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Adaptive Group-Wise Consistency Network
for Co-Saliency Detection

Zhen Bai , Zhi Liu , Senior Member, IEEE, Gongyang Li , and Yang Wang

Abstract—Co-saliency detection focuses on detecting common
and salient objects among a group of images. With the application
of deep learning in co-saliency detection, more accurate and
more effective models are proposed in an end-to-end manner.
However, two major drawbacks in these models hinder the further
performance improvement of co-saliency detection: 1) the static
manner-based inference, and 2) the constant quantity of input
images. To address these limitations, we present a novel Adaptive
Group-wise Consistency Network (AGCNet) with the ability of
content-adaptive adjustment for a given image group with random
quantity of images. In AGCNet, we first introduce intra-saliency
priors generated from any off-the-shelf salient object detection
model. Then, an Adaptive Group-wise Consistency (AGC) module
is proposed to capture group consistency for each individual
image, and is applied on three-scale features to capture the
group consistency from different perspectives. This module is
composed of two key components, where the content-adaptive
group consistency block breaks the above limitations to adaptively
capture the global group consistency with the assistance of intra-
saliency priors and the ranking-based fusion block combines the
consistency with individual attributes of each image feature to
generate discriminative group consistency feature for each image.
Following AGC modules, a specially designed Aggregated Decoder
aggregates the three-scale group consistency features to adapt to
co-salient objects with diverse scales for preliminary detection.
Finally, we incorporate two normal decoders to progressively
refine the preliminary detection and generate the final co-
saliency maps. Extensive experiments on four benchmark datasets
demonstrate that our AGCNet achieves competitive performance
as compared with 19 state-of-the-art models, and the proposed
modules experimentally show substantial practical merits.

Index Terms—Co-saliency detection, content-adaptive layer,
group consistency, intra-saliency priors, semantic information.
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I. INTRODUCTION

SALIENCY detection simulates the human visual attention
mechanism during free-viewing within a single image to

rapidly focus on the most attractive regions [1], [2]. As an ex-
tended branch of saliency detection, co-saliency detection ex-
plores the most repeatedly occurring salient objects with the
same attributes across a group of relevant images.

The most important information of the group of images can be
represented by the extracted co-occurring patterns or the prime
objects within contexts of the group [3], [4]. With this ability,
co-saliency detection is widely used as an inherent part in many
applications, such as image co-segmentation [5]–[7], image co-
localization [8], and image retrieval [9].

Compared with saliency detection in a single image, mining
the interaction of a group of images is a further essential step
for co-saliency detection. Existing co-saliency detection mod-
els [10]–[25] generally focus on tackling two key issues to ensure
that the detected objects are salient and similar with each other:
1) extracting representative features to characterize salient ob-
jects and 2) mining group consistency.

At the early stage, co-saliency detection models [10], [12],
[13], [24], [26] are mainly based on handcrafted features, and
assume that the co-salient objects in multiple related images
should share certain shallow-level consistency. Researchers have
designed some constraints to capture the group consistency of a
given image group, e.g., Kullback-Leibler divergence [26], clus-
ter [10], and manifold ranking [12], [13], [24]. However, these
models cannot sufficiently capture high-level object semantics,
and the handcrafted features are unstable on complex scenes,
e.g., when there is a large appearance variance of co-salient ob-
jects across images, or when the co-salient objects are similar to
the background. These factors often lead to poor performance.

Recently, the deep-learning based co-saliency detection mod-
els [4], [18]–[23], [27]–[29] demonstrate more powerful per-
formance than handcrafted feature-based co-saliency detection
models [30]. These models extract Convolutional Neural Net-
work (CNN) features and model collaborative relationships of
features from group-wise and single images, and obtain promis-
ing results. However, there are two major limitations in these
models, which hinder the further performance improvement of
co-saliency detection:

First, most end-to-end models [18], [20]–[23] capture group
consistency in a static manner, where the model parameters are
generally fixed once trained, which reduces their generalizability
of handling objects of unseen categories. We take some results
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Fig. 1. Illustrations for the problems of existing end-to-end models to de-
tect co-salient objects. Examples of cricket ball group in CoSOD3k [30]. GT
represents ground truth.

of IML [21] as examples in Fig. 1. Due to the training dataset
including human category, the person who appears in the fifth
image is wrongly identified by IML [21] as co-salient object.
The real co-salient objects are cricket balls, which are not de-
tected in the first image by IML model. Second, most end-to-end
co-saliency detection models [20], [21], [23] are limited by a
constant quantity of input images. Whether in the training or
inference stage, the complete image groups have to be divided
into some subgroups with a specified number of images. With
different partial image groups as inputs, the global consistency
capture within a complete image group is deficient for these
models, resulting in the inconsistent inference for different com-
binations. When the number of images in a subgroup is fixed to
a small value, some frequently occurring attributes will be en-
larged. From the results of IML [21] in Fig. 1, when the cricket
balls are highlighted, the mallets that often accompany them are
mistakenly highlighted by IML. The root cause is that the ways
(e.g., feature concatenation) of modeling the inter-correlation
among multiple images and combining the individual attributes
with inter-correlation are improper.

To break the above limitations, we propose an end-to-end
Adaptive Group-wise Consistency Network (AGCNet) to detect
co-salient objects within an image group, where the number of
images in the group can be variable. The key idea of AGCNet is
to adaptively capture the global group consistency and integrate
it with attributes of each individual image for more discrimina-
tive reflecting on each image of the group. Specifically, in light of
that state-of-the-art image salient object detection (SOD) models
can achieve comparable performance in co-saliency detection,
we introduce the results of any off-the-shelf image SOD mod-
els into our model. In our view, the extracted salient regions
from SOD models can be taken as the intra-saliency priors to
conduct the semantic matching within an image group, model-
ing the inter-semantic correlation for capturing the global group
consistency. Moreover, considering that co-salient objects in a
group of images often belong to the same semantic category
but vary in terms of some individual attributes [31], we further
combine the global group consistency with individual attributes
to keep the internal coherence of any co-salient objects. Be-
sides, in light of that the co-salient objects of a group vary in
scale even within the same category and existing attribute gap

between different scales, we explore local and global comple-
mentation for different-scale group consistency in the decoder.
Finally, on account of the excellent performance of the existing
image SOD models in object edge detection, we combine group
consistency with intra-saliency priors to promote the detected
co-salient objects to retain fine edges.

