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Salient Object Detection in Optical Remote Sensing
Images Driven by Transformer
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Abstract— Existing methods for Salient Object Detection in
Optical Remote Sensing Images (ORSI-SOD) mainly adopt Con-
volutional Neural Networks (CNNs) as the backbone, such as
VGG and ResNet. Since CNNs can only extract features within
certain receptive fields, most ORSI-SOD methods generally follow
the local-to-contextual paradigm. In this paper, we propose a
novel Global Extraction Local Exploration Network (GeleNet)
for ORSI-SOD following the global-to-local paradigm. Specifi-
cally, GeleNet first adopts a transformer backbone to generate
four-level feature embeddings with global long-range dependen-
cies. Then, GeleNet employs a Direction-aware Shuffle Weighted
Spatial Attention Module (D-SWSAM) and its simplified ver-
sion (SWSAM) to enhance local interactions, and a Knowledge
Transfer Module (KTM) to further enhance cross-level contextual
interactions. D-SWSAM comprehensively perceives the orienta-
tion information in the lowest-level features through directional
convolutions to adapt to various orientations of salient objects
in ORSIs, and effectively enhances the details of salient objects
with an improved attention mechanism. SWSAM discards the
direction-aware part of D-SWSAM to focus on localizing salient
objects in the highest-level features. KTM models the contextual
correlation knowledge of two middle-level features of different
scales based on the self-attention mechanism, and transfers the
knowledge to the raw features to generate more discriminative
features. Finally, a saliency predictor is used to generate the
saliency map based on the outputs of the above three modules.
Extensive experiments on three public datasets demonstrate
that the proposed GeleNet outperforms relevant state-of-the-art
methods. The code and results of our method are available at
https://github.com/MathLee/GeleNet.
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I. INTRODUCTION

SALIENT Object Detection (SOD) focuses on finding and
locating the most visually prominent objects/regions in

a scene [1], [2], [3]. It is a common pre-processing step
for many tasks in computer vision, such as quality assess-
ment [4], [5], object segmentation [6], [7], [8], [9], [10], video
compression [11], and object tracking [12]. Recently, SOD
in Optical Remote Sensing Images (ORSI-SOD) [13], [14],
[15], as an emerging topic, has attracted the attention of many
researchers, and has been widely used in agriculture, forestry,
environmental science, and security surveillance.

With the rapid development of deep learning, Convo-
lutional Neural Networks (CNNs) [19] have dominated
the field of computer vision with their powerful feature
representation capabilities. Many effective CNN-based solu-
tions for ORSI-SOD are proposed [15], [16], [17], [18],
[20], [21], [22], [23]. While a few methods follow the
local-to-local paradigm [18], [20], most methods adopt the
local-to-contextual paradigm1 [15], [16], [17], [21], [22],
[23], [24], [25]. Both paradigms first use a CNN backbone,
such as VGG [26] and ResNet [27], to extract basic feature
embeddings. The local-to-local paradigm focuses on explor-
ing valuable information in single-level feature embeddings.
Differently, since the local-to-contextual one considers that
CNNs only extract features within certain receptive fields,
it focuses on designing specific modules to mine the contextual
information between feature embeddings at multiple levels.
The above paradigms promote the development of ORSI-SOD
and achieve promising performance.

However, due to the characteristics of ORSI scenes, such
as variation in object orientation, scale, and category, the
above paradigms suffer from obvious limitations. The local-
to-local paradigm ignores contextual information that is useful
for handling the above scenes. The contextual information
captured by the local-to-contextual paradigm is still based
on convolution layers with limited receptive fields, which
is also insufficient to handle challenging scenes of ORSIs.
For intuitive understanding, we show the saliency maps gen-
erated by typical methods for both paradigms in Fig. 1,

1Here, the first “local” in both paradigms specifically refers to using CNN
backbones to extract features with limited receptive fields.
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Fig. 1. Saliency maps produced by our method and three state-of-the-art
ORSI-SOD methods, including ACCoNet [16], CorrNet [17], and ERP-
Net [18]. Please zoom in for details, especially the first row.

where ACCoNet [16] and CorrNet [17] belong to the local-
to-contextual paradigm, and ERPNet [18] belongs to the
local-to-local paradigm. We find that these methods suffer
from orientation insensitivity, incomplete detection, and miss-
ing salient objects.

Inspired by the above observations, in this paper, we pro-
pose to design new solutions following the global-to-local
paradigm. Our main idea is to replace the CNN backbone
with a transformer one that can establish global relationships
(i.e., changing the first “local” in two existing paradigms
to “global”) and to perform local enhancement on the
extracted global features. With this idea, we build a novel
Global Extraction Local Exploration Network (GeleNet) for
ORSI-SOD with a transformer backbone. Transformers [28],
[29], [30], [31] are known to be good at modeling the global
long-range dependencies between feature patches. This unique
ability of transformer enables GeleNet to deal with com-
plex scenes and changeable objects in ORSIs. Furthermore,
in GeleNet, we focus on local and cross-level contextual inter-
actions, which are beneficial for highlighting salient objects in
ORSIs.

In particular, we adopt the popular PVT [32], [33] as the
backbone of our GeleNet. To alleviate the orientation insensi-
tivity issue of previous methods, we propose a Direction-aware
Shuffle Weighted Spatial Attention Module (D-SWSAM), and
assign it to the lowest-level features to adequately identify
the orientation of objects through directional convolutions
with four directions. D-SWSAM is also equipped with an
improved attention mechanism to outline the details of salient
objects. Since high-level features contain location information
rather than orientation and texture information, we extract
the corresponding part containing the improved attention
mechanism from D-SWSAM, i.e., SWSAM, and assign it
to the highest-level features to determine the location of
salient objects. The above modules can well enhance local
interactions of intra-level features. In addition, we propose a
Knowledge Transfer Module (KTM) for the remaining adjacent
features to explore contextual interactions between inter-level
features and transfer the specific knowledge of salient objects
between adjacent features to the raw features. In this way, the
proposed GeleNet can generate saliency maps with accurate
orientations and complete objects, as illustrated in the third
column of Fig. 1, and consistently outperforms compared
methods on three datasets.

