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Abstract—3D convolutional neural networks have achieved
promising results for video tasks in computer vision, including
video saliency prediction that is explored in this paper. However,
3D convolution encodes visual representation merely on fixed local
spacetime according to its kernel size, while human attention is
always attracted by relational visual features at different time. To
overcome this limitation, we propose a novel Spatio-Temporal Self-
Attention 3D Network (STSANet) for video saliency prediction, in
which multiple Spatio-Temporal Self-Attention (STSA) modules
are employed at different levels of 3D convolutional backbone
to directly capture long-range relations between spatio-temporal
features of different time steps. Besides, we propose an Attentional
Multi-Scale Fusion (AMSF) module to integrate multi-level
features with the perception of context in semantic and spatio-
temporal subspaces. Extensive experiments demonstrate the
contributions of key components of our method, and the results
on DHF1K, Hollywood-2, UCF, and DIEM benchmark datasets
clearly prove the superiority of the proposed model compared with
all state-of-the-art models.

Index Terms—Attention mechanism, self-attention, spatio-
temporal feature, video saliency prediction.

I. INTRODUCTION

HUMANS have a fantastic capability of localizing the most
important area in the visual field promptly, named as vi-

sual attention mechanism, which facilitates the processing of
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diverse visual information. In computer vision, modeling the vi-
sual attention mechanism is a fundamental research topic, named
saliency prediction (SP) or fixation prediction, which aims to
deduce the visual saliency degree of each region in images, ex-
pressed in the form of a saliency map (as shown in Fig. 1). SP
has been widely applied to various computer vision tasks, such
as image captioning [1], photo cropping [2], object segmenta-
tion [3]–[6], video compression [7], etc.

Traditional solutions for SP leverage hand-crafted features,
including low-level cues such as color, orientation, and inten-
sity, as well as high-level contents such as persons and ob-
jects [8]–[10]. In the recent years, with the renaissance of neu-
ral networks and advance of high-quality datasets and bench-
marks [11], [12], deep learning based SP has obtained substantial
progress, and the computational models have performed close
to human inter-observer level on static datasets. Compared with
image SP, video saliency prediction (VSP) is more difficult and
develops relatively slowly.

Videos contain spatial information in frames and temporal
information between frames. In videos, human attention is not
only guided by low-level cues and semantic context in a single
frame, but also by relations of features in frames. For example,
in a video clip, the same object moving in a scene usually at-
tracts visual attention, as shown in Fig. 1. Consequently, it is
crucial for video saliency prediction (VSP) to synchronously
exploit spatial and temporal information. Directly using image
SP models for VSP triggers poor performance, due to ignor-
ing the temporal information. Recently, deep learning mod-
els for VSP have emerged and outperformed the traditional
models [13], [14]. Some VSP models [15]–[17] employ both
RGB and optical flow backbones to encode appearance and
motion information, respectively, and merge them for dynamic
saliency inference. However, the motion stream merely con-
siders temporal relations between adjacent frames. This limi-
tation is alleviated by LSTM-based models [18]–[23], which
adopt LSTMs to capture temporal long-term relations in a video.
These models utilize convolutional networks and LSTMs to deal
with spatial and temporal information separately, therefore, they
are unable to synchronously exploit spatial and temporal in-
formation, which is instrumental in VSP. To this end, some
models [24]–[26] use 3D convolutional networks to process
spatio-temporal information jointly, and have shown progressive
performance.

In this paper, we further explore VSP based on 3D
convolutional networks. Although 3D convolution can encode
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Fig. 1. Visualization of results of the proposed STSANet on sampling frames
in two videos.

spatio-temporal information collectively, it processes fixed lo-
cal spacetime and fails to capture long-range relations between
visual features at different time. To remedy this deficiency, we
propose a novel Spatio-Temporal Self-Attention (STSA) mod-
ule to directly learn long-range spatio-temporal dependencies,
which is inspired by the self-attention mechanism [27]. In the
STSA module, spatio-temporal features are split along the tem-
poral channel, and features at different time steps are separately
transformed to an embedding space by embedding convolutional
layers. Afterwards, long-range spatio-temporal interactions are
built by dot-product attention calculation between features at
different time steps.

