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Abstract— Recently, relying on convolutional neural networks
(CNNs), many methods for salient object detection in optical
remote-sensing images (ORSI-SOD) are proposed. However, most
methods ignore the number of parameters and computational
cost brought by CNNs, and only a few pay attention to portability
and mobility. To facilitate practical applications, in this article,
we propose a novel lightweight network for ORSI-SOD based on
semantic matching and edge alignment, termed SeaNet. Specif-
ically, SeaNet includes a lightweight MobileNet-V2 for feature
extraction, a dynamic semantic matching module (DSMM) for
high-level features, an edge self-alignment module (ESAM) for
low-level features, and a portable decoder for inference. First, the
high-level features are compressed into semantic kernels. Then,
semantic kernels are used to activate salient object locations in
two groups of high-level features through dynamic convolution
operations in DSMM. Meanwhile, in ESAM, cross-scale edge
information extracted from two groups of low-level features is
self-aligned through L, loss and used for detail enhancement.
Finally, starting from the highest level features, the decoder
infers salient objects based on the accurate locations and fine
details contained in the outputs of the two modules. Exten-
sive experiments on two public datasets demonstrate that our
lightweight SeaNet not only outperforms most state-of-the-art
lightweight methods, but also yields comparable accuracy with
state-of-the-art conventional methods, while having only 2.76 M
parameters and running with 1.7 G floating point operations
(FLOPs) for 288 x 288 inputs. Our code and results are available
at https://github.com/MathLee/SeaNet.

Index Terms— Edge alignment, lightweight salient object detec-
tion (SOD), optical remote-sensing image (ORSI), semantic
matching.

Manuscript received 7 August 2022; revised 24 October 2022;
accepted 6 January 2023. Date of publication 11 January 2023; date of
current version 20 January 2023. This work was supported in part by the
National Natural Science Foundation of China under Grant 62171269 and
Grant U1936214, in part by the China Postdoctoral Science Founda-
tion under Grant 2022M722037, in part by the Science and Technology
Commission of Shanghai Municipality under Grant 21010500200, and in
part by the Singapore Ministry of Education Tier-2 Fund under Grant
MOE2016-T2-2-057(S). (Corresponding authors: Zhi Liu; Xinpeng Zhang.)

Gongyang Li, Zhi Liu, and Xinpeng Zhang are with the Key Laboratory
of Specialty Fiber Optics and Optical Access Networks, Joint International
Research Laboratory of Specialty Fiber Optics and Advanced Communica-
tion, Shanghai Institute for Advanced Communication and Data Science,
and the School of Communication and Information Engineering, Shanghai
University, Shanghai 200444, China (e-mail: ligongyang@shu.edu.cn;
liuzhisjtu@163.com; xzhang@shu.edu.cn).

Weisi Lin is with the School of Computer Science and Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
wslin@ntu.edu.sg).

Digital Object Identifier 10.1109/TGRS.2023.3235717

, Senior Member, IEEE, Xinpeng Zhang™, Member, IEEE,

, Fellow, IEEE

I. INTRODUCTION

ALIENT object detection (SOD) aims at imitating the

human vision system to quickly locate the objects/areas
that attract the most attention [1]. As an important preprocess-
ing step, the success of SOD has promoted the development of
many fields, such as image quality assessment [2], [3], object
segmentation [4], [5], and object tracking [6]. Different from
most SOD methods proposed for single images [7], RGB and
depth/thermal images (RGB-D/T) [8], [9], and video [10] pho-
tographed in natural scenes, in this article, we focus on SOD
in optical remote-sensing images, or ORSI-SOD for short.
Following the technical trend of SOD in natural scene images
(NSI-SOD) [7], we are committed to addressing ORSI-SOD
based on convolutional neural networks (CNNs) [11].

In the era of deep learning, numerous CNN-based NSI-SOD
methods have been proposed, and the detection accuracy
has been significantly improved. Among these methods, the
classic encoder—decoder structure [16] is the most general
and effective structure and is often accompanied by ingenious
strategies such as deep supervision [17], gate mechanism [18],
edge assistance [19], [20], progressive architecture [12], and
so on. Although NSI-SOD methods cannot directly overcome
the issue of complex scenes of optical remote-sensing images
(ORSIs) (as PA-KRN [12] shown in the third column of
Fig. 1), the strategies contained therein lay the foundation
for CNN-based ORSI-SOD methods. The specialized methods
for ORSI-SOD take into account the properties of salient
objects and scenes in ORSIs. For example, LVNet [21] and
EMFINet [22] take ORSIs with multiple resolutions as inputs
to overcome the problem of variable sizes of salient objects.
MCCNet [14] comprehensively integrates foreground, back-
ground, edge, and global information to deal with the complex
background of ORSIs, producing good saliency maps as shown
in the fifth column of Fig. 1.

However, the above methods may fall into the dilemma
of the huge amount of parameters and computational cost,
such as the parameters and floating point operations (FLOPs)
of PA-KRN and MCCNet listed in Fig. 1. To address this
issue, lightweight SOD methods are gradually emerging. Com-
pared with PA-KRN, the pioneer of the lightweight NSI-SOD
method HVPNet [13] reduces the number of parameters and
computational cost by hundreds of times. But HVPNet is also
stuck by ORSIs, as shown in the fourth column of Fig. 1. For

1558-0644 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on January 20,2023 at 02:48:37 UTC from IEEE Xplore. Restrictions apply.



5601111

ORSI  Ground truth PA-KRN ~ HVPNet MCCNet  CorrNet Ours
Parameters: 141.06M 1.23M 67.65M 4.09M 2.76M
FLOPs: 617.7G 1.1G 112.8G 21.1G 1.7G

Fig. 1. Saliency maps produced by four types of methods and our method on
ORSIs. PA-KRN [12] is an NSI-SOD method, HVPNet [13] is a lightweight
NSI-SOD method, MCCNet [14] is an ORSI-SOD method, and CorrNet [15]
is a lightweight ORSI-SOD method. Please zoom-in for details.

the lightweight ORSI-SOD method, as shown in the penulti-
mate column of Fig. 1, CorrNet [15] significantly reduces the
number of parameters and achieves good performance, but still
consumes a lot of computational costs.