Our main contributions are summarized in three aspects:
• We propose a transformer-based ORSI-SOD solution,

GeleNet, with the global-to-local paradigm, which is
different from the local-to-contextual paradigm followed
by most existing CNN-based methods. To the best of our
knowledge, this is the first transformer-driven ORSI-SOD
solution.

• We propose the D-SWSAM and its variant SWSAM
to enhance local interactions of the extracted global
feature embeddings. D-SWSAM can tackle the problem
of objects with various orientations in ORSIs and enhance
the details of salient objects in the lowest-level features,
while SWSAM can locate salient objects in the highest-
level features.

• We propose the KTM to enhance contextual interactions
of two middle-level features. In KTM, we model the
contextual correlation knowledge of two types of com-
binations (i.e., product and sum) of these features, and
transfer the knowledge to the raw features to generate
more discriminative features.

The rest of this paper is arranged as follows. In Sec. II,
we review the related work. In Sec. III, we describe the
details of the proposed GeleNet. In Sec. IV, we conduct
comprehensive experiments and ablation studies. In Sec. V,
we present the conclusion.

II. RELATED WORK

A. Salient Object Detection in Optical
Remote Sensing Images

Salient object detection in optical remote sensing images
plays an important role in understanding ORSIs. Recently,
with the successive construction of the three datasets [14],
[15], [22], numerous ORSI-SOD methods are proposed. Here
we focus on CNN-based methods, which dominate this topic
and achieve promising performance.

Existing CNN-based ORSI-SOD methods mainly follow
two paradigms, i.e., the local-to-local paradigm and the
local-to-contextual paradigm. The local-to-local paradigm typ-
ically extracts feature embeddings containing local information
through the CNN backbone, and then explores valuable
information in single-level feature embeddings. For example,
in [18], Zhou et al. extracted multi-level features through the
CNN backbone, and performed edge extraction and feature
fusion on each level of features in two parallel decoders. Li et
al. [20] explored the complementarity of foreground, edge,
background, and the global image-level content of single-level
features, and aimed at generating complete salient objects.
They focused on the extraction of various specific information
on single-level features (i.e., local features), ignoring the con-
textual interactions between local features at different levels.

The local-to-contextual paradigm, by contrast, explores
contextual information between local feature embeddings at
different levels, and is therefore popularly adopted by recent
solutions. For example, Li et al. [15] extracted multi-level
features from multiple inputs, and employed nested connec-
tions to aggregate them. Similarly, Zhou et al. [23] proposed
a cascaded feature fusion module to fuse multi-level features
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from different branches. In [21], Huang et al. aggregated three
high-level features to produce contextual semantic information
to approximately locate salient objects. Li et al. [17] proposed
a correlation module for continuous semantic features, gener-
ating an initial coarse saliency map for location guidance of
low-level features. Tu et al. [22] proposed two decoders to
aggregate three adjacent features twice with salient boundary
features. Li et al. [16] designed a specific module for adjacent
features, aiming at coordinating cross-scale interactions and
mining valuable contextual information.

Despite great progress achieved by the local-to-contextual
paradigm, the explored contextual interactions only mine
interactions between features at different levels through
convolution-based modules. In this paper, inspired by the
popular transformer [28], [29], [30], [31], [32], we propose
the global-to-local paradigm that first models the global
long-range dependencies between feature patches and then
enhances the local and contextual interactions, and build a
novel GeleNet for ORSI-SOD. Benefiting from the global
view of the transformer and the local enhancement of our
proposed modules, our GeleNet can better perceive salient
objects with numerous scales, diverse types, and multiple
numbers in ORSIs.

B. Salient Object Detection With Transformer

Transformer was first proposed for Natural Language
Processing (NLP) [28], which is good at modeling global
long-range dependencies between word vectors. Following its
success in NLP, researchers have extended it into computer
vision and achieved remarkable progress on numerous tasks,
especially on dense prediction tasks [31], [32], [33].

Here, we introduce some representative works on
transformer-based SOD, involving SOD in Natural Scene
Images (NSI-SOD) [34], [35], RGB-D/T SOD [36], [37], [38],
co-saliency detection [39], and video SOD [39]. In general,
transformer-based SOD methods can be roughly divided into
three types depending on where the transformer is used.
The first type of method adopted transformer as the feature
extractor in the encoding phase. For instance, Liu et al. [36]
used Swin Transformer [31] to extract basic features from
RGB-D/T pairs, and aligned cross-modality features through
attention mechanism to generate discriminative features. Liu
et al. [34] achieved effective context modeling using the same
backbone as [36] for NSI-SOD. The second type of method
adopted transformer to develop modules in the decoding phase.
Liu et al. [37] proposed a triplet transformer embedding
module to enhance high-level features by learning long-range
dependencies across layers. In [39], Su et al. proposed a
unified transformer framework for co-saliency detection and
video SOD, which is equipped with two transformer blocks
to capture the long-range dependencies among a group of fea-
tures from different images/frames. Fang et al. [38] proposed a
multiple transformer module to learn the common information
of cross-modality and cross-scale features. The last type of
method utilized the pure transformer architecture to achieve
SOD. Liu et al. [35] adopted T2T-ViT [30] as the backbone,
and proposed a multi-task transformer decoder to jointly detect
salient objects and boundaries.

The above transformer-based SOD methods achieve impres-
sive results on specific SOD tasks. Therefore, we introduce
the transformer into the ORSI-SOD task, and propose the
first transformer-driven ORSI-SOD method, i.e., GeleNet. Our
method belongs to the first type of method, and adopts
PVT [32], [33] as the backbone to extract long-range depen-
dency features from input ORSIs.