Based on the STSA module, we propose a Spatio-Temporal
Self-Attention Network (STSANet) for VSP. The backbone of
our model is a 3D fully convolutional network from S3D [28]
pre-trained on Kinetics dataset [29]. We draw four branches from
different levels of the backbone, and employ STSA modules on
them, respectively, to produce local and global spatio-temporal
context at multiple levels. Since the spatio-temporal and seman-
tic gaps exist in the outputs from the four STSA modules, direct
fusion, such as summation and concatenation, is not powerful
enough to process them well. Instead, we design an Attentional
Multi-Scale Fusion (AMSF) module to integrate the multi-level
features. The AMSF module consists of an attentional weighting
operation and a spatio-temporal multi-scale structure, which are
used to alleviate the semantic and spatio-temporal gaps, respec-
tively, during feature fusion.

Overall, our main contributions can be summarized as fol-
lows:
� We propose a Spatio-Temporal Self-Attention Network

(STSANet) for video saliency prediction, in which self-
attention mechanism is integrated into the 3D convolu-
tional network. This integration helps our model achieve
superior performance compared with all state-of-the-art
models on multiple benchmark datasets.

� We propose a Spatio-Temporal Self-Attention (STSA)
module to capture long-range dependencies between time
steps of temporal channel. The STSA module is employed

at multiple levels of 3D convolutional network to com-
plement the locality of 3D convolution and to produce lo-
cal and global spatio-temporal representations for video
saliency prediction.

� We propose an Attention Multi-Scale Fusion (AMSF)
module to fuse spatio-temporal features from STSA mod-
ules arranged at different levels of backbone. The AMSF
module perceives contextual contents in semantic and
spatio-temporal subspaces, and narrows semantic and
spatio-temporal gaps during saliency feature fusion.

II. RELATED WORK

In computer vision, saliency models can be divided into
two types: saliency prediction (SP) and salient object detection
(SOD). SP aims to predict visual saliency degree of each region
in images, while the task objective of SOD is highlighting salient
object regions. Numerous computational models have been pro-
posed for image SOD [30]–[36] and video SOD [37]–[40] in
recent decades. Also, SP contains image SP and video SP, and
this work focuses on video SP (VSP). In this section, we briefly
review the SP models and the network design related to our
work.

A. Image Saliency Prediction

The earliest work for SP, proposed by Itti et al. [8], captured
hand-crafted futures in color, intensity, and orientation chan-
nels, respectively, and combined them for saliency results. After
this work, SP models based on hand-crafted features emerged
consecutively [9], [10], [41]. Recently, with the advance of
deep learning, data-driven models have outperformed traditional
models. Ensembles of Deep Networks (eDN) [42] is among the
first to apply neural networks to SP task. This model combined
features generated from a lot of convolutional layers using a
linear classifier. Deep Gaze I [43] employed the off-the-shelf
features from deep convolutional neural network (CNN) trained
on ImageNet [44] for SP, and Salicon [45] further fine-tuned
pre-trained VGGNet [46] with SP datasets, which verified the
effectiveness of transfer learning for SP. After that, a variety
of deep SP models [45], [47]–[59] based on VGGNet [46],
ResNet [60], DenseNet [61], and NASNet [62] have been pro-
posed successively. At present, SP models have performed close
to human inter-observer level on image SP datasets.

B. Video Saliency Prediction

Traditional models related to VSP mainly explored dynamic
scene viewing using static and motion information [13], [14],
however, hand-crafted spatio-temporal features were not pow-
erful enough for modeling dynamic saliency. A number of VSP
models based on deep learning have emerged in recent years.

1) Two-Stream Methods: Bak et al. [15] proposed a two-
stream network, which employed two convolutional backbones,
with RGB images and optical flow maps as inputs respectively,
to extract spatio-temporal information and fuse their outputs for
saliency inference. Wu et al. [16] and Zhang et al. [17] further
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explored the two-stream structure and investigated fusion meth-
ods to improve performance.

2) LSTM-Based Methods: However, the optical flow net-
work merely considers temporal relations between adjacent
frames, hence LSTM is frequently adopted to extend temporal
perception. Gorji et al. [63] employed multi-stream LSTMs that
merged with static SP model for VSP. DeepVS [18] leveraged
object and motion networks to extract intra-frame saliency in-
formation, and modeled temporal correlation between frames by
convLSTMs. Besides, ACLNet [19] designed a neural attention
module in a CNN-LSTM structure, which was supervised with
image SP datasets. STRA-Net [20] employed dense residual
cross connection to enrich interactions between motion stream
and appearance stream during feature extraction, and incorpo-
rated an attention mechanism to enhance the spatio-temporal in-
formation. SalEMA [64] modified the static SP model by adding
a simple exponential moving average for feature fusion in tem-
poral domain, resulting in a low-parametric architecture. Later,
Zhang et al. [22] utilized spatial and channel attention to se-
lect and re-weight spatio-temporal information, and employed
an attentive convLSTM to model relations between frames. Sal-
SAC [23] designed a correlation-based convLSTM for VSP, in
which adjacent frames were weighted according to similarity
between them.