Driven by the aforementioned observation, in this article,
we propose a novel semantic matching and edge alignment-
based ORSI-SOD method, termed SeaNet, which aims to be
more lightweight than CorrNet, while generating competitive
performance. As we all know, the features extracted by the
feature extraction network can be divided into low- and high-
level features, where the former contains detail and texture
information and the latter contains semantic and location infor-
mation. Accordingly, the main idea of SeaNet is to explore
high- and low-level features with different strategies in the
encoder—decoder structure.

Specifically, we propose a dynamic semantic matching mod-
ule (DSMM) to implement semantic matching in high-level
features, that is, first compress semantic information and then
match them with the high-level features to perceive the loca-
tion of salient objects. We also propose an edge self-alignment
module (ESAM) for edge alignment in low-level features,
that is, align cross-scale edge information extracted from
low-level features to correct edge errors and use them to
enhance features. For efficiency, we adopt MobileNet-V2 [23]
as the backbone and the depthwise separable convolution
(DSconv) [23], [24] as the basic convolution component to
control the number of parameters and computational cost.
In this way, our SeaNet has only 2.76 M parameters, runs
with 1.7 G FLOPs, and can generate accurate saliency maps,
as shown in the rightmost column of Fig. 1. Concretely, com-
pared with state-of-the-art lightweight methods, our SeaNet is
competitive in detection accuracy, and when compared with
state-of-the-art conventional methods, our SeaNet is competi-
tive in computational complexity.

Our main contributions are threefold as follows.

1) We explore high- and low-level features of MobileNet-
V2 with different strategies and propose a novel light-
weight network for ORSI-SOD based on SeaNet, which
has only 2.76 M parameters and runs with 1.7 G FLOPs
for a 288 x 288 image.
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2) We propose a DSMM for high-level semantic features.
DSMM perceives the location of salient objects through
dynamic convolutions with semantic kernels, which not
only improves the flexibility of feature interaction, but
also effectively reduces the number of parameters. More-
over, it performs channel-wise correlation to activate the
channel-wise interaction.

3) We propose an ESAM for low-level detail features.
ESAM focuses on extracting edge information for detail
enhancement and aligns cross-scale edge information
through L, loss to correct edge errors. Like DSMM,
it also introduces channel-wise correlation.

We arrange the remainder of this article as follows.
In Section II, we review the CNN-based SOD methods for nat-
ural scene images (NSIs) and ORSIs. In Section III, we elab-
orate our SeaNet. In Section IV, we present comprehensive
experimental results. In Section V, we give the conclusion.

II. RELATED WORK

A. CNN-Based SOD in NSIs

NSI-SOD [7] has achieved remarkable success, especially
CNN-based methods. Hou et al. [17] creatively introduced the
pioneer deep supervision into NSI-SOD, which significantly
enhances the representation of multiscale features for
salient objects. This method effectively improves the
detection accuracy and has a profound impact on subsequent
CNN-based methods. Hu et al. [25] and Deng et al. [26]
focused on the recurrent mechanism. The former first
concatenates multilevel features and then combines them
with features from different levels. The latter alternatively
uses low- features and high-level features. Besides, some
researchers were interested in edge/boundary information.
Feng et al. [27] proposed a boundary-enhanced loss to
improve the completeness of object boundaries and combined
it with deep supervision. Qin et al. [28] proposed a hybrid
loss, which integrates binary cross-entropy (BCE), structure
similarity index measure (SSIM), and intersection-over-union
(IoU) losses, to segment salient objects with fine structures
and clear boundaries. Zhao et al. [19] modeled the explicit
edge-through-edge supervision to preserve the salient object
boundaries. Zhou et al. [20] proposed the saliency to contour
and contour to saliency strategy for fast saliency detection.
Lee et al. [29] proposed an attention-guided tracing module
to highlight salient objects with explicit edges.

In addition to the above classic strategies, Pang et al. [30]
enhanced the interaction of multiscale features for NSI-SOD.
Chen et al. [31] considered the low-level, high-level, and
global information to improve the completeness of the saliency
map. Xu et al. [12] utilized the global localization and local
segmentation policy in the knowledge review network to
avoid salient information dilution. Li et al. [32] captured
both the multireceptive field information of features and the
complementary information of cross-level features. Ke and
Tsubono [33] extended the atrous spatial pyramid pooling and
embedded the channel and spatial attention into it to explore
information dependencies in space and channel.
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Although the above CNN-based methods achieve excellent
performance in NSI-SOD, they cannot effectively handle the
unique properties of ORSIs and often generate unsatisfactory
saliency maps. Furthermore, they usually focus on accu-
racy and ignore computational complexity. Nonetheless, their
strategies inspire our approach, such as the classic deep super-
vision, edge assistance, and differential feature processing.

B. CNN-Based SOD in ORSIs

ORSI-SOD is a rising star in the SOD community,
and recently numerous CNN-based methods are proposed.
As a pioneer, Li et al. [21] proposed the first CNN-based
ORSI-SOD method, named LVNet, in which a two-stream
pyramid module cooperates with an encoder—decoder module
with nested connections to perceive salient objects of different
sizes. Moreover, Li et al. [34] explored the interactions of
cross-level features for ORSI-SOD. Huang et al. [35] first
roughly located salient objects in the semantic guided decoder
and then refined the coarse saliency map in a top-down
manner. Cong et al. [36] designed the relational reasoning
encoder for high-level features and inferred salient objects
in a multiscale attention decoder. Li et al. [37] adopted two
groups of adjacent features to assist the current features, cap-
turing contextual information to overcome challenging ORSI
scenarios.

Similar to NSI-SOD, some researchers introduced
edge/boundary information into ORSI-SOD. Zhang et al. [38]
constructed a multitask structure to predict the edge map
and saliency map simultaneously. Zhou et al. [22] and
Tu et al. [39], following [19], extracted boundary information
based on low- and high-level features to preserve boundaries
of salient objects in two decoders. Li et al. [14] integrated
edge with foreground, background, and global information,
and took full account of the complementarity between this
information to adapt to ORSIs.

