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RINet: Relative Importance-Aware Network
for Fixation Prediction
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Abstract—Fixation prediction aims to simulate human visual
selection mechanism and estimate the visual saliency degree
of regions in a scene. In semantically rich scenes, there are
generally multiple salient regions. This condition requires a
fixation prediction model to understand the relative importance
relationship of multiple salient regions, that is, to identify which
region is more important. In practice, existing fixation prediction
models implicitly explore the relative importance relationship in
the end-to-end training process while they do not work well. In this
article, we propose a novel Relative Importance-aware Network
(RINet) to explicitly explore the modeling of relative importance
in fixation prediction. RINet perceives multi-scale local and global
relative importance through the Hierarchical Relative Importance
Enhancement (HRIE) module. Within a single scale subspace, on
the one hand, HRIE module regards the similarity matrix as the
local relative importance map to weight the input feature. On
the other hand, HRIE module integrates a set of local relative
importance maps into one map, defined as the global relative
importance map, to grasp global relative importance. Moreover,
we propose a Complexity-Relevant Focal (CRF) loss for network
training. As such, we can progressively emphasize learning difficult
samples for better handling the complicated scenarios, further
improving the performance. The ablation studies confirm the
contributions of key components of our RINet, and extensive
experiments on five datasets demonstrate our RINet is superior
to 28 relevant state-of-the-art models.

Index Terms—Fixation prediction, relative importance, self-
attention mechanism, complexity-relevant focal loss.
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I. INTRODUCTION

HUMAN eyes receive a huge amount of visual stimulation
every second and analyze them quickly. It is the human

visual attention mechanism that can efficiently select the most
important area in the visual field, so that the brain can handle
the mass data. This mechanism serves as an information bottle-
neck to filter the valuable content [1]. In the field of computer
vision, the researchers have spent many efforts on understanding
and simulating this mechanism, resulting in the topic of fixation
prediction (FP). Encouragingly, the existing FP works widely
facilitate many meaningful applications, such as salient object
detection [2], [3], visual quality assessment [4], [5], [6], video
understanding [7], [8], [9], object segmentation [10], [11], [12]
and so on.

Inspired by biological evidence, most traditional models ex-
tract hand-crafted features to capture low-level cues. However,
they may not be able to handle the complex scenes because
of unadaptable parameters for various situations. In the past
few years, thanks to the emergence of high-quality datasets
and benchmarks [13], [14], the deep learning-based approaches
have boosted the accuracy of FP significantly as shown in
Fig. 1 (ITTI [15] and GBVS [16] are traditional models, while
SAM [17] and DINet [18] are deep learning-based models).
These deep learning-based models go beyond the limitations
of hand-crafted features and gather semantic information better.

Among the deep learning-based models, DINet is an excellent
model that utilizes multi-scale contextual features to learn se-
mantic information, and works well on simple scenes, e.g., only
one object appears in the image. However, the multi-scale con-
textual features extracted by DINet cannot fully understand the
relative importance of multiple objects within a single image.
SAM suffers from the same problem. Visually, as shown in the
2nd row of Fig. 1, DINet and SAM are able to pick out four
salient regions correctly while only clearly highlighting one of
them. It can be concluded that even the state-of-the-art FP mod-
els still cannot handle the relative importance of image regions
in semantically rich scenarios [18]. Existing works implicitly in-
clude the relative importance relationship during the end-to-end
training procedure, which is obviously sub-optimal. As a result,
understanding the relative importance relationship in semanti-
cally rich scenes is one possible direction to realize the next
improvement.

Inspired by the above observations, in this article, we
focus on making model explicitly understand the relative
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Fig. 1. Visual examples of proposed RINet and several state-of-the-art models.
GT is short for ground truth, which is the fixation density map generated from
the eye movement data of human observers.

importance relationship. Therefore, we propose the novel Rel-
ative Importance-aware Network (RINet) to achieve it from the
following two aspects.

Firstly, a novel Hierarchical Relative Importance Enhance-
ment (HRIE) module is proposed to explicitly build the relative
importance relationship. A ticklish question is how to compare
the image region, further to get the relative importance rela-
tionship. Motivated by the self-attention mechanism [19], we
compute the patch embeddings to represent image regions, and
regard the similarity matrix as the importance map to re-weight
the input. Because the similarity matrix takes one patch as ref-
erence, it can be considered as the local relative importance
map. We go through all patches as reference so as to harvest
a set of local relative importance maps. To get a single ex-
plicit relative importance relationship of an image, these local
relative importance maps are integrated into one global map
by a well-designed operation called global importance scoring
(GIS). We further expand the above operations from spatial do-
main to channel domain. In a word, we explicitly build the lo-
cal and global (local-global in short) relative importance maps.
The other ticklish question is the scale variation of different
salient regions, which is an obstacle during relative importance
comparison. Broadly speaking, deep layers with a large recep-
tive field can acquire semantic information and handle large
salient regions, while they tend to ignore detailed information
and small salient regions. The shallow features are the opposite.
Consequently, we model the local-global relative importance re-
lationship on features in a hierarchical manner to solve the scale
problem.

Secondly, we design the Complexity-Relevant Focal (CRF)
loss to boost grasping relative importance in complicated scenes.
Intuitively, the difficulty to understand global relative impor-
tance increases with the complexity of input. To explore the as-
sociation between input complexity and models’ performance,
we quantize the complexity using the number of local maximum
as shown in Fig. 2. We experimentally find that the complexity
degree and evaluation metrics of fixation prediction performance
are negatively correlated, which indicates the images with more
salient regions are harder to grasp. Therefore, we put forward
a complexity-relevant focusing factor to adjust the contribution
of complicated scenes. In addition, we find emphasizing the
complicated scenes directly is slightly too large to converge.

Fig. 2. Quantization of input image’s complexity degree. The red points in
GT stand for local maximum. GT is the ground truth.

Consequently, the emphasis is designed to grow progressively
as a warming-up procedure.