3) 3D Convolution-Based Methods: Differently, TASED-
Net [24] proposed a 3D fully-convolutional encoder-decoder
network for VSP and achieved promising performance. Com-
pared with LSTM-based architectures, which process spatial
and temporal information separately, a 3D network encodes
and decodes spatio-temporal information in a collective way.
Moreover, ViNet [26] designed a UNet-like encoder-decoder
network based on a 3D backbone, in which features from mul-
tiple levels were upsampled with trilinear upsampling and con-
catenated along the temporal channel. In HD2S [25], multi-level
features from a 3D encoder are separately decoded to obtain
single-channel conspicuity maps, and integrated them for
saliency results. Besides, TSFP-Net [65] employs a feature pyra-
mid structure with top-down feature integration on a 3D convo-
lutional backbone, and combines the multi-level spatio-temporal
features to reason the saliency result for a video frame. In our
work, we further explore 3D neural network for VSP. The 3D
convolution handles a local spatio-temporal space at a time,
therefore, 3D convolutional networks lack the ability to directly
model long-range spatio-temporal relations. Our model ad-
dresses this shortage by employing STSA modules, which build
long-range immediate interactions between spatio-temporal fea-
tures of different time steps, at multiple levels of the 3D back-
bone.

C. Self-Attention

Self-attention mechanism has been an important issue af-
ter [27], in which a lot of self-attention mechanisms were em-
ployed to learn text representations for natural language tasks. In
self-attention mechanism, input tokens are linearly transformed
as queries, keys, and values, respectively, in embedding layers,

and then long-range relations between tokens of input sequence
are calculated by dot-product attention.

In computer vision, Wang et al. [66] proposed the non-
local neural network that is a classical implementation of self-
attention mechanism in vision tasks. Besides, Oh et al. [67]
designed memory networks based on self-attention mechanism
for video object segmentation. In that model, the memory was
updated according to the dependencies between current frame
and past frames computed in the form of self-attention mecha-
nism. Moreover, Wang et al. [68] adopted the memory and self-
attention mechanism for video semantic segmentation. These
two models both used 2D deep convolutional networks to en-
code the frames one by one, and then transformed features of
different frames to an embedding space by embedding layers for
attention calculation. Therefore, the amount of computer mem-
ory occupied is considerable.

Analogously, COSNet [69] performs a co-attention mecha-
nism [70], [71] for video object segmentation task. This model
uses 2D convolutional networks to separately generate em-
beddings from current frame and a group of reference frames
which are uniformly sampled from a video. Subsequently, the
co-attention part computes attention summaries from current
frame and each reference frame in pairs to capture inter-frame
consistency, and then integrates the average of these attention
summaries to the embedding of current frame to enhance the
capacity of inferring target object.

In our VSP model, we adopt a 3D convolutional network as
backbone to directly extract spatio-temporal information from
multiple frames, and employ self-attention mechanism to cap-
ture long-range dependencies between spatio-temporal features
of different time steps. Meanwhile, we further adopt other strate-
gies to compress our model as described in Section III-B.

III. THE PROPOSED MODEL

In this section, we illustrate the proposed Spatio-Temporal
Self-Attention Network (STSANet). In Section III-A, an
overview of our model is given. In Section III-B, we describe
the proposed Spatio-Temporal Self-Attention (STSA) module in
detail. In Section III-C, we introduce the Attentional Multi-Scale
Fusion module. In Section III-D, we provide the detailed infor-
mation of the modules. In Section III-E, we present the super-
vision manner and the loss function.

A. Architecture Overview

The architecture of the proposed model is described in Fig. 2.
We utilize the fully-convolutional portion of S3D network [28]
pre-trained on the Kinetics dataset [29] as the backbone. The
backbone is composed of 3D convolutional layers, which have
the capability of encoding spatio-temporal information. The in-
put of backbone is a video clip consisting of T consecutive
frames, set to 32 in our model.