The above-specialized methods for ORSI-SOD achieve sat-
isfactory performance. However, they usually come with a
large number of parameters and heavy computational costs,
which are unfriendly to aerospace equipment and prevent
practical applications. To this end, we propose SeaNet based
on MobileNet-V2 [23] and two lightweight but effective
modules, which are friendly to mobile devices while achieving
competitive performance.

C. Lightweight SOD

Lightweight SOD is a newly emerging task and is first
explored in NSI-SOD. Gao et al. [40] proposed a flexible
self-adaptive convolutional layer with strong multiscale rep-
resentation abilities and constructed an extremely lightweight
network (i.e., CSNet) for NSI-SOD. Liu et al. [13] proposed a
hierarchical visual perception (HVP) module based on dense
connections and built a lightweight HVPNet on HVP modules
and residual attention to effectively learn multiscale con-
texts. Meanwhile, Liu et al. [41] proposed a stereoscopically
attentive multiscale (SAM) module and built a lightweight
SAMNet for multilevel and multiscale learning. To sum up, the
above three works focus on learning effective multilevel and
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multiscale information for SOD and building strong feature
extraction backbones to achieve lightweight NSI-SOD. How-
ever, they do not further process and enhance the extracted
features at different levels and directly infer salient objects
based on these features. Moreover, they deal with NSIs rather
than ORSIs, lacking pertinence. Therefore, in this article,
we focus on making good use of features at different levels of
existing feature extraction backbones and developing specific
lightweight and effective modules for ORSI features, enabling
a more effective dedicated ORSI-SOD solution.

For ORSI-SOD, Li et al. [15] proposed the first light-
weight method, that is, CorrNet. They lightened the vanilla
VGG-16 [42] for efficient feature extraction and adopted the
coarse-to-fine strategy to detect salient objects in ORSIs with
dense lightweight refinement blocks. The parameters of Corr-
Net were greatly reduced to only 4.09 M, but its computational
cost was still very large, with 21.1 G FLOPs. For RGB-D
SOD, Wu et al. [43] proposed the first lightweight method,
that is, MobileSal, which is based on MobileNet-V2 [23].

Inspired by Wu et al. [43], in SeaNet, we adopt
MobileNet-V2 as the backbone to overcome the issue of
the large computational cost of the existing lightweight
ORSI-SOD method, that is, CorrNet. Moreover, to reduce
the number of parameters, we propose two lightweight and
effective modules, that is, DSMM and ESAM. DSMM extends
dynamic convolution [44] to dynamic depthwise convolution
(DDconv), and ESAM corrects cross-scale edge features in a
self-alignment way.

III. PROPOSED METHOD

In this section, we elaborate on the proposed lightweight
SeaNet. In Section III-A, we introduce the network overview
of the proposed SeaNet. In Sections III-B and III-C, we elab-
orate on two lightweight modules, that is, DSMM and ESAM,
respectively. In Section III-D, we depict the decoder and loss
function.

A. Network Overview

As shown in Fig. 2, the proposed lightweight SeaNet is
based on the encoder—decoder structure commonly used in
SOD [8], [9], [45], [46]. SeaNet includes an encoder, a seman-
tic knowledge compression (SKC) unit, a DSMM, an ESAM,
and a lightweight decoder. It first performs semantic matching
for location activation of salient objects and then performs
edge alignment for detail enhancement.

The input size of our SeaNet is 3 x 288 x 288.
For the encoder of our SeaNet, we adapt the lightweight
MobileNet-V2 [23], that is, we keep the first 17 inverted resid-
ual bottlenecks and truncate the last three layers, that is, two
convolution layers and one average pooling layer. We divide
MobileNet-V2 into five blocks based on the first, third, sixth,
13th, and last bottlenecks, denoted as E' (t = 1,2,3,4,5).
The output five-level features are denoted as f’ € Rexhixwe
where h, and w, are (288/2"), and ¢, € {16, 24, 32, 96, 320}.
We explore the generated high- and low-level features with
different strategies for ORSI-SOD. For the high-level features,
we first compress the highest-level features f 2 into two
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Pipeline of the proposed lightweight SeaNet, which follows the encoder—decoder architecture. First, MobileNet-V2 [23] extracts basic feature

embeddings from the input, resulting in five-level features. Next, we get two semantic kernels in the SKC unit. Semantic kernels are used to convolve with
high-level features in the DSMM for location activation of salient objects. Then, we perform the channel-wise correlation [47], [48] in DSMM. Meanwhile,
in the ESAM, we adopt EEUs to extract edge features from low-level features for detail enhancement and align edge features via Ly loss (i.e., Ly loss).
Channel-wise correlation is also added to ESAM. Finally, we infer salient objects in the decoder based on the highest level features and the outputs of DSMM

and ESAM and obtain the output saliency map S'.

semantic kernels, that is, k3 and kg4, in the SKC unit, and then
use them as kernels for DDconvs [24], [44] to, respectively,

convolve with two groups of high-level features, that is, f>

e
and f 3, in DSMM. In addition to the above spatial semantic
matching, we enhance the channel interaction via channel-
wise correlation [47], [48], generating fy..,,,- Meanwhile, for
the low-level features, we obtain edge information through the
pooling-subtraction operation [27] and correct edge errors in a
self-alignment way. Then, we adopt the corrected edge features
to perform feature enhancement in edge-based enhancement
units (EEUs) of ESAM and also perform channel-wise correla-
tion, generating f,.,.,. The decoder of our SeaNet is comprised
of three lightweight blocks denoted as D'?2, D** and D°.
Using f2, figmm> and foqm, We highlight salient objects in
a progressive manner for better resolution recovery. We also
introduce the saliency inference head (SalHead) after each
decoder block for deep supervision [17] and final saliency
map generation.

B. Dynamic Semantic Matching Module

High-level features contain affluent semantic information,
which is beneficial for salient object localization. Here,
we propose DSMM to effectively activate salient regions using
high-level features with limited parameters and computational
cost. Inspired by the dynamic convolution [44], we gen-
erate convolution kernels with existing features rather than
parameter initialization to reduce the number of parameters.
Furthermore, we extend the dynamic convolution with the
DSconv [24] and propose the DDconv to simultaneously

reduce the computational cost. DDconv plays an important
role in the spatial semantic matching of our DSMM. However,
considering only spatial interactions is not sufficient, and we
therefore further introduce channel interactions into DSMM
to enhance channel dependencies through the channel-wise
correlation [47], [48].