In particular, our AGCNet is composed of three parts: an en-
coder for basic feature extraction, three Adaptive Group-wise
Consistency (AGC) modules for modeling collaborative rela-
tionships among a group of image features, and a hybrid decoder
for co-saliency reasoning. Specifically, our AGC module con-
sists of a Content-adaptive Group Consistency (CGC) block and
a Ranking-based Fusion (RF) block. The CGC block is capable
of adaptively capturing more flexible global group consistency
for current input group images. The intra-saliency priors are
employed to mask the basic features to generate intra-semantic
features as convolution kernels for a dynamic convolutional
layer [32], which through filtering achieves point-to-point se-
mantic matching for the given image group with random quan-
tity. Subsequently, a weighted summation is applied on the
matching information to generate the group consistency map,
potentially scoring co-saliency for each pixel of each image.
RF block targets for achieving the combination of global group
consistency and attributes of each individual image. To ensure
the internal consistency of each image, RF block further mines
the self-correlation relationship within pixels of each image
through an affinity matrix for the representation of the indi-
vidual attributes. Finally, this block combines the group consis-
tency map with the individual attributes to rearrange the channel
group consistency features to drive the pixels of co-salient ob-
jects being highlighted more uniformly for subsequent reason-
ing. These two blocks mainly involve the operations of dynamic
convolution, multiplication, addition and rearrange. Thus, this
module can be applied to the input group with random quantity
of images, and is content adaptive to the input image group,
without bias to the category attributes of training data. The
hybrid decoder includes an Aggregated Decoder and two nor-
mal decoders. Our Aggregated Decoder aggregates three-scale
group consistency features through three Attentional Feature
Fusion (AFF) blocks for preliminary detection of co-salient ob-
jects. Based on the attentional feature fusion mechanism, the
AFF block globally and locally fuses group consistency fea-
tures at different scales to remedy group information inconsis-
tency. Since the group consistency is captured based on rel-
atively high-level features, the proposed aggregated decoder
that aggregates different-scale group consistency can only lo-
cate co-salient objects in the form of low-resolution co-saliency
maps. Thus, we adopt two normal decoders to improve the in-
tegrity of co-salient objects by broadcasting the preliminary
co-saliency to shallow-level features and further combine the
intra-saliency priors for progressive refinement.

Our contributions can be summarized as follows:
� We propose an end-to-end Adaptively Group-wise Consis-

tency Network, which introduces the intra-saliency priors
generated from any off-the-shelf image SOD models, for
co-saliency detection in an image group with random quan-
tity. Our AGCNet can adaptively capture group consistency
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and aggregate multi-scale group consistency, highlighting
co-salient objects with fine structures.

� We propose an Adaptively Group-wise Consistency mod-
ule to model collaborative relationships among a group
of image features in a dynamic manner. This module can
adaptively achieve semantic matching with the assistance
of intra-saliency priors and capture global group consis-
tency. It can further integrate the self-correlation of indi-
vidual image with the global group consistency to generate
discriminative group consistency features for each image.

� We propose an Aggregated Decoder to promote comple-
mentarity between different-scale group consistency fea-
tures. This module globally and locally aggregates features
of inconsistent semantics and scales to preliminary detect
co-salient objects with various scales.

II. RELATED WORKS

A. Image Salient Object Detection

Most early image SOD models [1], [33]–[40] adopted
bottom-up strategy and generally based on handcrafted features
with cognitive assumptions, e.g., local contrast [36], global con-
trast [33], and background priors [37], etc. Classically, Cheng
et al. [33] employed color histogram contrast to characterize
global contrast to infer saliency. Liu et al. [38] extracted center-
surround histograms, color spatial distributions and multi-scale
contrast features, and adopted the conditional random field al-
gorithm to fuse these for prediction. Besides, frequency domain
analysis [40] and low-rank recovery [36] are the commonly used
traditional algorithms for image SOD.

The deep learning-based image SOD has attracted lots of re-
search attention and achieved remarkable progress. Early, Han
et al. [41] followed background prior assumptions to measure
the saliency of each region by reconstructing error between de-
tected regions and background regions. Li et al. [42] extracted
deep features to infer the saliency for each pixel and super-
pixel, respectively. Whereafter, a number of end-to-end SOD
models [2], [43]–[45] were proposed, and they were designed
with multi-scale or multi-stream network to learn more com-
prehensive CNN features. To improve the performance of im-
age SOD, many researches [46]–[50] adopted the edge infor-
mation as additional auxiliary information. By exploiting the
correlation between saliency and contour, Zhou et al. [51]
designed a two-stream framework to separately generate pre-
liminary saliency map and edge map, and combined these two
maps for final prediction. In addition to these image SOD mod-
els, Zhang et al. [52] proposed a well-performing detection
model with weak supervision. Some researchers made attempts
to employ top-tier image SOD models on co-saliency detection
benchmarks. These image SOD models surprisingly achieved
comparable results with deep learning-based co-saliency detec-
tion models, such as CPD [53], EGNet [49], and BASNet [50],
as mentioned in [30]. This indicates that if the result of each
image generated from image SOD models can be employed to
support co-saliency detection in a proper way, a more powerful
co-saliency detection model will be designed.

B. Co-Saliency Detection

Similar to image SOD, traditional co-saliency detection mod-
els relied heavily on handcrafted features to characterize co-
saliency with manually designed metrics. Jacobs et al. [3] de-
fined the co-saliency detection task, and made the first attempt to
detect common salient objects in image pair by exploring local
variations. Li et al. [54] established the first public image pair
benchmark. Whereafter, Li et al. [55] expanded the co-saliency
detection task from image pair to multiple images.