With the help of the HRIE module and CRF loss, our RINet
can understand the relative importance relationship better. As
shown in Fig. 1, RINet learns the most approximate relative
importance relationship compared to ground truths. Our main
contributions are summarized as follows:
� We propose a novel relative importance-aware network

(RINet) to explicitly explore modeling of relative impor-
tance for fixation prediction. In RINet, the local-global
relative importance map is generated by a well-designed
HRIE module, which distinguishes features from low level
to high level.

� We design a complexity-relevant focal loss to properly em-
phasize the complicated samples. It adjusts the contribution
of the complicated ones by a complexity-relevant focusing
factor, which can be easily extended to other loss functions
used in FP with negligible additional computation cost.

� Comprehensive experiments on five challenging datasets
prove that the proposed RINet achieves superior per-
formance compared with 28 state-of-the-art models, and
demonstrate the effectiveness of the proposed HRIE mod-
ule and CRF loss.

II. RELATED WORK

A. Fixation Prediction

1) Traditional Fixation Prediction Models: Fixation predic-
tion is also known as saliency prediction. It can be generally
classified into two categories, namely scene-driven approaches
(a.k.a bottom-up saliency) and expectation-driven approaches
(a.k.a top-down saliency) [20]. Since our model aims at predict-
ing free-viewing fixation over an image, we mainly focus on the
related works of scene-driven models.

The scene-driven models have a long history of non-deep
learning algorithms. The origin of early works dates back to
the seminal work of feature integration theory [21], which sug-
gests that human brains process multiple preliminary features
simultaneously and combine them to guide human attention.
Rooted in this work, subsequently, relevant researches mined
the low-level cues by using hand-crafted features [22]. For ex-
ample, Itti et al. [15] implemented a cognitive model based
on the biologically computational architecture [1]. They de-
composed the visual input into a set of preliminary feature
maps, including intensity, color, and orientation. These feature
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maps were normalized and summed across Gaussian pyramid
to yield the predicted fixation density map. Furthermore, some
works [23], [24], [25] developed the cognitive models by taking
more well-designed operations to process the low-level feature.
Some other works [26], [27] considered the low-level feature
processing from the view of information theory. They regarded
the feature, which is rare statistically, as the most informative
part of an image. In addition to the above models, there were
several models processing the low-level features from other per-
spectives, such as Bayesian [28], [29], decision theory [30], [31],
spectral analysis [32], [33], and pattern classification [14], [34].

Although these traditional models are explainable in com-
putational principles, their generalization capability is limited.
The hand-crafted features based on low-level cues are difficult
to handle complex scenes.

2) Deep Learning-Based Fixation Prediction Models: To
improve the generalization capability, many deep learning-based
models for FP have sprung up in recent years. They achieved
the above goal by making models understand semantic infor-
mation of an image. Kümmerer et al. [35], [36] first attempted
to apply transfer learning to FP. They enabled the model to
leverage the knowledge from existing CNNs trained in im-
age classification task. Afterwards, many works proposed novel
attempts in model structure to gather semantic information
better.

Specifically, multi-scale feature fusion, generative adversar-
ial network and long-range contextual information are three
popular strategies. Here, we focus on the first one. For in-
stance, Liu et al. [37] designed three convolutional neural net-
works (CNNs) of different scales and fused them with two
fully connected layers, which were trained using multiresolu-
tion image patches centered on fixation and non-fixation loca-
tions. Kruthiventi et al. [38] employed a relatively deeper CNN
(i.e., VGG-16 [39]), and proposed a novel location-biased con-
volutional layer to fuse semantic information at multi-scale sub-
spaces. In [40], Cornia et al. extracted features from different lev-
els of VGG network into encoder and added a learnable center
prior by learning a set of Gaussian parameters. Wang et al. [41]
took three decoders to perceive the different scale subspaces
of encoder network and integrate them into the predicted fixa-
tion density map. Yang et al. [18] further thought about com-
putational efficiency of multi-scale features. They employed a
dilated inception network where the parallel inception structure
captured multi-scale features and the dilated convolutions signif-
icantly reduced the computation load. Reddy et al. [42] proposed
a minimal FP model and briefly summarized four key compo-
nents of FP models, including input features, multi-level integra-
tion, readout architecture, and loss functions. Wang et al. [2], [3]
utilized the features from higher layers to model human fixation
locations. Then they combined the fixation prior with the fea-
tures from the lower layers to facilitate the task of salient object
detection. In addition to multi-scale feature fusion, Pan et al. [43]
and Che et al. [44] introduced generative adversarial network
into FP. Liu et al. [45] and Lou et al. [46] emphasized long-
range information during feature extraction by long short-term
memory (LSTM) model and multi-head self-attention model,
respectively.

The above-mentioned studies can deal with simple scenes.
Nevertheless, as for the semantically rich scenes, they still can-
not fully understand the relative importance of multiple salient
regions. In this article, we pay attention to making the model ex-
plicitly understand the relative importance relationship, and pro-
pose an effective solution named RINet. Concretely, we present
the HRIE module to learn the local-global relative importance
relationship at multiple scale subspaces. Moreover, the CRF
loss is designed to place extra emphasis on relatively complex
scenarios.

B. Attention Mechanism

The human vision system can distinguish the informative re-
gions from their neighbors naturally. The attention mechanism
imitates this inherent characteristic of human vision by adap-
tively weighting features according to the importance of the
input [47].

The development of attention mechanism can be coarsely di-
vided into two stages. As for the first stage, training an addi-
tional CNN branch to re-weight the input feature is the main
characteristic. SENet [48] proposed a squeeze-and-excitation
(SE) block to emphasize important channels. The squeeze oper-
ation extracted the global spatial information and the follow-up
excitation operation exploited fully-connected layers to capture
channel-wise attention vector. In [49], Park et al. designed two
parallel branches, i.e., channel attention and spatial attention,
which were carried out simultaneously and integrated into one
matrix to weight the input. Differently, CBAM [50] stacked
channel attention and spatial attention in series. The channel
and spatial attention maps were multiplied to the input feature
sequentially. Li et al. [51] applied attention mechanism to fea-
ture fusion, which suggested high-level features could serve as
guidance to select low-level features. The second stage is the
self-attention era. The pioneering work [19] introduced self-
attention to computer vision from the field of natural language
processing [52]. It proposed the non-local block which took the
similarity matrix as importance map to weight the input fea-
ture. Following [52], many subsequent works made progresses
in different aspects including accuracy improvement [53] and
computational complexity reduction [54], [55].