C. Attention Mechanism

Attention mechanism is widely used in computer vision and
image analysis. In general, it includes channel attention [40],
spatial attention [41], and self-attention [28], [42]. SENet [40]
was a classic channel attention model, which explicitly repre-
sents dependencies between channels to adaptively recalibrate
features. ECANet [43] developed an extremely lightweight
channel attention module through a fast 1D convolution. More-
over, CBAM [41] additionally introduced spatial attention, and
inferred attention maps along channel and spatial domain in
turn for adaptive feature enhancement. Li et al. [44] proposed
the Spatial Group-wise Enhance (SGE), which first splits fea-
tures into several sub-features, then extracts specific semantics
from each sub-feature, and finally adjusts the importance of
semantics of each sub-feature by an attention factor. Zhang
and Yang proposed a lightweight shuffle attention, which also
first splits features into several groups, then performs channel
attention and spatial attention in parallel, and finally introduces
channel shuffle to allow information communication along
channels.

Both SGE [44] and shuffle attention [45] consider only the
attention of each sub-feature, but ignore the consistency of
attention between different sub-features, which is not friendly
to SOD. In addition, since the global features extracted by
the transformer lack channel interaction, it is unreasonable for
shuffle attention to put the shuffle operation at the end. There-
fore, we propose an improved spatial attention module, namely
SWSAM, which focuses on enhancing the channel interactions
of global features and improving the effectiveness of spatial
attention to highlight salient regions more accurately. Notably,
we further integrate SWSAM and directional convolutions, and
propose D-SWSAM to adapt to various orientations of salient
objects in ORSIs. Moreover, we also propose a self-attention-
based KTM to model and transfer the contextual knowledge
to generate more discriminative features.

III. PROPOSED METHOD

In this section, we elaborate on the proposed transformer-
driven GeleNet. In Sec. III-A, we depict the network overview.
In Sec. III-B and Sec. III-C, we introduce D-SWSAM and
KTM, respectively. In Sec. III-D, we present the saliency
predictor and loss function.

A. Network Overview

As illustrated in Fig. 2, the proposed GeleNet follows
the popular three-stage structure [46], [47] in SOD, includ-
ing a feature extractor for basic feature generation, three
modules (i.e., D-SWSAM, KTM, and SWSAM) for feature

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on September 24,2023 at 01:35:48 UTC from IEEE Xplore.  Restrictions apply. 



5260 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 2. Pipeline of the proposed transformer-driven GeleNet, which consists of a feature extractor, three modules, and a saliency predictor. First, we adopt a
transformer-based feature extractor PVT-v2-b2 [33] to extract four-level basic feature embeddings with global long-range dependencies. Then, we employ the
Direction-aware Shuffle Weighted Spatial Attention Module (D-SWSAM), the Knowledge Transfer Module, and the variant of D-SWSAM (i.e., SWSAM) to deal
with the corresponding features, respectively. Specifically, in D-SWSAM, we perform four directional convolutions with different directions (i.e., horizontal,
vertical, leading diagonal, and reverse diagonal) on the lowest-level features to extract specific orientation information, and then use SWSAM to outline the
details regions. We also adopt SWSAM to enhance the location of salient objects in the highest-level features. In KTM, we model the contextual correlation
knowledge of two types of combinations (i.e., product and sum) of two middle-level features, and transfer the knowledge to the raw features to generate more
discriminative features. Finally, we use a saliency predictor to generate a saliency map from the outputs of the above modules.

interaction/enhancement, and a saliency predictor for saliency
map generation.

Concretely, we use the Pyramid Vision Transformer
(PVT) [33] as the backbone, whose input size is set to
3 × 352 × 352. PVT consists of four transformer encoder
blocks denoted as Ti (i ∈ {1, 2, 3, 4}), and can generate
four-level basic global features denoted as f̂

i
t ∈ Rci×hi×wi ,

where ci ∈ {64, 128, 320, 512}, and hi/wi =
352
2i+1 . To improve

the computational efficiency, we unify the channel number of
f̂

i
t (i ∈ {1, 3, 4}) to 32 by the channel normalization (i.e., a

convolution layer), generating f i
t ∈ Rc×hi×wi , where c is 32.

Notably, for f̂
2
t , we not only reduce its channel number to

32, but also adjust its resolution from 44 × 44 to 22 × 22 for
subsequent processing in KTM, generating f 2

t ∈ R32×22×22.
For the lowest-level features f 1

t and the highest-level fea-
tures f 4

t , we adopt an improved spatial attention mechanism
for local enhancement. According to the characteristics of
features at different levels, we adopt D-SWSAM for f 1

t
to extract orientation information and achieve local detail
enhancement, generating f dswsa. While we adopt SWSAM for
f 4

t to achieve local location enhancement, generating f swsa.
Moreover, we adopt KTM to activate cross-level contextual
interactions of f 2

t and f 3
t , generating discriminative features

f ktm. Taking advantage of PVT and these three novel modules,
we infer salient objects in the saliency predictor, which is a
variant of the effective partial decoder [48].

B. Direction-Aware Shuffle Weighted Spatial
Attention Module

Since the basic features extracted by PVT is with global
long-range dependencies, we want to explore their local

enhancements to complement their global information and
adapt to complex scenes in ORSIs. To be precise, we hope to
consistently highlight salient regions in features across differ-
ent channels, which is important for SOD. Traditional spatial
attention [41] is known to be effective way to achieve this
goal, however, it generates the spatial attention map in a global
manner. Specifically, it performs global max pooling and
global average pooling on all channels, which may produce
an insufficient spatial attention map. Differently, SGE [44],
as a grouping attention, splits features into several subsets
and generates a specific spatial attention map from each
sub-feature for individual enhancement. While considering
only the attention of each sub-feature, SGE ignores the con-
sistency of attention between different sub-features, resulting
in the lack of consistency in the group-enhanced features,
which is not friendly to SOD. Inspired by [41] and [44],
we propose an effective grouping spatial attention mechanism
for SOD, i.e., the Shuffle Weighted Spatial Attention Module
(SWSAM), which first generates the local spatial attention
map from each sub-feature, and then adopts the weighted
fusion operation to produce the final spatial attention map for
consistent enhancement.