Most traditional co-saliency detection models took the intra-
saliency regions generated from existing image SOD mod-
els as proposals, then employed various matching techniques,
e.g., independent component analysis [26], cluster [10], cellu-
lar automata [56], and propagation [57], to capture the inter-
correlation of these proposals. In order to promote the in-
tegrity of the co-salient objects, many models did not regard
inter-correlation as the results, but combined intra-saliency and
inter-correlation through diverse fusion techniques, e.g., fixed
weight fusion [54], adaptive weight fusion [24], [25], and region-
wise adaptive fusion [13], for final inference.

The deep learning-based co-saliency detection models
demonstrated more powerful performance than traditional mod-
els [30]. The early deep learning-based works only roughly com-
bined CNN features with traditional co-saliency detection mod-
els. Based on CNN features, Zhang et al. [27] used the clustering
algorithm and a principled Bayesian module to infer co-salient
objects. Zhang et al. [58] applied high-level semantic CNN fea-
tures and used a self-paced multiple-instance algorithm to cap-
ture the group consistency. Yao et al. [59] employed spectral
rotation co-clustering algorithm twice to divide lots of images
into a series of subgroups with similar foreground objects and
to segment out the co-salient objects.

Afterwards, deep learning technology was applied in both
feature extraction and co-saliency reasoning. Tsai et al. [4] pro-
posed an unsupervised CNN based model to adaptively learn
the deep features for co-saliency detection. Zhang et al. [29]
novelly employed gradient information of consensus represen-
tation among a group of images to reflect the discriminative
co-salient features for co-saliency detection. Hu et al. [60]
employed Graph Convolutional Network (GNN) [61] to cap-
ture common information and regarded the co-saliency detec-
tion task as a classification task to conduct the binary classi-
fication for superpixels. In addition to these models, a large
number of end-to-end co-saliency detection models [18]–[23],
[62], [63] have been proposed with various strategies, such as
multi-scale inter-correlation propagation [20], [23], RNN [22],
[64], co-attention mechanism [63], GNN [19]. Notably, some
models [18], [65] introduced extra labels for training. Wang et
al. [65] extracted the co-category information from group-wise
images as the group consistency with the supervision of category
labels. However, a fine-tuning process must be used if applying
the trained model to an unseen category. Zhang et al. [18] de-
signed a collaborative aggregation-and-distribution network to
capture both salient and repetitive visual patterns from five im-
ages with the supervision of image SOD label and co-saliency
detection label.
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While most end-to-end models made a great performance
progress, some frameworks [18], [21]–[23], [63] are limited by
the fixed quantity of input images with the influence of group
consistency capture module, and cannot summarize the global
shared attributes for the given group with random quantity.
Moreover, these models are full of static convolutional layers
that perform inference in a static manner with fixed parameters,
hindering the performance improvement on unseen category of
co-salient objects. Although the RNN-based co-saliency detec-
tion models [64], [66] made some improvements, the learned
group representations vary in different order of the given image
groups, resulting in unstable inference. The crucial temporal re-
lations can be constructed by RNN for video sequences, while
the relationships do not exist in image groups. Thus, modeling
collaborative relationships of the input image groups by RNN
for co-saliency detection is sub-optimal.

Compared with existing end-to-end co-saliency detection
models, the proposed AGCNet breaks the hindrances of static
manner-based inference and the constant image quantity. AGC-
Net not only fuses the results of existing SOD models as the for-
mer works [1], [4], [24], but also introduces the results to guide
the dynamic convolutional layer of AGC module to capture
global group consistency. This module endows our FCN-based
AGCNet content-adaptive ability for any quantities of input im-
ages, and ensures the generalization ability of AGCNet on un-
seen categories without additional annotated category labels.

III. PROPOSED APPROACH

In this section, we first sketch the architecture of the pro-
posed AGCNet in Section III-A. Subsequently, we describe the
most important AGC module in Section III-B, and present the
Aggregated Decoder in Section III-C. Finally, we state the im-
plementation details in Section III-E.

A. AGCNet Overview

As reported in [30], some image SOD models [49], [50], [53]
have achieved comparable performance with state-of-the-art
co-saliency detection models. In our AGCNet, we use the out-
put of SOD model as a form of prior information in co-saliency
detection. In our AGCNet, we take saliency maps generated
from CPD [53], which is a specialized model for single image
SOD, as intra-saliency priors, i.e., SSM ∈ RN×1×224×224, to
suppress the noise of non-salient regions. In Fig. 2, we illus-
trate the architecture of the proposed AGCNet, which mainly
involves three parts: the feature extraction (i.e., five convolution
blocks Conv_1∼Conv_5), the group consistency capture (i.e.,
three AGC modules), and the hybrid decoder (i.e., one Aggre-
gated Decoder and two normal decoders).

Given an image group with N images, denoted as I ∈
RN×3×224×224, we take VGG-16 [67] pre-trained on Ima-
geNet [68] as backbone for feature extraction, generating a set
of basic features with five scales for each image of this im-
age group, i.e., Fi ∈ RN×Ci× 224

2i
× 224

2i , i ∈ {1, 2, 3, 4, 5}. No-
tably, the last pooling and fully-connected layers of the original
VGG-16 are discarded. Then, the basic features of three rela-
tively high-level convolution blocks (i.e., Fi, i ∈ {3, 4, 5}) are

Fig. 2. Architecture overview of the proposed AGCNet. For a given image
group with random quantity, we first utilize VGG to obtain the multi-scale CNN
features of each image, and introduce corresponding single saliency map SSM
generated from state-of-the-art image SOD models to AGCNet. Then, three
relatively high-level features paired with SSM are fed into three Adaptive
Group-wise Consistency (AGC) modules, respectively, generating a group of
group-wise consistency features at three scales. Subsequently, three-scale group
consistency features are aggregated by an Aggregated Decoder to generate a
group of preliminary co-saliency maps CSpre and composited group consis-
tency features CF2. Finally, CF2 is combined with SSM to refine CSpre

through two normal decoders, generating the final co-saliency maps CSfinal

with the same sizes as the input images.

respectively paired with SSM to flow into the AGC module
to mine discriminative group-wise consistency features CFi ∈
RN×128× 224

2i
× 224

2i , i ∈ {3, 4, 5}. In order to make accurate pre-
diction for co-salient objects with various scales, the three-
scale group consistency features then flow into an Aggregated
Decoder to generate preliminary co-saliency maps, denoted
as CSpre ∈ RN×1×56×56, and group consistency, denoted as
CF2 ∈ RN×128×56×56. Finally, CSpre is progressively broad-
casted to shallow features through two normal decoders [69]
Di, i ∈ {1, 2}, which combine CSpre, SSM, the shallow fea-
tures Fi, i ∈ {1, 2} and CFi, i ∈ {1, 2} to generate final co-
saliency maps of the given group, CSfinal ∈ RN×1×224×224.