We show the detailed structure of DSMM in the middle part
of Fig. 2. Our DSMM can be divided into two parts, that is, the
spatial semantic matching and the channel-wise correlation.
In the following, we present DSMM based on these two parts.
Since the SKC unit generates semantic kernels for DSMM,
we first describe this unit in detail.

1) SKC Unit: As shown in the right part of Fig. 2, the SKC
unit compresses the semantic information of f 2 directly but
effectively. Since the SKC unit generates semantic kernels for
f 2 and f i that are the inputs of DSMM, we first compress
the channel number of f S by two parallel DSconv layers to
fit that of f> and f? and then compress the resolution to
a suitable size through two parallel adaptive average pooling
layers, generating two semantic kernels k3 € R32*5%3 and
ks € R%5%5 We formulate the SKC unit as follows:

k, = AP(DSconv(f3)), t=3,4 (1

where DSconv(-) is the 3 x 3 DSconv layer, and AP(-) is the
adaptive average pooling layer.

2) Spatial Semantic Matching: We adopt k3 and k4 contain-
ing global information as the kernel of dynamic convolution
layers [44] to reduce the number of parameters. However,
the computational cost of the traditional dynamic convolution
layer is the same as that of the regular convolution layer.
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Fig. 3. Tllustration of the channel-wise correlation.

Inspired by DSconv [24], we update dynamic convolution to
DDconv, which performs dynamic convolution in a depthwise
manner, that is, the group of dynamic convolution is set to the
channel number of input features. Moreover, we introduce the
dilation mechanism [49] into DDconv and use multiple dilated
receptive fields to sufficiently perceive salient objects for accu-
rate localization, which is effective for overcoming the scenes
of multiple objects and objects with variable sizes in ORSIs.

As shown in DSMM of Fig. 2, we, respectively, employ
three dilated DDconv layers with dilation rates {1, 2, 3} on
f3 and f? In fact, DDconv is a parameter-free seman-
tic matching process, which breaks the constraints of the
trained parameters and improves the flexibility of the module
and even the network. Different from DSconv that executes
depthwise convolution and pointwise convolution sequentially,
we integrate the output features of three dilated DDconvs
through element-wise summation and then perform pointwise
convolution to fuse the multiperception features. This not only
further reduces the number of parameters, but also facilitates
the interaction of features generated with different receptive
fields. We formulate the spatial semantic matching as follows:

3
L= Pconv(z DDconv(fZ; k., r,-)), t=3,4 ()

i=1

where f! € R denotes the output features of semantic
matching, DDconv(-; k;, ;) is the DDconv layer with dynamic
kernel k, and dilation rate r; € {1, 2, 3}, > is the element-wise
summation of multiple features, and Pconv(-) is the pointwise
convolution layer.

3) Channel-Wise Correlation: In addition to the spatial
interactions, we perform the channel-wise correlation extended
from spatial co-attention [47], [48] in DSMM. We first align
f2 and fI in channel and resolution via a DSconv layer
and an upsampling operation to obtain the input features of
channel-wise correlation, that is, { ffm» f:m} € Resxhaxws,
Then, we define the channel-wise correlation, denoted by
CCorr(+), as follows:

f s = CCorr((FLo f) 3

where fyum € R@X)*h:xs denotes the output features of
DSMM.
We depict the structure of channel-wise correlation in Fig. 3,

where we simplify the input features to {f, f,} € REHxW
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for brevity. First, we reshape the size of f, and f, and
obtain the flattened f; € R¥W*C and f, € RE*#W_ Then,
we multiply Afl by a trainable matrix W,, € RE*€ using matrix
multiplication to adaptively learn feature transformations. The
channel-wise affinity matrix A € RE*C of f | and f , can be
calculated through matrix multiplication as follows:

A=fyo(fiowW,) @
where ® is the matrix multiplication. In this way, we model
feature dependencies along the channel.

Then, we adopt the row-wise and column-wise softmax
functions to normalize the affinity matrix, respectively, and
transfer the established channel dependencies to fl and f2
Besides, we introduce the short connection and a 3 x 3
DSconv layer to integrate the original spatially enhanced
features (i.e., f, and f,) and the above channel-enhanced
features. We formulate the above process as follows:

1 — DSconv((M, (A) ® flT) o fl) (5)
W= DSconv(((Mc Ay @ f 2) ® fz) (6)

where {fl, f2} € ROM*W are features of spatial and
channel enhancement, M, (-) and M.(-) are the row-wise and
column-wise softmax functions, respectively, T is the matrix
transpose operation, and @ is the element-wise summation.
Notably, we omit feature size transformation for brevity.
Finally, we concatenate f!. and f2 to produce the output
features of channel-wise correlation f ., € R*“*#>*W  that
is, the output features of DSMM f jim-

In summary, our DSMM is implemented in a lightweight
manner with limited parameters and computational cost. And
we fully consider spatial interactions and channel interactions
in DSMM, providing comprehensive and accurate localization
of salient objects, which is conducive to conquering the
challenging scenes of ORSISs.

C. Edge Self-Alignment Module

Low-level features contain rich texture and object detail
information, which is conducive to delineating the fine struc-
ture of salient objects. We propose ESAM to effectively and
efficiently explore edge information for detail enhancement
to preserve the complex shapes of salient objects in ORSIs.
Different from some edge-based ORSI-SOD methods [14],
[22], [38], [39], our ESAM is lightweight and extracts edge
information without using edge supervision, which is more
convenient. Like DSMM, ESAM also fully considers the
spatial interaction and channel interaction of features. As illus-
trated in the left part of Fig. 2, ESAM consists of two EEUs
and one channel-wise correlation. We describe them in turn.