In our work, we consider the similarity matrix in self-attention
mechanism [19] as the local relative importance map. Further-
more, we propose the GIS operation to obtain global relative
importance maps on both spatial and channel dimensions. Given
different scales of salient regions, we enhance the relative im-
portance in a hierarchical manner. In this way, the relative impor-
tance relationship is modeled explicitly, which helps the model
handle the semantically rich scenes and pushes the FP task to
achieve further improvement.

C. Discriminative Loss Function

There has been much interest in designing loss functions to
discriminate the special samples and put emphasis on these
samples when training. For example, Hastie et al. [56] down-
weighted the loss of examples with large errors to reduce the
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Fig. 3. (a) Pipeline of the proposed RINet. Our model contains three stages: feature extraction, hierarchical relative importance enhancement (HRIE) and feature
merging. Firstly, the feature extraction stage encodes the features from an input image. Then, the relative importance of basic features at different scales is enhanced
by HRIE. Finally, the output features of HRIE are fused to predict the fixation density map in feature merging stage. (b) The details of one branch of HRIE,
i.e., RIE-2, where the input of Global Importance Scoring (GIS) operation is simplified to H = W = 2 or C/2 = 4 for understanding.

disturbance of outliers. In [57], the class imbalance was re-
lieved by emphasizing samples of minority classes. To force
the network to learn the small separation borders, the distances
to the border of the nearest cell and the second nearest cell were
taken into loss function as part of weight parameter. The rep-
resentative focal loss [58] discriminated the hard samples dur-
ing training. It down-weighted the contribution of easy sam-
ples to total loss. Based on focal loss, Ridnik et al. [59] and
Li et al. [60] solved the issue of positive sample scarcity and
long-tailed data distribution further, respectively. Ridnik et al.
suggested the discrimination of easy samples and hard sam-
ples in focal loss was insufficient. Therefore, they proposed
an additional asymmetric scheme to adjust the contribution of
easy samples. Li et al. thought focal loss only worked well
on the foreground-background imbalance problem under the
category-balanced distribution but cannot handle the long-tailed
situation. They adopted a category-relevant focusing factor to
address the positive-negative imbalance of different categories
separately. Besides, Li et al. [61], [62] changed the sharp one-hot
label to soft quality label on the basis of focal loss to merge
the classification branch and classification quality prediction
branch.

Inspired by the above, we introduce the focal loss into FP
task, and propose a CRF loss to discriminate the hard samples
and emphasize them. We discover the more complex the input
image, the worse the prediction performance, where the com-
plexity is quantified by the number of local maximum. There-
fore, we regard the complex scene as hard samples and design a

complexity-relevant focusing factor in our CRF loss to assist the
model in understanding the relative importance of hard samples.

III. METHODOLOGY

In this section, we illustrate the proposed Relative
Importance-aware Network (RINet). In Section III-A, we
present the overall architecture of our model. In Section III-B,
we elaborate on the details of Hierarchical Relative Importance
Enhancement (HRIE) module. In Section III-C, we describe the
complexity-relevant focal (CRF) loss. Finally, the implementa-
tion details are provided in Section III-D.

A. Architecture Overview

An extraction-merging structure is adopted in the proposed
RINet. In Fig. 3(a), we can see that RINet consists of three
stages, including feature extraction, hierarchical relative impor-
tance enhancement, and feature merging.

1) Features Extraction: CNNs are able to extract multi-level
features from the image where the shallow layers capture
low-level texture cues and deep layers encode high-level se-
mantic information. We exploit the fully-convolutional part of
DenseNet [63] as the backbone, that is, the last global aver-
age pooling layer and fully connected layer are removed. The
backbone is divided into five stages and each stage is denoted
as Block(i) in which i ∈ {0, 1, 2, 3, 4} stands for the index of
block. We extract the feature map from the last convolution layer
of each block and denote them as Fi ∈ RH×W×C where H , W
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and C are the dimension of the height, width and channel, re-
spectively. The input size is 384×288 and the output size of
every block is shown in Fig. 3(a).

2) Hierarchical Relative Importance Enhancement: In par-
ticular, we employ three parallel branches named RIE-i to
enhance features hierarchically. These branches generate the
local-global relative importance maps at different scale sub-
spaces. We believe that the semantic information contained in
three deep layers is enough to understand saliency of an image.
More shallow layers bring undesired details and cause a lot of
extra computational cost, which is proved by the experiments
in Section IV-C. The outputs after enhancement are denoted as
Fi

e ∈ RH×W×C and the details of HRIE are described in Sec-
tion III-B.

3) Feature Merging: The feature merging stage is designed
with respect to the features extraction stage, that is, the feature
merging block ConvUp(i) matches the corresponding Block(i)

(i ∈ {1, 2, 3, 4}). ConvUp(i) block consists of concatenation,
one convolutional layer and one upsampling layer. The upsam-
pling layer uses the bilinear upsampling algorithm to restore
2× resolution. Notably, there is no concatenation operation
in ConvUp(4) because ConvUp(4) is the deepest layer. Given
ConvUp(i) only merges the two adjacent blocks, we further
adopt a Fusion block to fuse the multi-level features. The outputs
of ConvUp(2), ConvUp(3) and ConvUp(4) are up-sampled 2×,
4× and 8×, respectively, to match the output size of ConvUp(1).
Actually, the Fusion block has two more convolutional layers
than ConvUp(i), facilitating the generation of fixation density
map.

B. Hierarchical Relative Importance Enhancement

Convolutional operation calculates the information within a
fixed window so that it is the inherent characteristic that con-
volution fails to handle the salient regions of various sizes.
We propose the HRIE module with a hierarchical structure to
compensate limitation of convolution. The details of HRIE are
shown in Fig. 3(b). It is comprised of two key components: Rel-
ative Importance Enhancement (RIE) block and Global Impor-
tance Scoring (GIS) operation. In the following, we elaborate on
these two components.