B. AGC Module

In Fig. 3, we take a group of three images as an example to
illustrate how AGC module works. Clearly, our AGC module
mainly consists of CGC block and RF block.

CGC Block: In real-life applications, co-salient objects in
each image of a given group often vary in terms of texture, color,
scale, and background. But they have the same semantic category
attributes [31]. Thus, Wang et al. [65] mined the co-category
vectors as group consistency. However, co-saliency detection
needs to classify each pixel to segment out co-salient objects, not
only to classify the image. Guaranteeing the detected co-salient
objects are salient is one of the basic concepts of co-saliency
detection. Based on these considerations, we introduce intra-
saliency priors to extract intra-semantic information to match
each pixel of input images for group consistency capture.

Firstly, we adopt the intra-saliency priors SSM generated
from CPD model [53] to directly mask Fi ∈ RN×Ci×H×W to
filter the distractors of background and generate intra-saliency
features. Once we obtain the masked features, we can di-
rectly apply global pooling operation to these features to gen-
erate intra-semantic vectors, as suggested in [29], [62]. How-
ever, since most images contain more than one salient object,
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Fig. 3. Illustration of the AGC module.

many vectors represent hybrid semantic information of mul-
tiple salient objects. Thus, we try to generate relatively purer
semantic vectors by adopting patch-wise average pooling with
the patch size of 7× 7 for the masked features and reshaping
the pooled features into a set of intra-semantic vectors, denoted
by θi ∈ R(N×H/7×W/7)×Ci×1×1:

θi = R(PAvg(Fi ⊗ SSM)), (1)

wherePAvg(·) andR(·) are the patch-wise average pooling and
the reshape operation, respectively, and ⊗ is the element-wise
multiplication. Notably, according to the size of input image,
the patch size is fixed to 7× 7 for any scale of masked features
in AGCNet. In this way, intra-semantic vectors generated from
multi-scale features with different receptive fields can cover
salient objects with various scales.

Subsequently, we try to make semantic matching between the
intra-semantic vectors and the pixels of detected image features
Fi. We achieve this matching through a dynamic point-wise
convolutional layer [32] with θi as kernels. From the per-
spective of feature matching, the semantic vectors of every
patch in the group θi take turns matching Fi at pixel level
through the dynamic convolution, generating a set of pixel-level
matching maps for each individual image, denoted as af

(n)
i ∈

R(N×H/7×W/7)×H×W , and extending to a group of images, de-
noted as AFi ∈ RN×(N×H/7×W/7)×H×W . Each matching map
is associated with an intra-semantic vector, and the pixels with
high correlation to the intra-semantic vector will be highlighted
in the corresponding matching map. In this way, we formulate
the matching maps for a group of images as follows:

AFi = CPconv(Fi|θi), (2)

where CPconv(·) denotes the point-wise convolutional layer
which is content-adaptive, and the channel size of AFi is deter-
mined by the size of the group of features.

Then, we summarize these matching maps af (n)i in channel-
wise to directly reflect the co-saliency score of each pixel. While
considering the dependence of patch-wise intra-semantic vec-
tors, we construct an affinity matrix to weight the matching

maps before the summation. For each image, we resize the size
of af (n)i , i.e., R(N×H/7×W/7)×H×W , into R(N×H/7×W/7)×HW ,
and measure the relevance between each two matching maps
via matrix multiplication to generate affinity matrix am

(n)
i ∈

R(N×H/7×W/7)×(N×H/7×W/7).

am
(n)
i = af

(n)
i � af

(n)
i

T
, (3)

where � denotes matrix multiplication, and this operation is
applied onAFi to generateAMi for the group. The importance
of each matching map can be weighted by the summation of
all elements in the column of am

(n)
i . Concretely, the weight

vector ω(n)
i ∈ R(N×H/7×W/7)×1×1 for af (n)i can be formulated

as follows:

ω
(n)
i = softmax

N×H/7×W/7∑

j=1

(am
(n)
i )column. (4)

With the generated weight vector, we summarize af i into a
group consistency map cm(n)

i ∈ R1×H×W at channel-wise, for-
mulated as follows:

cm
(n)
i =

N×H/7×W/7∑

j=1

(ω
(n)
i ◦ af (n)i )channel, (5)

where ◦ is the channel-wise multiplication. In this way, a group
of consistency maps CMi can be generated.

Our CGC block benefits from the content-adaptive property
of the dynamic convolution [32], [70] and the weighting sum-
mation, breaking the static-manner based inference and gaining
content-adaptive ability for capturing group-consistency under
various quantity and category of input groups.

RF Block: The consistency map reflects the potential co-
saliency score for each pixel without the consideration of the
dependence between pixels of each individual image. If we
multiply CMi with the Fi directly, the pixels belong to the
same co-salient objects but with relatively individual attributes
may fail to be distinguished due to its low matching, leading
to sub-optimal prediction. Therefore, to detect more complete
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objects, we employ a RF block to combine the self-correlation
of individual image with group consistency.

First, we mine the self-correlation relationships sf (n)i for each

image feature f (n)i ∈ RCi×H×W by computing inner pixel-wise
correlations of individual image. Specifically, we reshape the
size of f (n)i to RHW×Ci , and use the inner product to construct
an affinity matrix, which is formulated as follows:

sf
(n)
i = f

(n)
i � f

(n)
i

T
, (6)

where the size of the affinity matrix sf
(n)
i ∈ RHW×HW , and

the affinity matrixes of a group of image features SFi ∈
RN×HW×HW can be constructed like this.