CNNs are able to encode hierarchical representations, includ-
ing low-level cues like color contrast, and high-level semantic
information like persons or objects, all of which are of value
to saliency. Analogously, from shallow to deep layers in 3D
CNNs, the outputs correspond to low- and high-level features,
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Fig. 2. An overview of the proposed model. Our model contains three
main components: 3D convolutional encoder, Spatio-Temporal Self-Attention
(STSA) module, and Attentional Multi-Scale Fusion (AMSF) module. A video
clip including consecutive frames is used as the input of 3D encoder to generate
hierarchical spatio-temporal visual features. Four STSA modules are employed
after different 3D convolutional blocks to capture long-range spatio-temporal
dependencies between time steps at multiple levels. Afterwards, multi-level fea-
tures are fused by the AMSF modules to generate video saliency results.

respectively. Accordingly, we employ four decoding branches
for the output from four 3D convolutional blocks of the back-
bone, which are separated by three 3D max pooling layers. Each
branch has a Spatio-Temporal Self-Attention (STSA) module
to directly create global spatio-temporal context at each level.
After that, the features from four branches are integrated by At-
tentional Multi-Scale Fusion (AMSF) modules in a top-down
pathway. Lastly, in the readout module, the feature maps are up-
sampled to the original video resolution, and the features at all
time steps are aggregated by 3D convolution to obtain the final
saliency map.

B. Spatio-Temporal Self-Attention Module

Convolutional operator updates a position of a feature map
by aggregating information in a local window, thereby failing to
capture long-range relations between visual features at different
time, which play an important role in VSP. To complement the lo-
cality of convolutional operator, we propose a Spatio-Temporal
Self-Attention (STSA) module that further updates each po-
sition at each time step by aggregating global relations with
spatio-temporal features at the other time steps.

In Fig. 2, after the backbone, the temporal channel dimen-
sions of multi-level features are uniformly compressed to 4
by 3D convolutional layers. Subsequently, the input features

to STSA modules can be denoted as F ∈ RC×4×H×W , where
C, 4, H , and W are the dimensions of the semantic chan-
nel, temporal channel, height and width, respectively. As de-
scribed in Fig. 3(a), the STSA module cascades two STSA lay-
ers and a 3D convolutional layer in the middle. In the STSA
layer I, the input feature F is first split to four sub-features
{F1,F2,F3,F4} ∈ RC×1×H×W along the temporal channel,
and each represents spatio-temporal information at different
time of a video clip. Then, we use convolutional embedding lay-
ers to transform the sub-features to queries, keys, and values, ex-
pressed asFt

q ∈ RC/2×1×H×W ,Ft
k ∈ RC/2×1×H×W , andFt

v ∈
RC×1×H×W , t = 1, 2, 3, 4, respectively. After that, we imple-
ment the dot-product attention between sub-features at differ-
ent time steps to directly capture long-range relations between
spatio-temporal features of different time steps. Specifically, this
attention mechanism in STSA layer I can be formulated as fol-
lows:

DA(F2
q,F
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k,F

1
v) = Softmax ((F2
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q,F

4
k,F

4
v) = Softmax ((F3

q)
T
F4

k)(F
4
v)

T
, (4)

where DA(·) is the dot-product attention calculation as depicted
in Fig. 3(b), and Softmax (·) indicates the softmax activation
function.

The queries, keys and values after embedding layers are first
reshaped to C/2× THW or C × THW , T = 1. Afterwards,
the dot-product attention calculation is carried out between F1

and F2, F3 and F4, respectively. More concretely, as shown in
(1), the similarity matrix is obtained by matrix multiplication of
F2

q andF1
k, and normalized by the softmax function, to represent

the spatio-temporal relation between F2 and F1. After that, the
relation is integrated to F1 by multiplying the similarity matrix
and F1

v . In the same way, the value of F2 is enhanced by the
dot-product attention operation as described in (2). Meanwhile,
the dot-product attention calculation between F3 and F4, as
formulated in (3) and (4), is the same as that between F1 and
F2. After the two sets of attention calculations, the four outputs
are reassembled along the temporal channel after being restored
toC × 4×H ×W , and an identity shortcut is added as follows:

F̂ = F⊕Norm([DA(F2
q,F

1
k,F

1
v),DA(F1

q,F
2
k,F

2
v),

DA(F4
q,F

3
k,F

3
v),DA(F3

q,F
4
k,F

4
v])) (5)

where⊕ denotes the element-wise summation,Norm(·) denotes
the layer normalization [72], and [·, ·] donates the concatenation.