1) Relative Importance Enhancement Block: To obtain the
relative importance relationship of multiple image regions, we
have to compare different image regions. We design a local rel-
ative importance enhancement (local RIE) branch to measure
the importance of different image regions with one region as
reference. To obtain an entire explicit relative importance map,
we further propose a global relative importance enhancement
(global RIE) branch to fuse local relative importance maps into
one map.

As for local RIE branch of RIE-i (i ∈ {2, 3, 4}), we first apply
the convolutional operation to reduce the channel dimension
by half to economize on computational cost, and then apply
reshape operation to get the feature embeddings which refer to
queries qi

l , keys ki
l and values vi

l . The size of qi
l , k

i
l and vi

l are
RHW×C/2, where H is height of corresponding input feature
Fi, W is width and C is channel dimension. Furthermore, the

bottleneck structure makes the feature compressive. This process
can be defined as:

qi
l = rs(conv(Fi;Wi

l,q)), i ∈ {2, 3, 4} ,
ki
l = rs(conv(Fi;Wi

l,k)), i ∈ {2, 3, 4} ,
vi
l = rs(conv(Fi;Wi

l,v)), i ∈ {2, 3, 4} , (1)

where rs(·) represents reshape operation, and conv(∗;Wi
l,∗)

means the convolution layer with parameters Wi
l,∗. We employ

the matrix multiplication between qi
l and ki

l to obtain the local
relative importance map mi

l ∈ RHW×HW and exploit softmax
function to normalize it as follows:

mi
l = Softmax(qi

l ⊗ (ki
l)

T ), (2)

where ⊗ indicates matrix multiplication and Softmax(·) is the
softmax function. After vi

l is weighted by the local relative im-
portance map mi

l , the following convolution layer restores its
channel from C/2 to C. Specifically, the feature is processed by
local RIE as:

Fi
l = rs(conv((mi

l ⊗ vi
l);W

i
l)), (3)

As for global RIE, the global relative importance is built in
both spatial domain and channel domain. In spatial domain, we
use the same way as local RIE, transforming extracted feature
to queries qi

gs and keys ki
gs. Afterwards, the well-designed op-

eration GIS transforms the local relative importance map to the
global relative importance map mi

gs ∈ RH×W×1 as:

mi
gs = GIS(qi

gs ⊗ (ki
gs)

T ), (4)

where GIS(·) denotes the global importance scoring operation.
In channel domain, analogously, global RIE computes feature
embeddings using the same way as the spatial domain, generat-
ing queries qi

gc ∈ RHW×C/2 and keys ki
gc ∈ RHW×C/2. Based

on GIS operation, the global RIE in channel domain is summa-
rized as:

mi
gc = conv(GIS((qi

gc)
T ⊗ ki

gc);W
i
gc), (5)

Referring to BAM [49], we join the global relative importance
in spatial domain and channel domain into a weight matrix with
the same size asFi. Concretely, the spatial global relative impor-
tance map mi

gs repeats C times along the channel dimension,
while the channel global relative importance map mi

gc repeats
H ×W times along the spatial dimension. The final weight ma-
trix is calculated as follows:

mi
g = rp(mi

gs)⊕ rp(mi
gc), (6)

where rp(·) represents repeat operation and ⊕ is element-wise
summation. The relative importance of input features is en-
hanced locally and globally as:

Fi
e = (Fi ⊕ Fi

l)�mi
g, (7)

where � is element-wise multiplication. Because the local RIE
branch has extracted information from Fi to vi

l and weighted vi
l

with the local relative importance mapsmi
l , the weighted feature

Fi
l is added with Fi. The global RIE branch only measures the

relative importance in spatial and channel domains to generate
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Fig. 4. Visualization of mi
gs where i ∈ {2, 3, 4}.

the weight matrix mi
g , so that the global relative importance

map mi
g is multiplied with Fi.

2) Global Importance Scoring: To obtain an entire explicit
relative importance map rather than that with one patch em-
bedding as reference, we use GIS operation to fuse multiple
local relative importance maps into a global relative importance
map. In spatial domain, the GIS operation is denoted as GIS-S.
The result of matrix multiplication between qi

gs and (ki
gs)

T

is defined as f i
gs ∈ RHW×HW . As shown in the top part of

Fig. 3(b), we utilize softmax function to normalize every row of
f i
gs and define the n-th row after softmax as f i

gs,n ∈ R1×HW .
f i
gs,n measures the similarity between the n-th feature embed-

ding qi
gs,n ∈ R1×C/2 (i.e., the n-th row of qi

gs) and all feature
embeddings (i.e., all columns of (ki

gs)
T ). Thus, f i

gs,n can be
regarded as the local relative importance map with the n-th fea-
ture embedding as reference. Next, we add multiple local rela-
tive importance maps element by element and rescale them by
min-max normalization. Finally, the result is reshaped to restore
its original spatial size. The GIS-S operation can be formulated
as follows:

mi
gs = rs(norm(f i

gs,1 ⊕ f i
gs,2 ⊕ · · · ⊕ f i

gs,HW )), (8)

wheremi
gs ∈ [0, 1]H×W×1 andnorm(·) is min-max normaliza-

tion. We visualize mi
gs in Fig. 4. It can be seen, within a single

scale subspace, the relative importance relationship is modeled
explicitly by one map. In channel domain, the GIS operation is
denoted as GIS-C. Similarly, the global relative importance map
mi

gc is generated as follows:

mi
gc = conv(rs(norm(f i

gc,1 ⊕ · · · ⊕ f i
gc,C/2));W

i
gc), (9)

where mi
gc ∈ [0, 1]1×1×C whose channel is restored to C

through a convolutional layer, f i
gc is the matrix multiplica-

tion result of (qi
gc)

T and ki
gc, and f i

gs,n denotes the n-th row
of f i

gc after softmax. Consequently, the final weight matrix
mi

g ∈ [0, 2]H×W×C can both down-weight and up-weight the
feature embeddings.

Fig. 5. The statistics about complexity and evaluation metrics on SALICON
validation set.