In addition, salient objects in ORSIs usually have various
orientations, as shown in Fig. 1 and Fig. 2, which often bring
troubles to existing methods using the traditional convolu-
tions. To solve this issue, we specifically introduce directional
convolutions with different directions [49] into SWSAM, and
propose D-SWSAM to explicitly extract orientation infor-
mation of salient objects and achieve local enhancement.
Moreover, we arrange D-SWSAM to deal with f 1

t . The
detailed structure of D-SWSAM is presented in the left part
of Fig. 2. In the following, we elaborate D-SWSAM in three
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parts, i.e., the directional convolution unit, the channel shuffle
and feature split, and the weighted spatial attention, of which
the latter two parts constitute SWSAM.

1) Directional Convolution Unit: The directional convolu-
tion unit takes into account the four basic directions, and is
composed of four directional convolution layers with horizon-
tal (h), vertical (v), leading diagonal (ld), and reverse diagonal
(rd) directions [49]. We parallelize these four directional
convolution layers to simultaneously mine different orientation
information of f 1

t , and concatenate the results for information
integration. We formulate the above process as follows:

f ori = convh( f 1
t ) ⊚ convv( f 1

t ) ⊚ convld( f 1
t ) ⊚ convrd( f 1

t ),

(1)

where f ori ∈ R32×88×88 denotes the output orientation features,
⊚ is the concatenation, convx(·) is the directional convolution
layer with the direction x ∈ {h, v, ld, rd}. Considering the input
feature size and computational efficiency, here we set the ker-
nel size and the output channel of four directional convolutions
to 5 and 8, respectively. To show the extracted orientation
information intuitively, we expand f ori across channel as
[ f 1

h, . . . , f 8
h, f 1

v, . . . , f 8
v, f 1

ld, . . . , f 8
ld, f 1

rd, . . . , f 8
rd], where

f x ∈ R1×88×88 is a single-channel feature and we omit its
superscript, and each directional convolution layer generates
an eight-channel feature.

2) Channel Shuffle and Feature Split: Inspired by
ShuffleNet [50] and shuffle attention [45], which
shuffle features to achieve information communication
along channels, we shuffle f ori with four groups to
evenly disperse the orientation information, achieving
f shuf ∈ R32×88×88, which can be expanded as
[ f 1

h, f 1
v, f 1

ld, f 1
rd, . . . , f 4

h, f 4
v, f 4

ld, f 4
rd, . . . , f 8

h, f 8
v, f 8

ld, f 8
rd].

Then, we split f shuf into four feature subsets along
channel, generating { f 1

s−shuf, f 2
s−shuf, f 3

s−shuf, f 4
s−shuf} ∈

R8×88×88, where f n
s−shuf (n ∈ {1, 2, 3, 4}) can be expanded

as [ f 2n−1
h , f 2n−1

v , f 2n−1
ld , f 2n−1

rd , f 2n
h , f 2n

v , f 2n
ld , f 2n

rd ]. The
above operations activate the interaction between features of
different orientations, so that each sub-feature evenly contains
orientation information in four directions, which is conducive
to generating an accurate spatial attention map for each
sub-feature.

3) Weighted Spatial Attention: We then apply the traditional
spatial attention [41] to the above sub-features f n

s−shuf, gener-
ating corresponding spatial attention maps an

∈ (0, 1)1×88×88

as follows:

an
= SA( f n

s−shuf), (2)

where SA(·) is the spatial attention operation. These
four spatial attention maps can extract salient regions in
local sub-features comprehensively without neglecting salient
regions in the original complete f ori.

Next, we design a learnable attention fusion approach, that
is, set a learnable parameter wn

∈ [0, 1] for each spatial
attention map an and aggregate them as follows:

aori = sigmoid(conv(

4∑
n=1

wn
· an)), (3)

where aori ∈ (0, 1)1×88×88 is the aggregated spatial attention
map, wn is initialized as 0.25 and gradually converges to
appropriate weights,

∑4
n=1 wn

= 1, conv(·) is the normal
convolution layer, and sigmoid(·) is the sigmoid activation
function. In this way, we can obtain a comprehensive and
orientation-sensitive spatial attention map aori. We adopt aori
to achieve consistent detail enhancement, generating the output
feature of D-SWSAM f dswsa ∈ R32×88×88 as follows:

f dswsa = (aori ⊗ f shuf) ⊕ f shuf, (4)

where ⊗ is the element-wise multiplication and ⊕ is the
element-wise summation. Notably, here we perform detail
enhancement on f shuf rather than f ori, which continues to
maintain valid channel interactions.

4) Applying SWSAM for Location Enhancement: As shown
in Fig. 2, instead of D-SWSAM, we apply SWSAM on the
highest-level features f 4

t for location enhancement. This is
because f 4

t mainly contains location information, rather than
detail information such as orientation information and texture
information, which means that the directional convolution
unit in D-SWSAM is superfluous. Therefore, we abandon
this unit. In addition, f 4

t is extracted using PVT which
focuses on modeling the long-range dependencies between
feature patches and inevitably ignores feature interactions
between channels. So we maintain the channel shuffle opera-
tion in SWSAM to explicitly increase the channel interaction.
In this way, we can obtain the output feature of SWSAM
f swsa ∈ R32×11×11.

In summary, our D-SWSAM and SWSAM are designed
according to specific characteristics of extracted global fea-
tures of ORSIs to better enhance local interactions. We believe
our D-SWSAM can effectively assist GeleNet to adapt to
salient objects with various orientations in ORSIs, and our
SWSAM can assist GeleNet to accurately locate all salient
objects in ORSIs.