Our elaborate design on these two STSA layers achieves that
each of the four features at different time steps (F1, F2, F3

and F4) is directly updated by long-range spatio-temporal re-
lations with the other three through only three groups of non-
overlapping dot-product attention calculations. For instance, F1

is updated by long-range relation with F2 in aforementioned
STSA layer I, and updated by long-range relations with F3
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Fig. 3. (a) Spatio-Temporal Self-Attention (STSA) module. (b) An detailed illustration of the embedding and dot-product attention in STSA layers. (c) Spatial
bottleneck structure employed on the STSA layers after Conv_Block_1.

and F4 in STSA layer II. Meanwhile, F2, F3 and F4 are up-
dated similarly. Specifically, after STSA layer I detailed above,
STSA layer II splits its input feature to two sub-features {F12,
F34} ∈ RC×2×H×W along the temporal channel, and then sep-
arately transforms them to queries, keys, and values by embed-
ding layers. Subsequently, the dot-product attention can be ex-
pressed in the following formulas:

DA(F34
q ,F12

k ,F12
v ) = Softmax ((F34

q )
T
F12

k )(F12
v )

T
, (6)

DA(F12
q ,F34

k ,F34
v ) = Softmax ((F12

q )
T
F34

k )(F34
v )

T
. (7)

And the identity shortcut is added as follows:

F̂ = F⊕Norm([DA(F34
q ,F12

k ,F12
v ),DA(F12

q ,F34
k ,F34

v ])).
(8)

Notably, we employ a convolutional layer between the two
STSA layers to capture more local representations. The convo-
lutional layer halves the dimension of feature in the semantic
channel, which is the input feature of the second STSA layer, to
suppress memory consumption. Consequently, our STSA mod-
ule captures local and global features alternately for comple-
mentarity.

The STSA modules described above are employed on four
branches from the backbone. They enhance the relational visual
features between different time steps at multiple levels, which
are instrumental in localizing dynamic saliency.

C. Attentional Multi-Scale Fusion

After the STSA modules, the outputs from four branches are
fused for saliency inference. The general method is the top-down
feature fusion, in which the low-resolution feature is upsampled
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Fig. 4. Attentional Multi-Scale Fusion (AMSF) module.

by interpolation and integrated with high-resolution feature us-
ing element-wise addition or concatenation. In our model, the
outputs from four STSA modules represent different contextual
information in the temporal, semantic, and spatial subspaces. Di-
rect addition fusion is not powerful enough for this case, since the
information gap in different subspaces is not taken into account.
To tackle this issue, we design an Attentional Multi-Scale Fu-
sion (AMSF) module. As depicted in Fig. 4, this module can be
divided into left and right parts. The attentional weighting opera-
tion deals with semantic gap, and the spatio-temporal multi-scale
structure alleviates information gap in spatial and temporal sub-
spaces.

We define the output of a pair of adjacent branches as
{Fh,Fl} ∈ RC×4×H×W , representing high- and low-level fea-
tures. Concretely, in the AMSF module, Fh and Fl are first
concatenated along the semantic channel, and masked by an
attention multidimensional matrix Wm ∈ R1×4×H×W that is
generated from [Fh,Fl] to enhance the important position and
weaken the invalid position, which can be formulated as:

FM = Wm � [Fh,Fl] = σ(Conv([Fh,Fl]))� [Fh,Fl] (9)

where σ indicates the sigmoid activation function, Conv(·) in-
dicates the 3D convolutional layer, and � indicates the element-
wise product. After that, inspired by the SE Block [73], we
employ a global average pooling to squeeze the spatial sub-
space, and then obtain a semantic weight matrix [Wh,Wl] ∈
RC×4×1×1 with two convolutional layers as follows:

[Wh,Wl] = σ(Conv(Relu(Norm(Conv(GAP(FM ))))),
(10)

where Relu(·) is the rectified linear unit activation function, and
GAP(·) is the global average pooling. Finally, the weight matrix
is split to two parts, and they are used to recalibrate Fh and Fl

as folows:

FO = Fh �Wh ⊕ Fl �Wl, (11)

With this attention mechanism, Fh and Fl are selected in the
semantic subspace with the perception of semantic relationship
between the features from adjacent branches.

In addition, as shown in the right part of Fig. 4, for spatial and
temporal subspaces, we design a spatio-temporal multi-scale
structure, including three convolution branches and a pooling

branch, after the attentional weighting operation in the AMSF
module. Parallel convolutional layers with different spatial ker-
nel sizes achieve adaptability to different spatial scales of fea-
tures. Besides, the 3D convolution and the 3D pooling provide
the perception of context in the temporal subspace for the fusion
module.