Then for fine-grained performance, we combine the group
consistency with self-correlation. We reshape the size of SFi

into RN×HW×H×W as the correlation maps and rearrange the
channel order of reshaped SFi as suggested in [62], [69]. The
number of pixels in CMi is consistent with the channel size of
SFi. For the pixel that has higher co-saliency scores in CMi,
the channel of self-correlation map SFi with the same index
will be placed on the upper channel to generate the RSFi ∈
RN×HW×H×W . After that, we multiply RSFi and CMi, and
take a regular convolutional layer to compress the channel size.
The group consistency features CFi ∈ RN×128×H×W is thus
obtained. In this way, the pixel with a high co-saliency score
will drive the pixels which have strong dependence on it to be
highlighted.

In the RF block, we keep the internal coherence of each co-
salient object and integrate the group consistency maps with
individual attributes for more discriminative group consistency
features. Notably, even the parameters of the adopted regular
convolutional layer in the RF block are fixed after training, our
AGC module still maintains the content-adaptive ability owning
to the adopted rearrangement operation in RF block.

C. Aggregated Decoder

Based on the features of different scales, the captured com-
mon attributes are different. Thus, to handle diverse scenes, the
combination of multi-scale group consistency is an indispens-
able process in reasoning. While feature fusion in the decoder
of co-saliency models is usually implemented via the feature
concatenation, which allocates the features with fixed weights
regardless of the importance of different scales. From these con-
siderations, we specifically design an Aggregated Decoder to
effectively aggregate the three-scale group consistency features
for reasoning. This decoder is mainly composed of three Atten-
tional Feature Fusion (AFF) blocks and a residual connection,
as shown in Fig. 4. Each AFF block corresponds to a feature
fusion between two adjacent scales. We take the fusion of CF4

and CF5 as an example to describe the details of the AFF block.
In AFF block, we construct a soft selection between two fea-

tures for fusion. Concretely, the soft selection mainly depends
on the attention mechanism [76] for local channel context ag-
gregation and global channel context aggregation, named as lo-
cal attention (LA) and global attention (GA). The LA exploits
point-wise channel interactions for each spatial position, while

Fig. 4. Illustration of the Aggregated Decoder.

the GA aggregates channel context. For CF4 and CF5, we first
take up-sampling operation for CF5 to keep the size of it to
be consistent with CF4. Then, we formulate LA and GA as
follows:

LA54 = Pconvβ,2(δ(Pconvβ,1(CF5 ⊕CF4))), (7)

GA54 = FCβ,2(δ(FCβ,1(GAP (CF5 ⊕CF4)))), (8)

where ⊕ is the element-wise summation, Pconvβ is the point-
wise convolutional layer with Batch Normalization (BN), δ de-
notes the Rectified Linear Unit (ReLU), FCβ is the fully con-
nected layer with BN,GAP is the global average pooling,LA54

and GA54 respectively represent the local channel context ag-
gregation and global channel context aggregation for CF5 and
CF4.

We combine local channel context aggregation with global
channel context aggregation to generate the soft selection matrix
M54, formulated as follows:

M54 = ζ(LA54 ⊕GA54), (9)

where the size of M54 is consistent with the size of CF4, ζ
denotes the Sigmoid, and elements in M54 belong to [0,1]. With
M54, we fuseCF4 andCF5 to generate the fused featuresFF54

as follows:

FF54 = CF5 ⊗M54 ⊕CF4 ⊗ (1−M54). (10)

As shown in Fig. 4, to keep more high-level semantic cate-
gory attributes, we adopt an AFF block to fuse FF54 and CF3

and generate fused features FF43. And then fused features, i.e.,
FF54 and FF43 flow into another AFF block to generate FF. So
thus, the three AFF blocks realize the aggregation of three-scale
group consistency. Finally, we employ a residual connection op-
eration on FF to generate CSpre and CF2.

D. Normal Decoder

After the Aggregated Decoder locating co-salient objects for
each input image in the form of low-resolution co-saliency map,
we try to combine shallow-level features and the aggregated
group consistency to improve the integrity of co-salient objects
in images with full resolution. To this end, we adopt two normal
decoders for further refinement. In light of the superiority of ex-
isting image SOD models in object edge detection, we also intro-
duce the intra-saliency priors into two decoders to progressively
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TABLE I
BENCHMARKING RESULTS OF 16 LEADING CO-SALIENCY DETECTION MODELS AND THREE IMAGE SOD MODELS ON FOUR DATASETS [27], [30], [71], [72]. ‘-’

MEANS THAT THE AUTHORS DO NOT RELEASE RESULTS OR CODES, ‘CO’ AND ‘SIN’ ARE IN THE ‘TYPE’ COLUMN REPRESENT THE CORRESPONDING MODELS ARE

CO-SALIENCY DETECTION MODELS AND SOD ONES, RESPECTIVELY. IML [21] ADOPTS COSAL2015 AS TRAINING DATA, THUS AUTHORS DO NOT TEST ON THIS

DATASET. MSRC FOR GCAGC [19] IS IN THE SAME SITUATION. ↑↓ DENOTE LARGER AND SMALLER IS BETTER, RESPECTIVELY. THE TOP THREE RESULTS ARE

MARKED IN RED, BLUE AND GREEN, RESPECTIVELY

generate sharper and more homogeneous co-saliency maps with
full resolution.

In the normal decoder, CSpre and SSM are utilized as masks
for Fi, i ∈ {1, 2}, to generate two types of masked features.
After up-sampling, the masked features and the semantic group
consistency features CFi, i ∈ {1, 2} are concatenated for more
accurate inference.

E. Implementation Details

1) Supervisions. We supervise N preliminary co-saliency
maps and final co-saliency maps with corresponding ground-
truths via the widely-used IoU loss [77], [78] as follows:

L = 1− 1

N

N∑

n=1

∑
(h,w)(min(cs(n),gt(n)))(h,w)∑
(h,w)(max(cs(n),gt(n)))(h,w)

, (11)

where (h,w) denotes the position of pixel, cs(n) is the concate-
nation of cs(n)pre and cs

(n)
final at channel, max(·, ·) and min(·, ·)

are utilized to retain the element-wise maximum and minimum
of two inputs, respectively.