C. Complexity-Relevant Focal Loss

The proposed CRF loss is derived from the focal loss [58]
which intends to pay more attention to the difficult samples.
Nevertheless, in FP, the definition of difficult samples is blurry.
We assume that the difficulty of an image sample is related to the
number of salient regions in the image, namely the local max-
imum number of ground truths. For the sake of simplification,
the number of salient regions is defined as the complexity of
an image. The relationship between performance and complex-
ity is explored in Fig. 5. The statistical results based on several
popular models support that the increase of complexity widens
the gap between the predicted results and the ground truths,
which validates our aforementioned hypothesis. Additionally,
we find if the complexity is used to weight different samples
directly, the model is hard to converge during training proce-
dure. Learning from the warming-up method in [64], we design
a complexity-relevant focusing factor λ to progressively adjust
the weighting process as:

λ = 1 +

(
2

1 + e−γp
− 1

)
· c
α
, (10)

where α is in charge of scaling and set to 10 in all experiments, c
is short for complexity, p is the quotient of current iteration and
total iterations which ranges from 0 to 1 during training, and γ
is responsible for tuning the weighting speed. As illustrated in
Fig. 6, it can be seen that the focusing factor λ ranges from 1 to
1 + c

α gradually. As a result, the samples with higher c (i.e., the
difficult samples) are emphasized by higher λ progressively.

Pearson’s Correlation Coefficient (CC) and Kullback-Leibler
divergence (KL) are broadly-used evaluation metrics in FP. The
former rates how correlated two variables are and the latter mea-
sures the difference between two probability distributions. They
are computed as:

KL(P,G) =
∑
i

Gi log

(
ε+

Gi

ε+Pi

)
, (11)
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Fig. 6. The focusing factor λ of different parameters (c, γ) during training.

CC(P,G) =
cov(P,G)

sd(P) · sd(G)
, (12)

where P is the predicted map, G is the ground truth, ε is a
regularization constant, sd(·) represents standard deviation, and
cov(·) refers to covariance. We propose the CRF loss based on
these two metrics in this article. Typically, both KL and CC are
always positive values. The lower the KL score, the better the
performance. Thus we multiply KL with the focusing factor λ to
increase the contribution of difficult samples. CC is the opposite,
so we divide CC by λ to achieve the same goal. Therefore, the
CRF loss is defined as:

LCRF (P,G) = λ ·KL(P,G)− CC(P,G)

λ
, (13)

The core idea of CRF loss is to gradually increase the contribu-
tion of difficult samples. The CRF loss can be easily extended
to other loss functions in FP with tiny additional computational
cost.

D. Implementation Details

The proposed RINet is implemented by PyTorch [65] with one
single NVIDIA TITAN Xp GPU. During training procedure, we
initialize the backbone of RINet, i.e., DenseNet-161, with the
pre-trained weights on ImageNet [66]. The remaining weights
are initialized by the default setting of PyTorch. We first train our
model on the SALICON training set while monitoring whether
it converges on the SALICON validation set. Then we fine-tune
our model on the MIT1003 dataset [14] with the same evaluation
protocol in [17], [18], [45], [67], that is, 903 images randomly
selected from MIT1003 are used for training and the remaining
100 images are for validation. We use the Adam optimizer [68]
to train our RINet and set the batch size to 8. The initial learning
rate of training and fine-tuning are all set to 10−4, which will be
divided by 10 after every four epochs. We train our model on
SALICON for 10 epochs and fine-tune it on MIT1003 for five
epochs. The input image size of the model is set to 384×288
with zero padding to keep the original aspect ratio. The weight
γ and α in Eq. 10 are fixed as 5 and 10, respectively.

IV. EXPRERIMENTAL RESULTS

In this section, we present our experimental results and an-
alyze them. In Section IV-A, the popular datasets and evalua-
tion metrics in FP are introduced briefly. In Section IV-B, we
compare our model with existing state-of-the-art models on five
datasets quantitatively and qualitatively. In Section IV-C, the in-
fluence of main components of RINet is analyzed in detail. In
Section IV-D, we explore how the parameters in CRF loss affect
the performance.

A. Datasets and Evaluation Metrics

1) Datasets: SALICON [13] is the largest public dataset in
FP which includes 10,000 training images, 5,000 validation im-
ages and 5,000 test images. The size of each image is 480×640.
This dataset uses mouse movements to simulate eye movements.
The ground truth labels of test set are all held out. Researchers
can evaluate their models on the SALICON challenge website.1

MIT1003 [14] contains 1,003 images and the eye movements
are collected from 15 subjects. Usually, the FP models are trained
on the SALICON dataset firstly and finetuned on the MIT1003
dataset subsequently.

MIT300 [69] collects 300 natural images and the subjects
are 39 observers. The ground truth labels are all held out. As a
result, for evaluation, the researchers email their results to MIT
Saliency Benchmark.2

TORONTO [27] collects 120 images from indoor and out-
door scenes which are highly varied and natural. The eye move-
ment data is collected from 20 subjects.

PASCAL-S [70] extends 850 existing images from PASCAL
2010 dataset3 with eye fixations. A free-viewing task is given to
8 subjects to get the eye movement data.

DUT-OMRON [71] consists of 5,168 images and eye move-
ment data collected from 5 subjects, which is a new large-scale
challenging dataset in FP.

2) Evaluation Metrics: The evaluation metrics used in our
experiments include two categories, i.e., location-based and
distribution-based metrics. The location-based metrics include
Area Under ROC Curve (AUC), shuffled AUC (sAUC), Normal-
ized Scanpath Saliency (NSS), and Information Gain (IG). The
distribution-based metrics involve Similarity (SIM), CC, and
KL. More detailed descriptions of these metrics can be found
in [72]. For KL, lower value represents better performance. For
the other metrics, larger values are regarded to be better.