C. Knowledge Transfer Module

For the lowest-level and highest-level features, we design
special modules to process them to achieve local interactions
according to their respective characteristics. However, it is
insufficient to consider only local enhancement, we enhance
cross-level contextual interactions on two middle-level features
(i.e., f 2

t and f 3
t ) to explore the discriminative information of

salient objects. Inspired by the self-attention mechanism [28],
[42], we propose a knowledge transfer module to achieve
the goal. The detailed structure of KTM is presented in the
middle part of Fig. 2. In the following, we introduce the two
KTM components, i.e., the contextual correlation knowledge
modeling and the knowledge transfer.

1) Contextual Correlation Knowledge Modeling: In SOD,
the product of two features can reveal the significant infor-
mation co-existing in both features, which is conducive to
collaboratively identifying objects. The sum of two features
can comprehensively capture the information contained in both
features without omission, which is conducive to elaborating
objects. In particular for our framework, the product and sum
of f 2

t and f 3
t are complementary to a certain extent. Therefore,
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we adopt self-attention [28], [42] to model the contextual
correlation knowledge between the product and sum of f 2

t
and f 3

t .
As stated in Sec. III-A, we have unified the size of f 2

t and
f 3

t to 32 × 22×22. For convenience, we denote the size of
f 2

t and f 3
t to c ×h ×w, as shown in Fig. 2. Here, we denote

the product and sum of f 2
t and f 3

t as f pro ∈ Rc×h×w and
f sum ∈ Rc×h×w, respectively. As the KTM illustrated in Fig. 2,
to reduce the computational cost, we perform a convolution
layer with the channel number of c/2 on f pro and f sum to
generate two new features { f̃ pro, f̃ sum} ∈ R(c/2)×h×w. Then,
we reshape and transpose f̃ sum to obtain f Q ∈ R(hw)×(c/2),
and reshape f̃ pro to obtain f K ∈ R(c/2)×(hw). After that we
model the contextual correlation knowledge C ∈ R(hw)×(hw)

between f Q and f K as follows:

C = softmax( f Q ⊛ f K), (5)

where softmax(·) is the softmax activation function and ⊛
is the matrix multiplication. In this way, we model the
pixel-to-pixel dependencies between the co-existing signifi-
cant information of f pro and the comprehensive information
of f sum, which are effective to avoid missing salient
regions/objects in ORSIs.

2) Knowledge Transfer: Meanwhile, we use a convolution
layer on f 2

t and f 3
t to generate two new features { f̃

2
t , f̃

3
t } ∈

Rc×h×w, and then reshape them to obtain { f V1 , f V2} ∈

Rc×(hw). After that we transfer the modeled knowledge C to
f V1 and f V2 to generate the informative transferred features
{ f 1

tsf, f 2
tsf} ∈ Rc×h×w as follows:

f 1
tsf = R( f V1 ⊛ T(C)),

f 2
tsf = R( f V2 ⊛ T(C)), (6)

where R(·) and T(·) mean reshape and transpose, respectively.
Following [42], we introduce a trainable weight to adaptively
fuse f 1

tsf and raw f 2
t through residual connection, and do the

same for f 2
tsf and raw f 3

t , generating { f̃
1
tsf, f̃

2
tsf} ∈ Rc×h×w.

Finally, we adopt an element-wise summation and a convolu-
tion layer to integrate the cross-level f̃

1
tsf and f̃

2
tsf, generating

the discriminative output feature of KTM f ktm ∈ Rc×h×w.
In summary, f ktm inherits the properties of two combina-

tions of f 2
t and f 3

t , so it has the ability to simultaneously
identify and elaborate salient objects. In addition, compared to
f dswsa and f swsa, f ktm is more contextual, which is beneficial
for our GeleNet to combine with local enhanced features
(i.e., f dswsa and f swsa) for better salient object inference.

D. Saliency Predictor

To make better use of the informative output features
of D-SWSAM, KTM and SWSAM, i.e., f dswsa, f ktm and
f swsa, we adopt the effective partial decoder [48] as our
saliency predictor to generate the saliency map. Normally, the
resolutions of input features in the original partial decoder are
1×, 2×, and 4×. However, the resolutions of input features of
our saliency predictor are 32 × 11 × 11 ( f swsa), 32 × 22 × 22
( f ktm), and 32 × 88 × 88 ( f dswsa). Therefore, we make a
small modification to the original partial encoder, i.e., modify

the upsampling rate, to adapt to the resolutions of our input
features. In this way, our saliency predictor can generate an
initial saliency map s ∈ [0, 1]

1×88×88. We restore its resolution
to the same resolution as the input ORSI by a 4× upsampling
operation, and obtain the final saliency map S ∈ [0, 1]

1×352×352.
During the training phase, we train the proposed GeleNet

with a hybrid loss function [67], [68], including the
intersection-over-union (IoU) loss and the binary cross-entropy
(BCE) loss. We formulate the total loss function L total as
follows:

L total = ℓiou(S, G) + ℓbce(S, G), (7)

where ℓiou(·) and ℓbce(·) are IoU loss and BCE loss, respec-
tively, and G ∈ {0, 1}

1×352×352 is the ground truth (GT).

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conduct experiments on the ORSSD [15],
EORSSD [14], and ORSI-4199 [22] datasets. The ORSSD
dataset is the first public dataset for ORSI-SOD, and contains
800 images and corresponding pixel-level GTs, of which
600 images are used for training and 200 images for testing.
The EORSSD dataset contains 2,000 images and correspond-
ing GTs, of which 1,400 images are used for training and
600 images for testing. The ORSI-4199 dataset is the biggest
dataset for ORSI-SOD, and contains 4,199 images and corre-
sponding GTs, of which 2,000 images are used for training
and 2,199 images for testing. Following [14], [17], and [23],
we train our GeleNet on the training set of each dataset and
test it on the test set of each dataset.

2) Network Implementation: All experiments are conducted
on PyTorch [69] with an NVIDIA Titan X GPU (12GB
memory). To balance the effectiveness and efficiency, we adopt
PVT-v2-b2 [33] as the backbone, and initialize it with the
pre-trained parameters. Newly added layers are all initialized
with the “Kaiming” method [70]. We adopt rotation and a
combination of flipping and rotation for data augmentation,
and resize the input image and GT to 352×352. Our GeleNet
is trained using Adam optimizer [71] for 45 epochs with a
batch size of 8 and a base learning rate of 1e−4 which will
decay to 1/10 every 30 epochs.