2) Network Training Protocol. The experiments are imple-
mented on Pytorch [79] by adapting a NVIDIA GTX 2080TI
GPU (11 G memory). Except for the parameters of the backbone,
the additional parameters in the proposed AGCNet are initialized
with the random normal distribution of which μ = 0, σ = 0 : 1.
We use Adam [80] as the optimizer to train our AGCNet with 60
epochs, and respectively set the learning rate and weight decay
to 10−5 and 10−4. The training data is a subset of the COCO
dataset [81], including 65 groups of 9,213 images, as suggested

by [28], [62]. All imported images are resized into 224×224.
For each training iteration of training stage, we set the upper
limited number of a batch to 11 due to the limited GPU mem-
ory, the images in each batch are all randomly selected from a
same image group. In the testing stage, each image group with
an arbitrary quantity of images constitutes a batch.

IV. EXPERIMENT

A. Dataset and Evaluation Metrics

1) Dataset. We conduct our experiments on four datasets
(see Table I). The datasets, include iCoseg [71], MSRC [72],
Cosal2015 [27] and CoSOD3k [30], are used for testing.

ICoseg [71] is originally proposed for co-segmentation task.
After modification, it becomes the most widely used dataset in
co-saliency detection task. The dataset contains 25 scenes, cov-
ering sports, animals, landmarks and so on. This dataset totally
includes 643 images, which are divided into 38 groups. For each
group, the co-salient objects and backgrounds of each image are
roughly the same.

MSRC [72] is originally proposed for object classification
task, which is used for co-saliency detection lately. This dataset
consists of 7 groups of 233 images, and each group has 30-53
images. Most images have only one single category of salient
objects and the synergy of co-salient objects of group tends to
be semantic category consistency.

Cosal2015 [27] includes 50 groups of 2,015 images, and each
group has 25-52 images. It is a relatively challenging dataset
due to the diverse variances in appearances and complex back-
grounds, and most images have more than one salient object.
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CoSOD3k [30] is the largest co-saliency detection dataset,
which is recently proposed with more realistic settings. Totally,
it contains 13 super-classes, 160 groups and 3,316 images, where
each super-class is carefully selected to cover diverse scenes.
Thus, it is the most challenging dataset among the test datasets
in this paper.

2) Evaluation Metrics. We use S-measure [82] (Sα, α =
0.5), maximum F-measure [40] (Fβ , β

2 = 0.3), maximum E-
measure [83] (Eξ), and Mean Absolute Error [84] (MAE, M )
to evaluate the performance of our proposed model and all com-
pared models. The adopted evaluated tools are provided by Fan
et al. [30].

S-measure is proposed for structure information evalua-
tion, motivated by the studies of human behavioral vision. The
S-measure combines region-aware and object-aware structural
similarity as their final structure metric.

F-measure is essentially a region based similarity metric,
which is adopted extensively in the field of saliency detec-
tion [50], [85], [86]. Following [62], we provide the maximum
F-measure using varying fixed (0-255) thresholds.

E-measure is an enhanced alignment measure [83], which
is specifically proposed for the evaluation of binary map. This
measure is based on cognitive vision studies to combine local
pixel values with the image-level mean value in one term, jointly
capturing image-level statistics and local pixel matching infor-
mation.

MAE is used to evaluate the pixel-level error between a pre-
dicted co-saliency map and the corresponding GT [84].

B. Comparisons With State-of-The-Art Models

To evaluate the effectiveness of the proposed model, 19
state-of-the-art models are adopted for comparison, including
CBCS [10], CSHS [14], ESMG [12], CODR [11], DIM [73],
CoDW [27], SPMIL [58], UCSG [74], CSMG [17], IML [21],
FEM [22] MGLCN [75], GCAGC [19], CoEG-Net [28],
GICD [29], ICNet [62], CPD [53], EGNet [49], and BAS-
Net [50]. Among these, CBCS, CSHS, ESMG and CODR
are four conventional co-saliency detection models which are
based on handcrafted features, DIM, CoDW, SPMIL, CSMG
and UCSG are five co-saliency detection models which are
based on deep learning features, IML, FEM, MGLCN, GCAGC,
GICD and ICNet are end-to-end deep learning-based models for
co-saliency detection, CoEG-Net is a a two-stage model, and
CPD, EGNet and BASNet are end-to-end image SOD models.
Notably, in our comparison, the backbone of the compared im-
age SOD models are VGG-16 [67]. For fair comparison, we
use either the implementations with recommended parameter
settings or co-saliency maps provided by the authors. These re-
sources have been collected by Fan et al. [30].1 Among the
models with the released source code, Parameters, FLOPs and
Speed of the end-to-end CNN-based models, which are IML,
FEM, GICD, ICNet, CPD, EGNet and BASNet, are provided.
For the traditional models based on handcrafted features and

1[Online]. Available: https://dpfan.net/CoSOD3K/

the models without CNN-based reasoning, we only compare the
Speed.

Quantitative Comparisons. As shown in Table I, our model
outperforms the compared models in terms of most metrics on
four datasets. For example, F-measure and MAE scores of our
model consistently outperform all compared models. For the
most challenging dataset CoSOD3k, our model improves upon
the second best model (except the preliminary results of our
AGCNet, i.e., Ours-pre) by about 3.1%, 3.1%, 3.3% and 1.8%
in terms of S-measure, F-measure, E-measure and MAE respec-
tively. Since the images in the iCoseg and MSRC datasets typ-
ically contain one co-salient object, therefore the image SOD
model CPD can easily handle these datasets. However, due to
intrinsic limitation, CPD fails to handle the images with multiple
objects in the Cosal2015 and CoSOD3k datasets. The co-salient
objects in the training dataset tend to be the category consistent
and the co-salient objects in the iCoseg dataset are further con-
strained by color. Due to the gap between the training datasets
and the iCoseg dataset and the superiority of SOD model for
simple dataset, AGCNet performs relatively weak on the iCoseg
dataset compared with other models. From Fig. 3, the AGCNet
embedded with three AGC modules seems to have high com-
putational complexity, but that is not the case. Compared with
the existing end-to-end co-saliency detection models, the pro-
posed AGCNet requires the least parameters to be trained (even
compared with the SOD which is a relatively easy task). The
FLOPs and Speed of the proposed AGCNet slightly lag behind
ICNet, but the performance of ICNet is lower than our model.
And similar to our model, ICNet also needs additional assis-
tance from existing image SOD models. Our model effectively
captures global group consistency on multi-level features with
the support of intra-saliency priors, and therefore exhibits com-
petitive performance as compared with 16 co-saliency detection
models and three image SOD models. In addition, Ours-pre is
also competitive without two normal decoders. Although the
performance is attenuated, the efficiency is reinforced. From the
trade-off between performance and efficiency, the two normal
decoders have a positive effect on co-saliency detection.