To sum up, in the AMSF module, specific calculations with
trainable parameters are deployed in three subspaces, to obtain
the capability of perceiving and alleviating the spatio-temporal
and semantic gaps for accurate saliency results.

D. Implementation Details

1) Spatio-Temporal Self-Attention Module: The output fea-
tures, from Conv_Block_1, Conv_Block_2, Conv_Block_3,
and Conv_Block_4 of backbone, have the temporal chan-
nel dimensions of 16, 16, 8, and 4, respectively. In order to
reduce memory occupancy of STSA modules, the temporal
channel dimensions of output features from Conv_Block_1,
Conv_Block_2, and Conv_Block_3 are uniformly com-
pressed to 4 by 3D convolutional layers, which are set as
4× 1× 1with temporal stride 4, 4× 1× 1with temporal stride
4, and 2× 1× 1 with temporal stride 2, respectively. In the
STSA module, as given in Fig. 3(b), for query and key embed-
ding layers, we use a 1× 1× 1 convolutional layer to compress
the dimension of semantic channel, and a following 1× 3× 3
convolutional layer for spatial information. For the value em-
bedding layers, we adopt the asymmetric convolution (i.e., a
1× 3× 1 convolutional layer followed by a 1× 1× 3 convolu-
tional layer) to obtain spatial information without changing the
dimension of semantic channel. These settings make the em-
bedding layers of the STSA module cost-effective and able to
capture spatial information.

Specially, in the STSA module on the branch from
Conv_Block_1, we devise a spatial bottleneck structure (i.e.,
a bottleneck structure established on the spatial subspace) for
the STSA layers, because the output from Conv_Block_1 has
a large resolution, which consumes a lot of memory during
dot-product attention calculation. As shown in Fig. 3(c), the
spatial size of input feature is first reduced by half using a
1× 2× 2 pooling layer, and the pooling indices are temporar-
ily stored. After splitting, embedding, dot-product attention, and
concatenation, the feature is restored to the initial resolution us-
ing an unpooling layer with the pooling indices. By this means,
the dot-product attention calculation is implemented in a bottle-
neck of small resolution, which greatly reduces the occupancy
of memory.

2) Attentional Multi-Scale Fusion: In the attentional weight-
ing operation, the spatial attention part generates the at-
tention matrix Wm by: Conv(1× 1× 1) → Sigmoid. Af-
ter that, the semantic channel attention part gets the weight
matrix [Wh,Wl] by: GAP → Conv(1× 1× 1) → Relu →
Norm → Conv(1× 1× 1) → Sigmoid. The spatio-temporal
multi-scale structure is inception-like, and the detailed settings
can be clearly found in the right part of Fig. 4.
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E. Supervision and Loss Function

1) Supervision: The proposed model takes successive 32
frames from a video as input, and produces a saliency map. That
is, our model predicts results for videos in a window-sliding
manner. Due to the symmetry of our model along the temporal
channel, we supervise model training with ground truth of mid-
dle frame in the video clip, i.e., the 16-th frame of 32 frames.
Therefore, to generate saliency maps for the first 15 frames and
the last 16 frames of a video, we repeat the first frame and the
last frame, respectively, to construct complete input clips.

L(S,G) = KL(S,G)− CC(S,G), (12)

where S and G are the predicted saliency map and the ground
truth, respectively.

2) Loss Function: In recent years, using the combination of
saliency metrics as loss function is common and effective in
static and dynamic saliency prediction models based on deep
learning [20], [22], [55], [59], [75]. Accordingly, for the pro-
posed model, we investigate the most suitable metric combi-
nation experimentally, and finalize the loss function as follows:
Kullback-Leibler Divergence (KL) is a common measure of dis-
crepancy between two probability distributions. Here the KL
loss is computed as:

KL(S,G) =
∑
i

Gilog

(
ε+

Gi

ε+ Si

)
, (13)

where ε is a regularization constant.
Pearson’s Correlation Coefficient (CC) loss measures depen-

dencies between two distribution maps, which is formulated as:

CC(S,G) =
cov(S,G)

sd(S)× sd(G)
, (14)

where sd is standard deviation, and cov stands for covariance.