3) Evaluation Metrics: We adopt some widely used eval-
uation metrics to quantitatively evaluate the performance of
our method and all compared methods on three datasets,
including S-measure (Sα , α = 0.5) [72], F-measure (Fβ , β2

=

0.3) [73], E-measure (Eξ ) [74], mean absolute error (MAE,
M), precision-recall (PR) curve, and F-measure curve. Here
we adopt the evaluation tool (Matlab version)2 for convenient
evaluation.

B. Comparison With State-of-the-Arts

We compare our GeleNet with state-of-the-art NSI-SOD and
ORSI-SOD methods on the EORSSD and ORSSD datasets,
including R3Net [51], PoolNet [52], EGNet [53], GCPA [54],

2https://github.com/MathLee/MatlabEvaluationTools
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TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART NSI-SOD AND ORSI-SOD METHODS ON EORSSD AND ORSSD DATASETS. ↓ INDICATES

THAT THE LOWER THE BETTER, WHILE ↑ THE OPPOSITE. WE MARK THE TOP TWO RESULTS IN RED AND BLUE, RESPECTIVELY

MINet [55], ITSD [56], GateNet [57], CSNet [58], SAM-
Net [59], HVPNet [60], SUCA [61], PA-KRN [62], VST [35],
DPORTNet [63], DNTD [64], ICON [65] with PVT back-
bone, LVNet [15], DAFNet [14], SARNet [21], MJRBM [22],
EMFINet [23], ERPNet [18], ACCoNet [16], CorrNet [17],
MCCNet [20], and HFANet [66]. The saliency maps for the
above methods are obtained from authors and public bench-
marks3,4 [14], [15], or by running public source codes. For the
ORSI-4199 dataset, we compare our GeleNet with 19 of the
above 26 methods, whose saliency maps on the ORSI-4199
dataset are available, and additional five NSI-SOD methods
(i.e., PiCANet [75], BASNet [68], CPD [48], RAS [76],
ENFNet [77]) provided by the public benchmark5 [22]. Here,
for a comprehensive comparison, in addition to GeleNet with
the backbone of PVT-v2-b2 (i.e., Ours-PVT), we also provide
three variants of our GeleNet with backbones of VGG, ResNet,
and Swin Transformer, named Ours-VGG, Ours-Res, and
Ours-SwinT, respectively.

3https://li-chongyi.github.io/proj_optical_saliency.html
4https://github.com/rmcong/DAFNet_TIP20
5https://github.com/wchao1213/ORSI-SOD

1) Quantitative Comparison on the EORSSD and ORSSD
Datasets: We report the quantitative comparison results of
our method and other 26 compared methods on the EORSSD
and ORSSD datasets in Tab. I. We observe that Ours-PVT
outperforms all compared methods on both datasets, except for
Sα , Emax

ξ andM on the EORSSD dataset. Concretely, on the
EORSSD dataset, Ours-PVT greatly surpasses the second-best
method by 1.00%, 2.76%, and 1.06% in terms of Fmean

β ,

Fadp
β , and Eadp

ξ , respectively. In Emax
ξ and M, Ours-PVT is

marginally lower than the best method by 0.33% and 0.0004,
respectively. On the ORSSD dataset, Ours-PVT is better than
the second-best method in terms of Sα (0.9469 v.s. 0.9437),
Fmax

β (0.9254 v.s. 0.9155), Emax
ξ (0.9860 v.s. 0.9810), and

M (0.0079 v.s. 0.0087). Notably, Ours-PVT is the only one
whose Fadp

β exceeds 0.9, i.e., 0.9035. In addition, we plot
the PR curve and F-measure curve of Ours-PVT and the
compared methods on the EORSSD and ORSSD datasets
in Fig. 3 (a-b). We can find that under different thresholds,
Ours-PVT maintains its superiority and consistently achieves
excellent performance.

Moreover, Ours-SwinT achieves competitive performance
on the EORSSD dataset, and outperforms 26 compared
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Fig. 3. Quantitative comparison on PR curve (the first row) and F-measure curve (the second row) in three datasets. We show the top five methods in
different colors and the other compared methods in gray.

Fig. 4. Visual comparisons with eight representative state-of-the-art methods on three datasets.

methods in Fadp
β , Emean

ξ , Eadp
ξ , and M. Ours-SwinT ranks

first out of seven metrics and second out of one metric
compared to 26 compared methods on the ORSSD dataset.
Since our modules are designed specifically for the global
features of transformer, the performance of our two CNN-
based variants, i.e., Ours-VGG and Ours-Res, is inferior to
that of Ours-SwinT and Ours-PVT, and is comparable to that
of ERPNet, EMFINet, and CorrNet.

2) Quantitative Comparison on the ORSI-4199 Dataset:
Due to slight differences in the comparison methods, we report
the quantitative comparison results of Ours-PVT and other
24 compared methods on the ORSI-4199 dataset separately
in Tab. II. The ORSI-4199 dataset is the biggest and the
most challenging dataset for ORSI-SOD. The performance
of Ours-PVT on this dataset is impressive, outperforming the
second-best method by 0.23%∼1.63% in terms of S-measure,
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TABLE II
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART NSI-SOD AND

ORSI-SOD METHODS ON THE ORSI-4199 DATASET. WE MARK THE
TOP TWO RESULTS IN RED AND BLUE, RESPECTIVELY

F-measure, and E-measure. And the MAE score of Ours-PVT
is only 0.0264, which is one of only three methods with the
MAE score below 0.03. The advantage of Ours-PVT is easier
to spot on the PR curve and F-measure curve, especially
the latter one, as plotted in Fig. 3 (c). The above excellent
performance on the challenging ORSI-4199 dataset strongly
demonstrates the effectiveness of Ours-PVT. But to be honest,
there is still a lot of room for improvement on the ORSI-4199
dataset.