1) EEU With Self-Alignment: The input features of ESAM
are f ‘13 and f z We align them via DSconv layer and upsam-
pling operation and obtain { f;, fj} e Rexmxwi which
are the input features of EEUs. We adopt the pooling-
subtraction operation [27] to extract two  groups, of edge
features { fedge, } € Revxhixun from f and f respec-
tively, as follows:

At At
tedgezfeeAP(fe)’ t=1’2 (7)

edge
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TABLE I

DETAILED STRUCTURE AND PARAMETERS OF THREE DECODER BLOCKS.
(3 x 3, 320, 192) DENOTES THAT THE KERNEL SI1ZE OF DSCONV Is
3 x 3, THE INPUT CHANNEL NUMBER Is 320, AND THE OUTPUT
CHANNEL NUMBER Is 192

Aspects ‘ D’ ‘ D34 ‘ D!2
Input size (320 x 9 x 9] [384 x 36 x 36] | [96 x 144 x 144]
DSconv (3% 3,320,320) | (3 x3,384,192) | (3 x 3,96,48)
DSconv (3% 3,320,320) | (3 x3,192,192) | (3 x 3,48,48)
Upsampling 4x 4x 2%
DSconv (3% 3,320,192) | (3 x 3,192,48) (3 x 3,48,48)
Output size | [192 X 36 x 36] | [48 x 144 x 144] | [48 x 288 x 288]

t

edge 18 then used

where © is the element-wise subtraction. f

to delineate edge regions in f te However, since there is no
edge supervision, the obtained edge information is inevitably
vulnerable to errors. Attacking this problem, we propose a
novel self-alignment mechanism based on the mean squared
error loss (i.e., Ly or Ly loss) and apply it to edge features,
as shown in ESAM of Fig. 2. In this way, we can adaptively
correct edge errors between f idge and f nge during the training
phase and obtain accurate and consistent edge information.

Based on the corrected edge information, we perform the
edge enhancement on f 2, and obtain the output features of
EEU, denoted as f.. € Rexmixwi g follows:

eeu
t
feeu

s At At
:COI]V]X](ffedge)@fe@fe, [:1,2

where convj,(-) is the 1 x 1 convolution layer with sigmoid
activation function, and ® is the element-wise multiplication.

2) Channel-Wise Correlation: EEUs focus on feature
enhancement at the spatial level, and we enhance the channel
interaction of their outputs f éeu and f geu using channel-wise
correlation as follows:

®)

fesam = CCOIT( : : )

eeu’ eeu

©)

where fom € REX*hxwi g the output features of ESAM.

In this way, ESAM saves a large number of parameters
and computational costs, while providing powerful support for
accurately highlighting the complex geometry and topology of
salient objects in ORSIs.

D. Decoder and Loss Function

1) Decoder: Based on the locations and details of salient
objects provided by the above two modules, we design a
lightweight decoder to produce saliency maps. As shown at
the bottom of Fig. 2, our lightweight decoder consists of three
blocks, that is, D2, D%, and D°. Each decoder block in turn
contains two DSconv layers, an upsampling operation, and
another DSconv layer. Their detailed parameters are reported
in Table I. In particular, we arrange SalHeads after these three
decoder blocks to generate three saliency maps of different
resolutions, that is, S3 € [0, 1]1*36%36, §2 ¢ [0, []!x144x144
and S! € [0, 17'%?88x288  \where the first two are used for
deep supervision and the last one is the final output of our
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SeaNet. SalHead is comprised of a dropout layer [S1] and a
1 x 1 convolution layer.

2) Loss Function: We impose the BCE loss and IoU loss
to jointly train our SeaNet. Therefore, our total loss consists
of two parts, that is, the saliency loss and the edge alignment
loss. Moreover, we introduce a loss weight to treat these two
losses differently for better training. The total loss function
Liota1 can be formulated as follows:

3
Liota :Z(Li)ce + Lfou) +4- Lmse(P( idge)’ P( gdge)) (10)
i=1
where Li . and Li , are BCE loss and IoU loss, respectively,
which supervise S’ by the ground truth (GT); 4 is the loss
weight and set to 0.5; L (+) is the mean squared error loss;
and P(-) is the parametric rectified linear unit [52].

IV. EXPERIMENTS
A. Experimental Setup

1) Datasets: We conduct experiments on the ORSSD [21]
and EORSSD [38] datasets. The ORSSD dataset
has 800 ORSIs and corresponding pixel-level annotations.
It is divided into two parts, that is, the training set (600
images) and the test set (200 images). The EORSSD
dataset adds 1200 ORSIs to the ORSSD dataset, resulting
in 2000 ORSIs. This dataset is also divided into two parts,
that is, 1400 images in the training set and 600 images in the
test set.

2) Evaluation Metrics: We adopt quantitative evaluation
metrics and computational complexity metrics to evaluate our
method and all compared methods from two aspects.

Quantitative evaluation metrics include S-measure (S,
o = 0.5) [53], F-measure (Fp, f* = 0.3) [54], E-measure
(E¢) [55], and mean absolute error (M). The first three are
the higher the better, and the last one is the opposite. We report
the maximum, mean, and adaptive F-measure and E-measure.

Computational complexity metrics include the inference
speed measured in frames/s (fps), the parameter amount
(#Param) measured in million (M), and the number of FLOPs
measured in giga (G). The first one is the higher the better, and
the last two are the opposite. The inference speed is reported
with a batch size of 1 and no I/O time.

3) Training Protocol: We conduct experiments based on the
PyTorch [56] on a computer with an NVIDIA Titan X GPU
(12 GB memory). We list the training details and parameters
as follows: the input size is 288 x 288, the data augmentation
strategy includes flipping and rotation, the network optimizer
is Adam [57], the batch size is 8, the base learning rate is
le™*, the learning rate decays to 1/10 every 30 epochs, and the
training epoch is 50. Besides, we initialize MobileNet-V2 with
the pretrained parameters and initialize the newly added layers
of two modules and decoder with the “Kaiming” method [52].
Notably, for each dataset, we train on its own training set and
test on its own test set, as in [15], [22], and [38].