B. Comparison With the State-of-The-Art Models

1) Quantitative Comparison: We compare the proposed
RINet with 28 state-of-the-art FP models, including ITTI [15],
GBVS [16], AIM [26], CAS [73], SUN [28], SAM-ResNet [17],
MSI-Net [74], GazeGAN [44], DINet [18], TranSalNet [46],
UNISAL [75], SimpleNet [42], EML-NET [76], CEDNS [77],
SalED [67], SalFBNet [78], DeepGaze I [35], DeepGaze II [36],

1[Online]. Available: http://salicon.net/challenge-2017/
2[Online]. Available: https://saliency.tuebingen.ai/
3[Online]. Available: http://www.pascal-network.org/challenges/VOC/

voc2007/workshop/index.html
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TABLE I
QUANTITATIVE PERFORMANCE COMPARISON ON SALICON BENCHMARK

ICF [36], DeepGaze II-E [79], CASNet II [80], DVA [41], Sal-
GAN [43], MLNet [40], eDN [81], ACSalNet [82], FastSal [83],
SATSal [84]. For SALICON and MIT300 benchmarks, we sub-
mit the results of our model trained on SALICON training set to
SALICON benchmark and the results of our model fine-tuned
on MIT1003 dataset to MIT300 benchmark. The results of other
models are obtained from their corresponding articles or the two
benchmarks. For TORONTO, PASCAL-S and DUT-OMRON
datasets, since there are no public benchmarks, we conduct the
test by ourselves. Because these three datasets are all natural
eye movement data rather than mouse movement data as SAL-
ICON, we utilize our model fine-tuned on the MIT1003 dataset
to test them. For ITTI, GBVS, AIM, CAS and SUN, we di-
rectly adopt the codes provided by pysaliency.4 For MSI-Net,
GazeGAN, UNISAL and SalFBNet, we use the publicly avail-
able models that have already been trained on the SALICON
dataset and then fine-tuned on the MIT1003 dataset. Because
the released models of SAM-ResNet, DINet, TranSalNet, and
FastSal are only trained on the SALICON dataset, for a fair com-
parison, we fine-tune them on the MIT1003 dataset and then test
on TORONTO, PASCAL-S and DUT-OMRON datasets. As for
ACSalNet, we train it on SALICON dataset and then fine-tune
it on the MIT1003 dataset.

Table I reports the quantitative performance comparison on
SALICON benchmark. It can be observed that our model is
superior to other models on five metrics of IG, CC, AUC, SIM
and KL, and ranks third on sAUC. Our model is not very good
at NSS. The reason is that NSS calculates the average of the
normalized saliency values at the location of fixation [18]. If a
model obtains a higher NSS, the predicted map will be more like
a discrete fixation map rather than a fixation density map, which
means it is difficult to achieve a promising result on both NSS
and other metrics. It can be seen that EML-NET and CEDNS get
the highest NSS scores but obtain low scores on other metrics.

The results of MIT300 benchmark are reported in Table II.
Our model still shows competitive performance on all metrics
except NSS, which is consistent with the ones on SALICON

4[Online]. Available: https://github.com/matthias-k/pysaliency

TABLE II
QUANTITATIVE PERFORMANCE COMPARISON ON MIT300 BENCHMARK

benchmark. RINet outperforms all compared models on AUC,
sAUC, SIM and KL. Specifically, our model outperforms the
second best model by 6.11% on KL (0.409 → 0.384). As for the
CC metric, the score RINet gets is very close to the best one.

We further evaluate our model on TORONTO, PASCAL-S
and DUT-OMRON datasets. The results are reported in Ta-
ble III. Our model achieves the best performance on TORONTO
and gains competitive performance on PASCAL-S and DUT-
OMRON datasets. Besides, our model consistently outperforms
all other models on IG and KL. On TORONTO dataset, our
model outperforms the second best model (ACSalNet) by a large
margin such as 6.87% (1.004→1.073) on IG, and 11.40% (0.544
→ 0.482) on KL. In terms of PASCAL-S dataset, compared to
ACSalNet, our model improves by 5.23% (1.280 → 1.347) and
6.20% (0.726 → 0.681) on IG and KL, respectively. On the
DUT-OMRON dataset, our model ranks first on IG and KL,
and performs almost similar to the best model on CC and AUC.
Among the models compared, TranSalNet, SalFBNet, FastSal
and ACSalNet are the latest models so far, which further demon-
strates the excellence of our model.

2) Visual Comparison: We conduct visual comparisons with
the 11 representative FP models in Fig. 7 including five clas-
sical models (ITTI, GBVS, AIM, CAS, and SUN) and six
deep learning-based models (SAM-ResNet, MSI-Net, Gaze-
GAN, DINet, TranSalNet, and UNISAL). It can be observed
that deep learning-based models surpass classical models over-
all. Furthermore, among deep learning-based models, our model
can capture the relative importance relationship among multiple
salient regions in a better way than competitors. For instance, as
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TABLE III
QUANTITATIVE PERFORMANCE COMPARISON ON TORONTO, PASCAL-S AND DUT-OMRON DATASETS

shown in the second column of Fig. 7, all the compared mod-
els highlight the face as a salient region, but ignore or make a
mistaken emphasis on the salient region of hands. In contrast,
RINet acquires the correct relative importance relationship be-
tween face and hands.

3) Efficiency Comparison: We also report the input size,
model parameters and average processing time (APT) per im-
age in Table III. The model parameters are measured by the
online available codes or borrowed from their original articles.
The APT is tested in our experimental platform. As for model
parameters and APT, our model is at a medium level of com-
putational efficiency. Although the HRIE module needs most of
the computational consumption, it indeed realizes a substantial
improvement in performance for RINet. Combining with the
quantitative results, visual presentations and efficiency compar-
ison, we can conclude that our model is very competitive in FP
task.

C. Ablation Analysis

In this section, we provide comprehensive ablation studies on
SALICON validation set. Firstly, the contribution of each key
component in our model is evaluated. Then we investigate the
rationality of HRIE structure.