Visual Comparisons. We show co-saliency maps generated
on various challenging scenes to demonstrate the superiority of
AGCNet visually in Fig. 5. It can be observed that traditional
models CBCS and CSHS can hardly locate common salient re-
gions with handcrafted features. From the results of most cases,
the image SOD model CPD can better find salient objects with
sharp boundaries, but the non-common objects cannot be erased.
For the co-salient objects with small size shown in the baseball
group of Cosal2015 dataset, our model can successfully sup-
press the large non-common salient objects and perform signif-
icantly better than the compared models. The CGC block in our
AGC module is particularly effective in handing extreme scale
variation of co-salient objects. For the co-salient objects with
low contrast like the pyramid group of iCoseg dataset, although
the co-salient objects can not be detected by auxiliary CPD,
our model can highlight the pixels of co-salient objects by con-
necting high correlation with other images of the same group,
verifying the robust group consistency modeling capability. In
contrast, GICD [29] relies on the group consensus and can not
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Fig. 5. Visual comparisons with five learning based co-saliency detection models (ICNet [62], GICD [29], Co-EGNet [28], CSMG [17], DIM [73]), and four
classical non-learning based co-saliency detection models (CODR [11], ESMG [12], CSHS [14], CBCS [10]) on four datasets. Besides these, a image SOD model
CPD [53] is also involved in the visual comparison, due to that the introduced SOD model of our posted results is CPD.

discriminatively put more weight to the co-salient objects. Even
for co-salient objects with large size, i.e., the building group
of MSRC dataset, our model can propagate high-level semantic
group consistency cues to shallow level to highlight salient ob-
jects more evenly without holes. In the case of the frog group
of CoSOD3k dataset with background clutter and cross images
variations, more complete object contours can be detected by
our model with the help of the introduced SSM generated by
CPD.

C. Ablation Studies

To gain insight of our key components, we do extensive
ablation experiments to investigate the effectiveness of them,
including the performance of AGCNet with different quanti-
ties of input images, the dependence of AGCNet on auxiliary
intra-saliency priors, the design rationality of AGC module, the
impacts of the AGC module number to AGCNet and the ef-
fectiveness of Aggregated Decoder. Compared with the MSRC
and iCoseg datasets, the collected images of Cosal2015 and
CoSOD3k dataset cover more diverse scenarios, which are more
in line with realistic scenes. To this end, we perform the ablation
studies on Cosal2015 and CoSOD3k datasets.

Performance of AGCNet with different quantities of input
images. As presented in Table II, there is a performance gap
between the numbers of input images, i.e., 3 and 5. However, due
to the size limitation of most models, existing end-to-end models
are difficult to deal with a complete group with more than 5
images, which result in incorrectly reserving some attributes that
are not shared in the image group, as shown in Fig. 1. AGCNet
benefits from AGC module without such a limitation, as the

TABLE II
PERFORMANCE OF AGCNET WITH DIFFERENT QUANTITIES OF INPUTS

number of input images increases to 10, the performance is close
to that of the complete image group as inputs.

The Dependence of AGCNet on Auxiliary Intra-saliency
priors. We exploit image SOD results as intra-saliency priors in
our AGCNet. In order to find out the dependence of our model
on image SOD model, we apply three end-to-end image SOD
models, i.e., CPD, EGNet and BASNet, on our model, and re-
move SSM from AGCNet to construct the variant w/o SSM.
In Table III, we list the quantitative results of the original im-
age SOD models and the corresponding applications for our
model, i.e., Our-CPD, Our-EGNet, Our-BASNet, on the most
challenging two benchmark datasets in co-saliency field. Our
model clearly improves the performance on co-saliency bench-
marks, no matter which image SOD model is used for our model.
The performance of w/o SSM is inferior to the performance of
Our-CPD, Our-EGNet and Our-BASNet, which verifies the ef-
fectiveness of using intra-saliency priors to our model. Although
our model depends on image SOD to a certain extent, while
judging from the improvements made by the three auxiliary im-
age SOD models, the performance of image SOD model does
not have a great impact on our model, e.g., even CPD performs
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Fig. 6. Visual comparisons of AGCNet with variants about AGC module.

TABLE III
PERFORMANCE OF AGCNET WITH INTRA-SALIENCY PRIORS OBTAINED FROM

VARIOUS IMAGE SOD MODELS

worse than EGNet in terms of CoSOD3k dataset, Ours-CPD
outperforms Ours-EGNet a bit.