IV. EXPERIMENTS AND RESULTS

In this section, we introduce our experiments, and present their
results as well as analyses. In Section IV-A, several benchmark
datasets are described. In Section IV-B, we present the training
procedure of our model. In Section IV-C, we briefly introduce
the saliency metrics used in the evaluation. In Section IV-D, we
compare the proposed model with other state-of-the-art models
on different datasets. In Section IV-E, we detailedly study the
influence of main components of our model. In Section IV-F, we
compare two different supervision manners on multiple datasets.
In Section IV-G, we present some failure cases and analyze the
limitations of our model as well as the difficulties of VSP task.

A. Datasets

1) DHF1K [19]: It is a large and diverse dataset, including
1 K 30 fps videos with 640× 360 resolution, which are split
to 600, 100, and 300 as training, validation, and testing sets,
respectively. The corresponding free-viewing data is collected
from 17 observers by the eye tracker. The ground truths of testing
videos are held out for the evaluation on benchmark website1.

1[Online]. Available: https://mmcheng.net/videosal/

2) Hollywood-2 [76]: It contains 1,707 videos from Holly-
wood movies. The annotations come from 19 observers, 3 of
which are in a free-viewing mode and the others are driven by
action and context recognition tasks. Following the usual split,
we use 823 and 884 videos as training and testing sets, respec-
tively.

3) UCF [76]: It consists of 150 videos including kinds of
sports action classes, and the annotations are collected in a task-
driven manner. In our paper, we adopt the same split as [19] with
103 video for training and 47 videos for testing.

4) DIEM [77]: It has 84 videos based on advertisements,
documentaries, game trailers, and movie trailers, etc. The an-
notations of them are collected from about 50 observers in a
free-viewing manner. Following [20], [78], we adopt the same
20 videos as testing set, and the rest as training set.

B. Training Procedure

The proposed model is implemented on two NVIDIA TITAN
Xp GPUs using Pytorch [79]. We initialize the backbone of our
model with the weights from S3D [28] pre-trained on the Ki-
netics dataset [29], and the remaining network is initialized by
default settings of Pytorch. We train the whole model with the
Adam optimizer [80], and the initial learning rate is set to 10−4,
which is decreased 10 times when the training loss has been
saturated.

Our model is first trained with the training set of DHF1K
dataset, and the validation set is used to monitor the conver-
gence. Then we test the results on the DHF1K benchmark. For
the Hollywood-2, UCF, and DIEM datasets, we fine-tune the
proposed model from the weights trained on DHF1K, and use
the testing sets to monitor the convergence. All input frames are
resized to 384× 224 and the batch size is set to 3.

C. Metrics

Saliency metrics involved in our experimental results and
analyses include Normalized Scanpath Saliency (NSS), Pear-
son’s Correlation Coefficient (CC), Similarity (SIM), Kullback–
Leibler Divergence (KL), and variants of Area Under ROC
Curve (AUC (AUC-Judd) and sAUC (shuffled AUC)). Specif-
ically, the distribution-based metrics, including SIM, CC, and
KL, are obtained by comparing results with the fixation con-
tinuous maps. The location-based metrics, containing NSS,
AUC-Judd, and sAUC, are calculated with the binary maps of
fixation points. More specific characteristics of saliency metrics
can be found in [81].

D. Comparison with the State-of-the-art Models

We compare our model with state-of-the-art VSP models
based on deep learning in recent years, including DeepVS [18],
ACLNet [19], STRA-Net [20], SalEMA [64], Chen et al. [21],
TASED-Net [24], SalSAC [23], UNISAL [74], HD2S [25],
ViNet [26], and TSFP-Net [65], on the DHF1K benchmark and
the testing sets of Hollywood-2, UCF, and DIEM datasets.

Table I reports a range of attributes of models, where input
size, model size, and runtime mostly come from corresponding
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TABLE I
COMPARISON RESULTS ON THE TEST SETS OF DHF1K, HOLLYWOOD-2 AND UCF DATASETS. THE BEST TWO ARE MARKED BY RED AND BLUE, RESPECTIVELY

TABLE II
COMPARISON RESULTS ON DIEM DATASET

papers and the DHF1K benchmark website1, and FLOPs is mea-
sured using the publicly available codes of the models. In terms
of these attributes, our STSANet is at an intermediate level of
computational efficiency. In fact, the STSA module is a major
contributor to computational consumption, but it also results in
considerable performance gains for the STSANet.

On the DHF1K benchmark1, our model outperforms all other
models on CC, NSS, and AUC metrics, and ranks second on
sAUC. More concretely, on CC and NSS, the performance of
our model exceeds that of other models by 2.3% and 1.5%,
respectively. The SalEMA model shows the highest score on
SIM metric, however, it gets low scores on other four metrics
compared with state-of-the-art models.

