICME 2014, and WIAMIS 2013. He co-organized special sessions
on visual attention, saliency models, and applications at WIAMIS 2013 and
ICME 2014. He is an Area Editor of Signal Processing: Image Communication
and served as a Guest Editor for the special issue on Recent Advances in
Saliency Models, Applications, and Evaluations in Signal Processing: Image
Communication.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 1, JANUARY 2023
Dan Zeng (Senior Member, IEEE) received the
B.S. degree in electronic science and technology
and the Ph.D. degree in circuits and systems from
‘ the University of Science and Technology of China,

X Hefei, China, in 2003 and 2008 respectively.

\ She is a Full Professor and the Dean of
the Department of Communication Engineering
and the Computer Vision and Pattern Recognition
Lab, Shanghai University, Shanghai, China. Her
main research interests include computer vision,
multimedia analysis, and machine learning.

Prof. Zeng is serving as an Associate Editor for IEEE TRANSACTIONS ON
MULTIMEDIA and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, the TC Member of IEEE MSA, and the Associate
TC Member of IEEE MMSP.

Weisi Lin (Fellow, IEEE) received the Ph.D. degree
from King’s College London, London, UK., in
1993.
He is currently a Professor with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His research
interests  include image  processing,  visual
\ quality evaluation, and perception-inspired sig-
nal modeling, with more than 340 refereed
‘ | Dbapers published in international journals and

conferences.

Prof. Lin has been on the Editorial Board of the IEEE TRANSACTIONS ON
IMAGE PROCESSING, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, IEEE TRANSACTIONS ON MULTIMEDIA, IEEE
SIGNAL PROCESSING LETTERS, and Journal of Visual Communication
and Image Representation. He was a Distinguished Lecturer of the IEEE
Circuits and Systems Society from 2016 to 2017 and the Asia—Pacific
Signal and Information Processing Association from 2012 to 2013. He was
a Technical-Program Chair for Pacific-Rim Conference on Multimedia 2012,
the IEEE International Conference on Multimedia and Expo 2013, and the
International Workshop on Quality of Multimedia Experience 2014. He
is a Fellow of IET and an Honorary Fellow of the Singapore Institute of
Engineering Technologists.

Haibin Ling (Senior Member, IEEE) received the
B.S. and M.S. degrees from Peking University,
Beijing, China, in 1997 and 2000, respectively, and
the Ph.D. degree from the University of Maryland
at College Park, College Park, MD, USA, in 2006.

From 2000 to 2001, he was an Assistant
Researcher with Microsoft Research Asia, Beijing.
From 2006 to 2007, he worked as a Postdoctoral
Scientist with the University of California at Los
Angeles, Los Angeles, CA, USA. In 2007, he joined
Siemens Corporate Research, Princeton, NJ, USA,
as a Research Scientist; then, from 2008 to 2019, he worked as a Faculty
Member with the Department of Computer Sciences, Temple University,
Philadelphia, PA, USA. In Fall 2019, he joined Stony Brook University,
Stony Brook, NY, USA, as a SUNY Empire Innovation Professor with
the Department of Computer Science. His research interests include com-
puter vision, augmented reality, medical image analysis, and human—computer
interaction.

Dr. Ling received the Best Student Paper Award at ACM UIST 2003,
the Best Journal Paper Award at IEEE VR 2021, the NSF CAREER Award
in 2014, the Yahoo Faculty Research and Engagement Award in 2019, and
the Amazon Machine Learning Research Award in 2019. He serves as an
Associate Editor for several journals, including IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS
ON VISUALIZATION AND COMPUTER GRAPHICS, Pattern Recognition, and
Computer Vision and Image Understanding. He has served as an Area Chair
various times for CVPR and ECCV.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on December 24,2022 at 02:52:23 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