B. Performance Analysis

We compare our SeaNet
conventional SOD methods,

with 17  state-of-the-art
including 11 conventional
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TABLE II

QUANTITATIVE AND COMPUTATIONAL COMPLEXITY COMPARISONS WITH STATE-OF-THE-ART NSI-SOD METHODS, ORSI-SOD METHODS, AND
LIGHTWEIGHT METHODS ON EORSSD AND ORSSD DATASETS. 1 INDICATES THAT THE HIGHER THE BETTER, WHILE | IS THE OPPOSITE.
THE TOP THREE RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY

Input | Speed |#Param |FLOPs EORSSD [38] ORSSD [1]
Methods | Type . - - P -

size |(pst| DL | @) [Sat FFU N FRUY FRT D EPY L BT B M| Sa 1 FRUT ERTU L BT BN BT BET L M

DSSi7 [17]] CN | 400x300 | 8 | 6223 | 114.6 |.7868 6849 5801 4597 9186 7631 .6933 .0186|8262 .7467 6962 6206 .8860 .8362 .8085 .0363
RADFis [25]| CN | 400x400 | 7 | 6254 | 2142 | 8179 7446 6582 4933 9140 .8567 7162 .0168|.8259 .7619 6856 5730 9130 .8298 .7678 .0382
R3Net;s [26]| CN | 300x300 | 2 | 56.16 | 47.5 |.8184 7498 6302 4165 9483 8204 .6462 0171|8141 7456 7383 7379 8913 8681 .8887 .0399
PoolNetyo [50]| CN | 400x300 | 25 | 53.63 | 123.4 |.8207 7545 .6406 4611 9202 8193 .6836 .0210|.8403 7706 .6999 .6166 9343 .8650 .8124 .0358
EGNetjo [19]| CN |~380x320| 9 |108.07|291.9 |.8601 .7880 .6967 .5379 9570 .8775 .7566 .0110|.8721 .8332 .7500 .6452 9731 9013 .8226 .0216
GCPAx [31]| CN | 320x320 | 23 | 67.06 | 543 |.8869 .8347 7905 .6723 9524 9167 .8647 .0102|.9026 .8687 .8433 7861 .9509 9341 9205 .0168
MINetao [20]| CN | 320x320 | 12 | 47.56 | 146.3 | 9040 8344 8174 7705 9442 9346 9243 .0093|.9040 8761 8574 8251 9545 9454 9423 .0144
ITSDao [20]] CN | 288x288 | 16 | 17.08 | 545 [.9050 8523 8221 7421 9556 9407 9103 .0106|.9050 .8735 .8502 .8068 .9601 9482 9335 .0165
GateNetso [18]| CN | 384x384 | 25 |100.02 | 1083 |.9114 8566 .8228 7109 9610 9385 .8909 .0095|.9186 .8871 .8679 .8229 9664 9538 .9428 .0137
SUCAs; [32]] CN | 256x256 | 24 |117.71| 56.4 |.8988 .8229 7949 7260 9520 9277 9082 .0097|.8989 .8484 .8237 .7748 9584 9400 9194 .0145
PA-KRNy; [12]]| CN | 600x600 | 16 |141.06 | 617.7 |.9192 8639 8358 .7993 9616 9536 9416 .0104|.9239 .8800 .8727 .8548 9680 9620 .9579 .0139
LVNet;o [21]] CR | 128x128 | 1.4 - |.8630 7794 7328 6284 9254 8801 8445 .0146|.8815 .8263 7995 7506 9456 9259 9195 .0207
DAFNety; [38]| CR | 128x128 | 26 | 2935 | 68.5 |9166 .8614 7845 .6427 9861 9291 .8446 .0060|9191 .8928 8511 7876 .9771 9539 .9360 .0113
SARNeto; [35]| CR | 336x336 | 47 | 2591 | 1207 |.9240 8719 8541 .8304 9620 9555 9536 .0099|9134 .8850 .8619 .8512 9557 9477 9464 .0187
MIRBMz [39]| CR | 352x352 | 32 | 43.54 | 957 | 9197 8656 .8239 7066 9646 9350 8897 .0099|.9204 8842 8566 .8022 9623 9415 9328 .0163
EMFINetz2 [22]| CR | 256x256 | 25 |107.26 | 480.9 |.9290 8720 8486 7984 9711 9604 9501 .0084|.9366 .9002 8856 8617 9737 9671 .9663 .0109
MCCNetz, [14]| CR | 256x256 | 95 | 67.65 | 112.8 |.9327 8904 8604 8137 9755 9685 9535 .0066|.9437 .9155 .9054 .8957 .9800 .9758 9735 .0087
CSNety [40]] LN | 224x224 | 38 | 0.14 | 07 |.8364 8341 7656 6319 9535 8929 8339 .0169|.8910 .8790 8285 7615 9628 9171 9068 .0186
SAMNety; [41]| LN | 336x336 | 44 | 133 | 05 |.8622 7813 7214 6114 9421 8700 .8284 0132|8761 8137 7531 .6843 9478 .8818 8656 .0217
HVPNetz; [13]| LN | 336x336 | 26 | 123 | L1 |.8734 8036 .7377 .6202 9482 8721 .8270 .0110|.8610 .7938 .7396 .6726 9320 8717 .8471 .0225
CorrNetz [15]| LR | 256x256 | 100 | 4.09 | 21.1 |.9280 .8778 .8620 .8311 9696 .9646 .9593 .0083|.9380 .9120 .9002 .8875 .9790 .9746 .9721 .0098
SeaNet (Ours)| LR [ 288x288 | 96 | 276 | 17 [9208 8649 8519 8304 9710 9651 9602 .0073[9260 8942 8772 8625 9767 9722 9670 0105

CN: CNN-based NSI-SOD method, CR: CNN-based ORSI-SOD method, LN: lightweight NSI-SOD method, LR: lightweight ORSI-SOD method.

NSI-SOD methods (i.e., DSS [17], RADF [25], R3Net [26],
PoolNet [50], EGNet [19], GCPA [31], MINet [30],
ITSD [20], GateNet [18], SUCA [32], and PA-KRN [12])
and six conventional ORSI-SOD methods (i.e., LVNet [21],
DAFNet [38], SARNet [35], MJRBM [39], EMFINet [22],
and MCCNet [14]). In addition, we also compare our
lightweight SeaNet with four state-of-the-art lightweight
SOD methods, including three lightweight NSI-SOD methods
(i.e., CSNet [40], SAMNet [41], and HVPNet [13]) and the
lightweight ORSI-SOD method CorrNet [15]. The above
NSI-SOD methods are retrained on the same ORSI-SOD
datasets as our SeaNet with default parameter settings to
generate saliency maps. We obtain saliency maps for other

methods from authors or public source codes.
1) Comparison With Conventional SOD Methods: The top

of Table II shows the quantitative evaluation and computational
complexity evaluation results of our SeaNet and conventional
SOD methods for NSIs and ORSIs. Compared with con-
ventional NSI-SOD methods, our SeaNet achieves the best
performance in terms of both accuracy and computational
complexity. For example, compared with the best perform-
ing NSI-SOD solution PA-KRN [12], SeaNet has significant
advantages on M, for example, 0.0073 versus 0.0104 on the
EORSSD dataset and 0.0139 versus 0.0105 on the ORSSD
dataset and has 6x faster inference speed, 51.1x fewer
parameters, and 363.3x fewer FLOPs than it. This shows
the advantages of specialized methods, even our lightweight
specialized method can outperform conventional NSI-SOD
solutions.