1) The Contributions of Main Components: We quantita-
tively evaluate the contributions of main components of our
models, namely, HRIE module and CRF loss in Table IV. Firstly,
the baseline is constructed, which directly passes the features ex-
tracted from backbone to the feature merging stage and is trained
with KL− CC as loss function simply. Next, the HRIE mod-
ule is added over the baseline to evaluate the effectiveness of
HRIE. Obviously, the HRIE module brings significant perfor-
mance improvement on all evaluation metrics. In particular, on
SALICON validation set, the percentage gain of HRIE reaches
0.84% (0.9858 → 0.9941) on IG and 4.93% (0.2007 → 0.1908)
on KL. On TORONTO dataset, HRIE brings the percentage
gain of 6.64% (0.9665 → 1.0307) on IG and 7.26% (0.5548
→ 0.5145) on KL. This confirms our HRIE performs more effi-
ciently than direct operation. In terms of CRF loss, we measure

TABLE IV
ABLATION STUDY ON MAIN COMPONENTS OF THE PROPOSED MODEL ON

SALICON VALIDATION SET AND TORONTO DATASET

its contribution by training the baseline with the proposed CRF
loss. As shown in Table IV, CRF loss also optimizes most met-
rics on both SALICON validation set and TORONTO dataset.
In contrast, the contribution of HRIE is more obvious than CRF
loss. Finally, we apply both HRIE and CRF loss to the base-
line. The combination of HRIE and CRF loss further optimizes
the performance. For example, the score of KL is promoted by
2.15% (0.1908→ 0.1867) compared to only adopting HRIE and
3.61% (0.1937 → 0.1867) compared to only adopting CRF loss
on SALICON validation set. As for the results on TORONTO
dataset, they are consistent with the ones on SALICON valida-
tion set. Overall, both HRIE and CRF loss play important roles
in the proposed RINet. The combination of HRIE and CRF loss
can better boost the performance of our model.

In addition, to demonstrate the effectiveness of HRIE, we
visualize the intermediate feature maps mi

gs (i ∈ {2, 3, 4}) in
Fig. 4. As mentioned in Section I, the scale variation of different
salient regions is an obstacle for relative importance comparison.
Fig. 4 shows HRIE can effectively handle the scale variation
problem. The last three columns of Fig. 4 are the global relative
importance map in spatial domain produced by RIE-2, RIE-3 and
RIE-4, respectively, which show the deeper features recognize
large salient regions, while the shallower features preserve the
detailed information of small salient regions.
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Fig. 7. Visual comparisons with start-of-the-art FP models. Eight examples are presented in a column-wise manner. The first five columns are from SALICON
validation set. The last three columns are from TORONTO, PASCAL-S and DUT-OMRON datasets, respectively.

2) Ablation Study on HRIE Module: To validate the ratio-
nality of HRIE structure, we conduct in-depth ablation studies
about global RIE, local RIE and hierarchical structure.

The RIE-i block consists of a local RIE branch and a global
RIE branch. To explore the effectiveness of local RIE and global

RIE, we offer two variants of RIE-i which remove local RIE
and global RIE, respectively, denoted as w/o Local RIE and w/o
Global RIE in Table V. The absence of Local RIE and Global
RIE leads to performance degradation on all metrics except
NSS, such as 1.29% (0.1867 → 0.1891) and 3.59% (0.1867
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TABLE V
ABLATION STUDY ON HRIE MODULE ON SALICON VALIDATION SET

Fig. 8. Two variants of Global RIE module: (a) Global RIE-S. (b) Global
RIE-C.

→ 0.1934) on KL, respectively. The local RIE calculates lo-
cal importance map for a certain feature embedding. It can be
regarded that the local RIE uses the local importance map as
customized global semantic information to update this feature
embedding, so as to benefit the performance. The global RIE
normalizes and merges all local importance maps to score how
important each feature embedding is. The results prove that em-
phasizing the important feature embeddings is also helpful. The
global RIE branch is constructed in both spatial and channel
domain. To assess the spatial domain and channel domain of
global RIE, we provide two variants, namely Global RIE-S and
Global RIE-C. Global RIE-S simply reserves the spatial domain
by replacing the Global RIE branch with the variant in Fig. 8(a).
Global RIE-C only keeps the channel domain by replacing the
Global RIE branch with the variant in Fig. 8(b). As shown in
Table V, the performance of both variants is degraded (e.g. KL:
0.1867 → 0.1889 of Global RIE-S and 0.1867 → 0.1893 of
Global RIE-C), which proves that emphasizing the important
feature embeddings in both spatial and channel domains is nec-
essary.

The GIS mainly includes three operations, i.e. the Softmax
function, the element-wise summation and min-max normaliza-
tion. We design the ablation study to test whether these opera-
tions are reasonable. As for the Softmax function, we remove
this operation in the variant GIS w/o Softmax in Table V. If with-
out the Softmax function, the local importance maps with larger

values will contribute more to the global importance map. In
fact, only the value comparison within a certain local importance
map is meaningful. Paying more attention to local importance
maps with higher values is meaningless, and even impairs the
performance. The results show the absence of Softmax func-
tion weakens our model. We design the Softmax function to
equalize the contribution of each local importance map. As for
the element-wise summation, it is utilized to fuse local impor-
tance maps. Theoretically, both element-wise summation and
element-wise multiplication are suitable for fusion. However,
the values of local importance maps after Softmax are generally
less than 10−2. Multiplication of hundreds of such small values
exceeds the lower limit of 32-bit float data, even 64-bit double
data, which means it is infeasible actually. As a result, we choose
the element-wise summation to merge local importance maps.
As for the min-max normalization, we provide the model with-
out this operation in the variant GIS w/o Min-max. If discarding
min-max normalization, the higher value of H × W, the higher
value of global importance maps. The consequence is that the
shallower features become more important, which does not obey
Fig. 4. We use the min-max normalization to rescale global im-
portance maps to a unified range. The experimental results of
GIS w/o Min-max in Table V prove that min-max normalization
is necessary.

To study the influence of hierarchical structure, we modify
the number of RIE-i and offer three variants as reported in the
bottom part of Table V. By comparing the results of RIE-3,4,
RIE-4 and our model (i.e. RIE-2,3,4), we find that addition of
the number of RIE-i blocks brings continuous performance im-
provements (e.g., IG: 0.9896 → 0.9939 → 0.9947, SIM: 0.8021
→ 0.8022 → 0.8044). The reason behind this is that the seman-
tic information and detailed information captured by the deeper
block and shallower block, respectively, are complementary. For
example, as depicted in the first row of Fig. 4, m4

gs focuses on
the face while ignores the logo of laptop. m2

gs and m3
gs com-

pensate for the negligence. Nonetheless, this trend disappears
in the variant of RIE-1,2,3,4 (e.g., IG: 0.9947 → 0.9898, SIM:
0.8044 → 0.8007). This is because the shallower blocks may
cause undesired details [46]. Consequently, we exclude RIE-1
from our model.