Ours-SwinT consistently outperforms all compared methods
in all eight metrics on the ORSI-4199 dataset, and achieves
the best performance in Emean

ξ and M, even compared to
Ours-PVT. Similar to the performance on the EORSSD and
ORSSD datasets, the performance of Ours-VGG and Ours-
Res is relatively average on the ORSI-4199 dataset, which
further confirms that our modules is specifically designed for
the global features of transformer.

In addition, Ours-PVT and two other transformer-based
method (i.e., VST and ICON) perform almost the best among
their respective types of methods, i.e., ORSI-SOD method
and NSI-SOD method, on three datasets. This means that
transformer-based methods can continue to drive the devel-
opment of ORSI-SOD. The performance of the specialized
ORSI-SOD method is generally better than that of NSI-SOD
method on three datasets, which motivates us to develop better
specialized ORSI-SOD solutions.

3) Visual Comparison: We show the visual comparison of
Ours-PVT and eight representative state-of-the-art methods in
Fig. 4. There are eight cases in Fig. 4 belonging to four typical

and challenging ORSI scenes from three datasets. The first
scene is objects with various orientations, which is unique to
ORSIs, as in the first two cases of Fig. 4. We observe that
only our method accurately highlights salient objects without
including background. In contrast, another transformer-based
method, i.e., VST, incorrectly highlights some background
regions, and all CNN-based methods fail to fully highlight
objects. This is attributed to the directional convolution unit
of D-SWSAM. The second scene contains multiple salient
objects, as in the third and fourth cases of Fig. 4. Most
methods only locate some of these objects and their saliency
maps are relatively rough, but our method finely segments all
salient objects. This is due to the precise location capability of
SWSAM. The third scene contains objects with fine structure,
as in the fifth and sixth cases of Fig. 4. Our method success-
fully delineates the same fine structure of salient objects as
GTs, such as the islands in the river and the shape of the
playground. The last scene is low contrast, where the color
of foreground and background is similar, as in the last two
cases of Fig. 4. Due to the global modeling capability of
PVT and the local enhancement of proposed modules, our
method accurately distinguishes white vehicles in both cases
without the interference of white zebra crossings. While other
methods are confused by the white zebra crossing and wrongly
highlight them.

C. Ablation Studies

We conduct comprehensive ablation studies on the EORSSD
dataset to evaluate the effectiveness of each module of
our GeleNet and each component of our three modules.
Accordingly, we analyze 1) the individual contribution of
three modules, 2) the effectiveness of each component in
D-SWSAM, 3) the rationality of the way of modeling knowl-
edge in KTM, and 4) the effectiveness of each component in
SWSAM. We conduct these ablation studies on the GeleNet
with the backbone of PVT-v2-b2, and adopt the same param-
eter settings and dataset partitioning as in Sec. IV-A for all
variants.

1) Individual Contribution of Three Modules: To investigate
the individual contribution of the proposed three modules,
i.e., D-SWSAM, KTM, and SWSAM, we design various
combinations of the above three modules for a total of seven
variants: 1) Baseline, in which we remove all proposed
modules and adopt element-wise summation to fuse f 2

t
and f 3

t , 2) Baseline+D-SWSAM, 3) Baseline+KTM,
4) Baseline+SWSAM, 5) Baseline+KTM+SWSAM,
6) Baseline+D-SWSAM+SWSAM, and 7) Baseline+
D-SWSAM+KTM. We report the quantitative results in
Tab. III.

From the first four rows in Tab. III, we can find that each
module can individually improve “Baseline” by around 0.5%
in Sα , around 1.0% in Fmax

β , and around 0.6% in Emax
ξ , which

directly proves that the proposed three modules are effective.
The fifth to seventh rows of Tab. III present the performance
of pairwise cooperation of modules. We can conclude that
the cooperation of different modules can further improve the
robustness of our method, resulting in better performance.
Therefore, with all three modules working together, our full
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TABLE III
ABLATION RESULTS OF EVALUATING THE INDIVIDUAL CONTRIBUTION OF

EACH MODULE IN GELENET. THE BEST ONE IN EACH
COLUMN IS BOLD

Fig. 5. Visual comparisons of different variants. B, D, and S are Baseline,
D-SWSAM, and SWSAM, respectively. The numbers in parentheses are the
ordinal numbers of these variants in Tab. III.

model significantly outperforms “Baseline” by 1.27% in Sα ,
2.06% in Fmax

β , and 1.16% in Emax
ξ .

We provide two variants to prove the necessity of enhancing
the lowest-level and highest-level features with different mod-
ules: 8) using D-SWSAM to enhance both lowest-level and
highest-level features, and 9) using SWSAM to enhance both
lowest-level and highest-level features. As shown in Tab. III,
we observe that the performance of the above two variants
is not as good as our method with different enhancements.
This means that enhancing the lowest-level and highest-level
features with the same module is suboptimal, and our different
enhancements to the lowest-level and highest-level features are
necessary.

Furthermore, we show the saliency maps for the first,
second, fourth, sixth variants, and our full model in Fig. 5
to visually illustrate the role of modules. Without the help
of any modules, “Baseline” performs badly, and its saliency
maps have the problems of wrongly highlighting, introducing
background, and incomplete highlighting. With the addition
of D-SWSAM which can perceive the orientation information
and perform local enhancement, the saliency maps generated
by “B+D” successfully highlight the salient objects with the
correct direction (i.e., the first and last cases) and suppress
the background (i.e., the second case). Since SWSAM is
responsible for location enhancement in the highest-level
features, the salient objects in the saliency maps generated
by “B+S” are highlighted correctly and completely. Naturally,
the combination of D-SWSAM and SWSAM, i.e., “B+D+S”,
inherits all the advantages of the two modules. With the

TABLE IV
ABLATION RESULTS OF EVALUATING THE EFFECTIVENESS OF EACH COM-

PONENT OF THE PROPOSED THREE MODULES. THE BEST ONE IN
EACH COLUMN IS BOLD. D-SW. MEANS D-SWSAM, AND SWSA.