Compared with conventional ORSI-SOD methods, our
SeaNet shows comparable accuracy but with significantly

lower computational complexity. For example, compared with
EMFINet [22], SeaNet achieves similar accuracy, for example,
EF™: 0.9710 versus 0.9711 on the EORSSD dataset and
0.9767 versus 0.9737 on the ORSSD dataset, while SeaNet is
3.6 x faster in inference speed, and 24.5x and 282.8 x fewer in
parameters and FLOPs, respectively. Compared with the best-
performing MCCNet [14], although the accuracy of SeaNet is
not dominant, the lower computational complexity of SeaNet

is still outstanding.
2) Comparison With Lightweight SOD Methods: At the

bottom of Table II, we report the comparison results of
our SeaNet with four lightweight SOD methods for NSIs
and ORSIs. Compared with lightweight NSI-SOD methods,
SeaNet has no advantages in parameters and FLOPs, but
has obvious advantages in inference speed. This means that
our lightweight SeaNet has room for improvement. On the
other hand, the accuracy advantage of SeaNet is obvious,
for example, SeaNet outperforms them by 3.50%-8.44% in
Sa, 4.87%-13.76% in Fp", 5.51%-10.05% in EF*", and
0.0037-0.0120 in M on two datasets.

The original intention of our SeaNet is to reduce the
number of parameters and FLOPs of existing lightweight
ORSI-SOD method CorrNet [15], especially the latter one.
The results in Table II show that SeaNet achieves this goal
without significantly reducing accuracy. Specifically, in terms
of computational complexity, SeaNet has 1.3x fewer para-
meters and 12.4x fewer FLOPs than CorrNet and has a
comparable inference speed. In terms of accuracy, SeaNet
shows a slightly lower E;dp (0.9670 versus 0.9721) than
CorrNet on the ORSSD dataset, while achieves a slightly
higher M (0.0073 versus 0.0083) on the EORSSD dataset.
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Fig. 4. Qualitative comparisons with four types of methods, including nine representative state-of-the-art methods.

Overall, SeaNet achieves one first place, two second places,
and five third places in quantitative evaluation metrics with
much more desirable computational complexity, striking a
balance between effectiveness and efficiency. This means that
SeaNet is a promising method that can be applied in practical
applications.

3) Qualitative Comparison: Here, we show the qualitative
comparison of our SeaNet and four types of methods, includ-
ing nine representative state-of-the-art methods, on four unique
and challenging ORSI scenes in Fig. 4. The first scene contains
multiple objects or even multiple tiny objects, as shown in
the first three cases of Fig. 4. We can observe that the
saliency maps of our SeaNet are similar to those of specialized
ORSI-SOD methods, such as CorrNet and MCCNet, which
accurately highlight all salient objects, and are much better
than those of conventional and lightweight NSI-SOD methods.
This is attributed to the multiscale semantic matching of
DSMM. The second scene contains a big object, such as the
fourth to sixth cases of Fig. 4. Most methods can locate the big
object, but cannot highlight them completely, while our SeaNet
can highlight the entire big object with complete edges. This is
attributed to the edge-based detail enhancement of ESAM. The
third scene contains chaotic background, such as the seventh
and eighth cases of Fig. 4. Our SeaNet can successfully find
salient objects in complex backgrounds, while the three light-
weight methods either miss objects (HVPNet and SAMNet) or
introduce background regions (CSNet). The last scene contains
objects with complex geometric shapes, such as the last two
cases of Fig. 4. Thanks to the cooperation between DSMM
and ESAM, our SeaNet has obvious advantages compared
to the nine methods, that is, it can not only overcome the
interference of the small object, but also precisely locate three
islands with fine details. Overall, our SeaNet can catch up with

TABLE III

ABLATION RESULTS OF EVALUATING THE CONTRIBUTION OF TWO LIGHT-
WEIGHT MODULES. THE BEST ONE IN EACH COLUMN Is BOLD

#Param FLOPs EORSSD [38]
Models
MY G | Sat FFe=t BFe M|
SeaNet (Ours) 2.76 1.66 ]0.9208 0.8519 0.9651 0.0073

w/o DSMM
w/o ESAM

2.75 001 1.56 -0.10
2.70 006 1.59 -0.07

0.9158 0.8440
0.9180 0.8404

0.9580 0.0093
0.9588 0.0084

specialized ORSI-SOD methods and outperform NSI-SOD
methods.

C. Ablation Studies

To evaluate the effectiveness of each component of our
SeaNet, we conduct exhaustive ablation studies on the
EORSSD dataset. Specifically, we analyze: 1) the contribution
of two lightweight modules; 2) the effectiveness of each com-
ponent of ESAM; and 3) the effectiveness of each component
of DSMM. The parameter settings and datasets for each variant
are the same as in Section IV-A.

1) Contribution of Two Lightweight Modules: To analyze
the contribution of two lightweight modules, we provide two
variants: 1) removing DSMM and SKC (i.e., without DSMM)
and 2) removing ESAM (i.e., without ESAM). We report the
quantitative results and computational complexity in Table III.