The Rationality of AGC Module. AGC module in AGCNet
plays the most important role in capturing consistency informa-
tion within a group. In order to verify the design rationality of
the AGC module, the five important operations as described in
Section III-B in the module are removed or replaced by some
conventional operations in turn. The quantitative performance
is reported in Table IV. For the convenience of comparison, we
use the original AGCNet as the baseline with the index ‘0’. For
model ‘1,’ we discard the intra-saliency of SSM, and directly
process the extracted original features with subsequent four op-
erations. This variant differs from w/o SSM, due to the fact that
SSM still works for the two normal decoders of AGCNet. The
performance degradation of model ‘1’ proves that SSM is in-
dispensible to AGC module. The performance of model ‘2’ is
severely damaged by exchanging to global average pooling, the
visual comparison in Fig. 6 also confirms that the patch-wise
semantic matching is promoting for detection without less in-
terference. We average all intra-semantic vectors of the detected
group and take it as a common semantic vector, then expand
the vector to the size of original feature to add each image fea-
ture. The above operation is used to replace the CP to construct
model ‘3’. The performance of this replacement drops dramat-
ically and the incomplete of detected soccer in the Fig. 6 all
validate the generalization ability of CP. For the model ‘4,’ we
directly summarize the matching maps without the process of
affinity weighting, the lacking for the relation of intra-semantic
vectors results of the performance degradation. We construct the
variant ‘5’ by employing the group consistency map generated
from the CGC block to mask the original feature. Without the

individual attributes for each image, the variant can not well
handle the misleading pixels of co-salient. For the model ‘6,’
except for the SSM, we discard the rest of operations of AGC
module, just concatenate intra-saliency features of all group to
generate common features, and concatenate intra-saliency fea-
ture with the common feature for each image to make infer-
ring. Under this design, the performance of this variant reaches
a low record, (e.g., Sα : 0.868 → 0.838, 0.829 → 0.791; Fβ :
0.879 → 0.812, 0.825 → 0.768;M : 0.055 → 0.087, 0.066 →
0.091), the non-common salient regions can not be effectively
suppressed, just as shown in the results of CPD and ours in Fig. 6.
The comparison of visual and quantitative results of these variant
models all prove that each process of AGC module is indispens-
able.

The Impacts of the AGC Module Number to AGCNet. As
shown in Table V, we construct model ‘0’ by deleting AGC
modules from the AGCNet, which indicates that the group con-
sistency modeling process is omitted. By comparing the results
of the proposed model with 0, 1, 2, 3 (ours), 4 and 5 AGC mod-
ules, we discover that the performances of ‘4’ and ‘5’ are lower
than the original AGCNet with 3 AGC modules. Owning that
most co-salient objects do not have clear common attributes on
shallow-level features, with shallow-level features adopted for
modeling group consistency, i.e., model ‘4’ and ‘5,’ the compu-
tation cost increases dramatically compared with model ‘3,’ but
performs worse. With 2 AGC modules, the performance is com-
parable to the original AGCNet. The observations all illustrate
that the high-level features with more semantic information are
more effective for co-saliency task.

The Effectiveness of Aggregated Decoder. To evaluate the
contribution of the proposed Aggregated Decoder to AGCNet on
co-saliency task, we derive four variants: w/o GA, w/o LA, w/o
AD and w/ 2AFF, the w/o GA and w/o LA of which respectively
refer to that removing the global attention and local attention ag-
gregating in turn. In light of that, there are three scales of group
consistency that need to be aggregated. We delete one AFF which
targets the fusion of FF54 and FF43, directly import FF43 to
the next residual block to form w/ 2AFF. The variant w/o AD
is constructed by replacing the Aggregated Decoder with the
operation of feature concatenation. As presented in Table VI,
the slight deterioration of performance of w/ 2AFF indicates
that the task is more dependent on CF5 and CF4 with rela-
tively more semantic category attributes than CF3. Embedding
three AFF blocks can promote the reservation of CF5 andCF4,
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TABLE IV
PERFORMANCE OF DIFFERENT VARIANTS TO OUR AGC MODULE. SSM OF THE TABLE CORRESPONDS TO THE OPERATION THAT

INTRODUCING SSM TO AGC MODULE, PA INDICATES THE PATCH-WISE AVERAGE POLLING IN THE PROCESS OF GENERATING INTRA-SEMANTIC VECTORS IN

CGC BLOCK, CP IS THE CONTENT-ADAPTIVE CONVOLUTION LAYER FOR SEMANTIC MATCHING IN CGC BLOCK, WS DENOTES THE WEIGHTED SUMMATION IN

CGC BLOCK, RF IS THE RF BLOCK

TABLE V
PERFORMANCE OF DIFFERENT NUMBER OF AGC MODULE

TABLE VI
PERFORMANCE OF DIFFERENT VARIANTS TO AGGREGATED DECODER

which is beneficial for co-saliency detection. The performance
degradation of w/o GA, w/o LA and w/o AD confirm that the
discriminate attention aggregations are reasonable as described
in Section III-C and our aggregated decoder is necessary for our
AGCNet.

With the support of existing image SOD models, the pro-
posed AGC module, aggregated decoder and two normal de-
coders have different capabilities, are closely interdependent for
a good tradeoff between effectiveness and efficiency, making
AGCNet possible to be applied in practical applications. The
AGC module is guided by intra-saliency priors to capture group
consistency within any complete group with any quantities of
images, but does not depend on the performance of intra-saliency
priors. By constructing intra-semantic correlation of group and
pixel-wise self-correlation of each single image, the AGC mod-
ule can obtain more discriminative global group consistency to
tackle the detection of easy confusing pixels compared with
existing co-saliency detection models. And this module adopts
less regular convolutional layers to retain the generalization for

the group with unseen category. The aggregated decoder adap-
tively bridges the gap of adjacent-scale group consistency, to
adaptively fuse three-scale group consistency for the prelimi-
nary localization of co-salient objects. And two normal decoders
make further utilization of intra-saliency priors, benefiting from
the advantage of edge detection of intra-saliency priors, further
propagating group consistency to shallow features to improve
integrity of the co-salient objects in full-resolution images.

V. CONCLUSION

In this paper, we propose an AGCNet for co-saliency detec-
tion. Promoted by the intra-saliency priors produced by existing
image SOD models, our mainly proposed AGC module breaks
the issues of the static manner-based inference and the con-
stant quantity of input image, capturing the global group consis-
tency within any unknown given group by semantic matching
and weighted summarization. Moreover, this module integrates
individual property with group consistency to extract discrim-
inative group consistency features. The proposed Aggregated
Decoder overcomes the semantic and scale inconsistency issue
among multi-scale group consistency features for preliminary
co-saliency detection. Experiments on four benchmark datasets
demonstrated our AGCNet is competitive to 16 state-of-the-art
co-saliency detection and 3 SOD models. And comprehensive
ablation studies also validated the effectiveness and rationality
of proposed modules.
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