D. Loss Function Analysis

In this section, we offer numerous experiments to analyze the
behavior of the loss function. Specifically, we observe 1) the
influence of loss function components, 2) the influence of α and
γ, and 3) the generalization of CRF loss.

1) Influence of Loss Function Components: To get a higher
score on NSS, previous models usually exploit NSS as part of
loss functions, such as EML-NET, CEDNS, SAM and TranSal-
Net. For further improving our performance on NSS, we include
NSS as part of our loss function. The results in Table VI support
that the addition of NSS can indeed improve location-based met-
rics (i.e., IG, NSS and AUC), but it will lead to a sharp decline in
the distribution-based metrics (i.e., CC, SIM and KL). Our model
trained without NSS as part of loss function achieves a better
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT COMPONENTS OF LOSS FUNCTION

ON SALICON VALIDATION SET

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT α AND γ ON SALICON

VALIDATION SET. RESULTS FOR VARIOUS α ARE SHOWN IN THE UPPER PART

WHILE RESULTS FOR VARIOUS γ ARE SHOWN IN THE BOTTOM PART. THE BEST

RESULTS OF α AND γ ARE IN BOLD

Fig. 9. The statistics about image number of different complexitys on SALI-
CON training set.

comprise between location-based metrics and distribution-based
metrics.

2) Influence of α and γ: The CRF loss introduces two new
hyperparameters, α in charge of scaling and γ responsible for
tuning the weighting speed. Our next attempt is to explore the
influence of α and γ on the CRF loss. Results for various α are
shown in the upper part of Table VII. It can be seen α = 10
works best. As for γ, when γ increases, the warming-up stage
is compressed as shown in Fig. 6. In other words, when γ is
larger than 100, the CRF loss approximates to weight the difficult
samples directly. The training procedure always breaks down.
Besides, we note that smaller γ (i.e. a persistent warming-up
stage) results in better performance. This is because, statistically,
simpler samples predominate in the dataset as shown in Fig. 9.
The focusing factor λ treats all samples equally in the beginning
so that the model tends to handle the simpler samples. Gradually,
the focusing factor λ changes emphasis to complicated scenes
such that the model can master the knowledge from easy to
difficult, which benefits the performance.

3) Generalization of CRF Loss: CRF loss promotes the per-
formance of RINet as shown in Table IV (Ours vs. + HRIE).
To evaluate its generalization capability, we introduce other loss

TABLE VIII
PERFORMANCE COMPARISON BETWEEN ORIGINAL LOSS FUNCTION AND THE

ONE OPTIMIZED BY OUR CRF LOSS ON SALICON VALIDATION SET, WHERE

THE BETTER RESULT IS IN BOLD

Fig. 10. Some failure cases of our RINet.

functions used in FP task into our RINet, including the total
variation distance (TVdist) of DINet [18] and SAM loss [17]
(i.e., 10·KL −2· CC−NSS), and extend our CRF loss to them.
As shown in Table VIII, we can observe the performance basi-
cally increases with the help of CRF loss, particularly KL and
IG (e.g. KL: 12.35% on TVdist, 6.67% on SAM loss). This con-
firms our CRF loss can be generalized to other loss functions
and promote the performance.

E. Failure Cases and Analysis

In this section, we illustrate two types of failure cases of RINet
in Fig. 10 and point out the possible directions of future work.
The first two columns represent one type of failure cases. When
there is no very salient region in the image, the fixation den-
sity map tends to have a center bias. Our model only grasps
this knowledge implicitly during the training procedure, which
might be not enough to handle the knowledge. Adding the center
bias as an explicit prior like [35], [36] is a possible solution. The
other way is utilizing position coding to let the feature get the
position information. The second type of failure cases is shown
in the last two columns. When a relatively large object fills the
field of vision and there is no obvious difference between its
local patches, our model fails to accurately highlight the salient
regions. In this failure case, the corners of the object seem to
attract attention. We think combining FP with the task of in-
stance segmentation might be beneficial. Instance segmentation
can point out how large the object is and where the boundary
of the object is, which provides useful information to solve this
problem.
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F. Applications and Discussion

In this article, we try to make the model understand the relative
importance relationship better. This relationship plays an impor-
tant role in not only the FP task, but also many tasks in the vision
community. We have discussed the relative importance relation-
ship in spatial and channel domains in Section III-B. The pro-
posed RIE module can be employed directly as a plug-and-play
module to handle the relative importance relationship in spatial
and channel domains, so as to benefit the related tasks such as
salient object detection [85], [86], co-saliency detection [87],
[88] and ROI extraction in medical images [89], [90]. Beyond
the spatial and channel domains, the RIE module can also be
generalized to master the relative importance relationship in
modality domain (i.e., multi-modality magnetic resonance im-
ages [91], [92] and RGB-D/RGB-T images [93], [94]), time
domain (i.e., video [95]), and feature domain (i.e., multi-level
features [96]). We just need to adjust the GIS operation to com-
pare the features of different modalities, different frames, or
different levels of the network.

Besides supervised learning, relative importance is also ben-
eficial to scribble-supervised learning. For instance, for the task
of scribble-supervised video object segmentation [97], our RIE
module can highlight the more important regions as extra knowl-
edge to make up for the coarse scribble annotation.

V. CONCLUSION

In this article, we have proposed a novel and effective relative
importance-aware network (RINet) for FP. The relative impor-
tance relationship is captured by the well-designed hierarchical
relative importance enhancement (HRIE) module, which gener-
ates local-global relative importance maps at different scale sub-
spaces and takes relative importance of both spatial and channel
domains into account. Besides, samples of difficult scenes are
emphasized by complexity-relevant focal (CRF) loss. The ex-
perimental results of loss function analysis show that CRF loss
not only brings performance gains in the loss function used in
this article, but also can be generalized to other loss functions
for FP. Comprehensive experimental results, including quantita-
tive comparison and visualization analysis, have proved the out-
standing performance of RINet with respect to 28 state-of-the-art
FP models.
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