We observe that our two modules are lightweight, that is,
the combination of DSMM and SKC have 0.01 M para-
meters and 0.10 G FLOPs, and ESAM has 0.06 M para-
meters and 0.07 G FLOPs. Since DSMM can determine
the location of salient objects, without DSMM reduces the
accuracy of object localization, resulting in a drastic drop
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TABLE IV

ABLATION RESULTS OF EMBEDDING THE TWO LIGHTWEIGHT MODULES
INTO HVPNET AND SAMNET

#Param FLOPs EORSSD [38]
Models
ML (@) [ Sat Fpent Bpent M
SeaNet (Ours) || 2.76 1.7 10.9208 0.8519  0.9651 0.0073
SAMNet 1.33 0.5 |0.8622 0.7214  0.8700 0.0132
SeaNet-SAM 1.51 1.4 109173 0.8507 0.9631 0.0074
HVPNet 1.23 1.1 |0.8734 0.7377 0.8721 0.0110
SeaNet-HVP 1.48 1.8 [0.9202 0.8486  0.9646 0.0069

in pixel-level evaluation metric, that is, M: 0.0073—0.0093.
without EASM only affects the details of salient objects, so the
performance degradation is generally less severe than that of
without DSMM, for example, M: 0.0073—0.0084 and Eg“ea“:
0.9651—0.9588. The cooperation of these two lightweight
modules and MobileNet-V2 enables our SeaNet to achieve
good performance without many parameters and computa-
tional costs.

In particular, to further illustrate the effectiveness, flexibility,
and robustness of these two lightweight modules, we embed
these two lightweight modules and our decoder into the feature
extraction backbones proposed by SAMNet and HVPNet,
forming two variants, named SeaNet-SAM and SeaNet-HVP,
respectively. Notably, our decoder has 0.47 M parameters
and 0.95 G FLOPs. As shown in Table IV, SeaNet-SAM
is more lightweight than our original SeaNet. SeaNet-HVP
has significantly fewer parameters and slightly higher FLOPs
than our original SeaNet. Both variants have comparable
performance to our original SeaNet, which shows that these
two lightweight modules can be adapted to different backbones
and are robust. In addition, SeaNet-SAM/SeaNet-HVP has
a similar number of parameters as SAMNet/HVPNet, while
having higher FLOPs which are mainly from the decoder.
The performance of SeaNet-SAM/SeaNet-HVP is significantly
better than that of SAMNet/HVPNet, such as leading by more
than 10% on Fp**". Notably, the number of parameters and
FLOPs of SeaNet-SAM (1.51 M and 1.4 G) and HVPNet
(123 M and 1.1 G) are comparable, while SeaNet-SAM
outperforms HVPNet by a large margin. This situation proves
that when the number of parameters and FLOPs of our
SealNet variants are equivalent or comparable to those of other
lightweight methods, our SeaNet variants still significantly
outperform them.

2) Effectiveness of Each Component of DSMM: To analyze
the effectiveness of each component of DSMM, we design
three variants of DSMM in Table V and embed them into
the network: 1) removing the spatial semantic matching (i.e.,
without SM); 2) changing dilated DDconvs to regular DDconvs
(i.e., without dilation); and 3) removing the channel-wise
correlation of DSMM (i.e., without CCorrl).

Based on the quantitative performance at the top of
Table III, we observe that each component of DSMM is
necessary. As the key part of DSMM, without SM truncates
the object localization capability of DSMM, achieving the
worst performance among these three variants, for example,
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TABLE V

ABLATION RESULTS OF EVALUATING THE EFFECTIVENESS OF EACH COM-
PONENT OF DSMM AND ESAM. THE BEST ONE IN EACH
COLUMN Is BoLD

Models EORSSD [3¢]
Sat FFent  ERevt M|

SeaNet (Ours) || 0.9208 08519 09651  0.0073

= w/o SM 09170 08459 09595  0.0078
2 | whodilation || 09194 08490 09626  0.0076
2| wocCorrl || 09187 08471 09619  0.0080
s | WoEEU 09183 08441 09597  0.0078
2 | wio alignment || 09189 08476 09617  0.0078
| woccom2 || 09197 08494 09627 00076

EZ:0.9651—0.9595. without dilation impairs the ability of
DSMM to perceive salient objects of different sizes, resulting
in a slight performance drop, for example, a drop of 0.29% on
Fge. Without CCorrl only focuses on the feature interactions
at the spatial level, while ignoring that at the channel level,
resulting in incomplete feature interaction and performance
degradation. Therefore, the above analysis proves that the
design of our DSMM is reasonable and effective.

3) Effectiveness of Each Component of EASM: To analyze
the effectiveness of each component of EASM, we design
three variants of EASM in Table V and embed them into
the network: 1) removing two EEUs (i.e., without EEU);
2) removing the edge alignment (i.e., removing the edge
alignment loss in (10), named without alignment); and
3) removing the channel-wise correlation of EASM (i.e.,
without CCorr2).

According to the quantitative performance at the bottom
of Table III, we observe that each component of EASM
contributes to the final performance. The two EEUs are respon-
sible for enhancing the edge regions on the features, so without
EEU does not achieve satisfactory performance, for exam-
ple, Fg*": 0.8519—0.8441. The proposed edge alignment is
an interesting mechanism that can improve the accuracy of
edge information without increasing parameters and FLOPs.
without alignment causes performance degradation on all four
metrics. Like without CCorrl, without CCorr2 also gives
up the channel-level feature interactions in EASM, which
hurts performance. Combining without CCorrl and without
CCorr2, we can conclude that channel-level feature interac-
tions are important to our SeaNet and cannot be discarded.
The above analysis shows that these components of ESAM are
indispensable.

V. CONCLUSION

In this article, we aim to treat low- and high-level fea-
tures discriminatively, thereby proposing an efficient solution,
named SeaNet, for lightweight ORSI-SOD. For high-level
features, the lightweight DSMM is proposed to explore object
locations through spatial semantic matching and takes into
account the channel-level feature interactions. Spatial semantic
matching utilizes dilated DDconvs to perceive multiple salient
objects and objects with variable sizes, resulting in good adap-
tation to complex scenes of ORSIs. For low-level features, the
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lightweight ESAM is proposed to enhance the details of salient
objects based on edge information which is corrected in an
innovative self-alignment manner. With the close cooperation
of the two modules, SeaNet infers salient objects accurately in
the decoder at a fast speed. Performance analysis and ablation
studies demonstrate the effectiveness and efficiency of our
SeaNet compared with state-of-the-art methods.
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