MEANS SWSAM

TABLE V
COMPARING THE PROPOSED SWSA WITH TWO CLASSIC ATTENTION

OPERATIONS, i.e., THE TRADITIONAL SPATIAL ATTENTION [41] AND
SGE [44].THE BEST ONE IN EACH COLUMN IS BOLD

additional help of KTM, the saliency maps generated by our
full model are visually indistinguishable from GTs. The above
analysis proves that the proposed three modules are effective
and play their respective functions.

2) Effectiveness of Each Component in D-SWSAM:
D-SWSAM consists of a directional convolution unit and
SWSAM. Here, we provide two variants of D-SWSAM
to investigate the effectiveness of the above components:
1) removing directional convolution unit (i.e., w/o DirConv
which is the same as No.9 in Tab. III), and 2) removing
SWSAM (i.e., w/o SWSAM). As shown in the second and
third rows of Tab. IV, removing either component reduces
detection accuracy, which demonstrates both components are
necessary for D-SWSAM. Notably, the performance of w/o
SWSAM degrades more than that of w/o DirConv, indicating
that SWSAM is more important in D-SWSAM.

3) Rationality of the Way of Modeling Knowledge in KTM:
Due to the product and sum of f 2

t and f 3
t are complementary,

we model the contextual correlation knowledge between the
product and sum of f 2

t and f 3
t in KTM. To investigate the

rationality of this way of modeling knowledge, we design two
alternative modeling strategies: 1) removing product then mod-
eling knowledge only from sum (i.e., w/ sum), and 2) removing
sum then modeling knowledge only from product (i.e., w/
product). As shown in the fourth and fifth rows of Tab. IV, w/
sum and w/ product perform worse. As detailed in Sec. III-C,
due to the complementarity between the product and sum of
f 2

t and f 3
t , the contextual correlation knowledge modeled

from both is more conducive to inferring salient objects.
Modeling knowledge from only one of them is suboptimal.

4) Effectiveness of Each Component in SWSAM: SWSAM
plays an important role in our GeleNet. We use it twice in
our GeleNet on the lowest-level and highest-level features.
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Fig. 6. Visual comparisons of different attention mechanisms.

Here, we provide two variants of SWSAM to investigate the
effectiveness of its components: 1) removing channel shuffle
(i.e., w/o shuffle), and 2) removing learnable parameter wn

in Eq. 3 (i.e., w/o weights). Notably, these two variants are
applied in SWSAM of D-SWSAM and SWSAM of the highest
level. As shown in the last two rows of Tab. IV, w/o shuffle
and w/o weights are almost the worst of all variants in Tab. IV,
which illustrates the importance of both operations. Actually,
channel shuffle in SWSAM serves two different purposes. w/o
shuffle lets SWSAM in D-SWSAM to generate four spatial
attention maps directly from four sub-features with single
direction instead of sub-features with uniform four directions,
and weakens the channel communication of the global highest-
level features. w/o weights does not take into account the
differences between different spatial attention maps and simply
fuses spatial attention maps. Therefore, the performance of
both variants is degraded.

In addition, we compare the proposed SWSAM with two
classic attention mechanisms, i.e., the traditional spatial atten-
tion [41] and SGE, to further investigate the effectiveness of
our SWSAM. We provide two variants: 1) replacing SWSAM
with the traditional spatial attention (i.e., w/ SA), and 2) replac-
ing SWSAM with SGE (i.e., w/ SGE). As reported in Tab. V,
the effectiveness of these two attention mechanisms is lower
than that of our SWSAM, i.e., w/ SWSAM, for ORSI-SOD.
Moreover, in Fig. 6, we show the saliency maps generated by
w/ SWSAM, w/ SA, and w/ SGE for the visual comparison. The
first case is that some background regions are similar to salient
objects. Traditional spatial attention generates the attention
map in a global manner (i.e., from all channels), which leads
to the omission of valid information and is not conducive
to generating an accurate attention map. Therefore, w/ SA
incorrectly highlights background regions similar to salient
objects. The second case is the scene with the irrelevant object.
Since SGE extracts specific semantics from each sub-feature
and does not adopt the same consistent attention map for
enhancement, w/ SGE mistakenly highlights the irrelevant
object in the scene. The last case is the elevated highway with
cars. Since the comprehensive valid information in traditional
spatial attention is omitted, w/ SA only highlights cars on the
elevated highway instead of the elevated highway. w/ SGE
takes into account the semantics of different sub-features, so it
highlights more regions than w/ SA, but meanwhile introduces
other background regions. Differently, our SWSAM aggregates
multiple attention maps generated from different sub-features

in an adaptive way, resulting in a comprehensive attention map
for consistent enhancement. Therefore, our w/ SWSAM can
effectively handle the above cases.

V. CONCLUSION

In this paper, we propose the first transformer-driven ORSI-
SOD solution, namely GeleNet. GeleNet mainly follows the
global-to-local paradigm, while also considering cross-level
contextual interactions. GeleNet employs PVT to extract
global features, SWSAM and D-SWSAM to achieve local
enhancement, and KTM to activate cross-level contextual
interactions. Specifically, SWSAM is an improved spatial
attention module, which is responsible for location enhance-
ment in the highest-level features. To adapt to various object
orientations in ORSIs, directional convolutions are used in
D-SWSAM to explicitly perceive orientation information of
the lowest-level features, followed by SWSAM to achieve
detail enhancement. KTM is built on the self-attention mech-
anism, and models the complementary information between
the product and the sum of two middle-level features to gen-
erate discriminative features. The cooperation of components
makes GeleNet a successful salient object detector for ORSIs.
Extensive comparisons and ablation studies demonstrate the
superiority of GeleNet and the effectiveness of the three
proposed modules. Moreover, the proposed D-SWSAM and
SWSAM can be used as plug-and-play modules for related
tasks [1], [2], [77], [78], [79].
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