The results on the test sets of Hollywood-2 and UCF datasets
are shown in the right of Table I, where results of other mod-
els come from their corresponding papers and the DHF1K
benchmark website1. On the Hollywood-2 dataset, our method
achieves the best performance in terms of all metrics. On the
UCF dataset, our model outperforms others by a large margin
on CC and NSS metrics, and ranks first on AUC metric. Specif-
ically, compared with the second best model, our model has
improved by 2.9% and 5.7% on CC and NSS, respectively. On
SIM metric, the score of our model ranks second but very close
to the first one.

The results on the DIEM datasets are reported in Table II. The
LSTM-based models, including DeepVS [18], ACLNet [19],
STRA-Net [20], and Chen et al. [21], all use the first 300 frames
of 20 test videos as test set (Test set i) in the corresponding

TABLE III
ABLATION STUDY ON MAIN COMPONENTS OF THE PROPOSED MODEL

papers, while the two 3D convolution-based models, ViNet [26]
and TSFP-Net [65], use 17 of 20 test videos as test set (Test set
ii). Accordingly, we evaluate our model on different test sets for
fair comparisons with other models. On the Test set i, our model
outperforms others by a large margin(e.g. 0.625−0.490

0.490 = 27.6%
on CC). Besides, our model achieves a substantial improvement
compared with other 3D convolution-based models on the Test
set ii, such as 4.3% (0.649 to 0.677) on CC and 3.5% (2.630 to
2.721) on NSS. Finally, we present the results of our model on all
20 test videos of DIEM dataset (Test set iii). In Fig. 5, we further
qualitatively compare our model with some representative state-
of-the-art VSP models, including LSTM-based ACLNet [19]
and STRA-Net [20], as well as 3D convolution-based TASED-
Net [24] and ViNet [26]. It can be clearly observed that our
model achieves more accurate results than others on different
indoor and outdoor videos.

E. Ablation Analysis

In this section, we conduct comprehensive ablation experi-
ments for STSANet on the validation set of DHF1K dataset,
which contains around 60 K frames. We first investigate the
contribution of main components in our model, and then fur-
ther provide detailed ablation studies on our STSA and AMSF
modules, respectively.

1) The Contributions of Main Components: We quantita-
tively evaluate the effectiveness of main components in the pro-
posed model, and the results are reported in Table III. We con-
struct a single-stream network based on the 3D backbone as a
baseline, in which feature maps are gradually restored to ini-
tial image size by 3D convolution and trilinear interpolation
layers after backbone. Next, the UNet-like structure is added
over the baseline for exploiting the multi-level information of
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Fig. 5. Qualitative comparisons with start-of-the-art video saliency models on various categories of videos, each of which samples three frames for display.

encoder, which brings obvious improvements in terms of all
metrics. Based on the UNet-like encoder-decoder architecture,
the scores of CC and NSS increase 2.1% (0.523 to 0.534) and
2.2% (2.983 to 3.049), respectively, after adding the proposed
STSA modules. As for the AMSF module, replacing the tra-
ditional top-down feature fusion with AMSF improves the CC
score by 1.5%. Besides, adding the combination of STSA and
AMSF over the UNet-like encoder-decoder model increases the
scores of CC, NSS, and SIM by 3.1% (0.523 to 0.539), 3.3%

(2.983 to 3.082), and 3.8% (0.396 to 0.411), respectively, and
optimizes the score of KL by 3.2% (1.388 to 1.344). Overall,
continuous performance improvements are shown when adding
main components into the baseline in turn. From the baseline
to the full settings, the scores of CC, NSS, and KL are totally
optimized by 6.5% (0.506 to 0.539), 8.6% (2.839 to 3.082), and
8.1% (1.462 to 1.344), respectively.

2) Ablation Study on STSA Module: As reported in Table IV,
we conduct an in-depth ablation study on our STSA module. As
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TABLE IV
THE UPPER PART IS ABLATION STUDY ON THE STRUCTURE OF STSA MODULE,
WHERE W/O TEMPORAL RELATIONS MEANS IMPLEMENTING SELF-ATTENTION

MECHANISM SEPARATELY ON EACH TEMPORAL CHANNEL, AND SINGLE

SIMILARITY MATRIX MEANS IMPLEMENTING SELF-ATTENTION MECHANISM

DIRECTLY ON THE ENTIRE FEATURE. THE LOWER PART IS ABLATION STUDY

ON THE STSA MODULES AT DIFFERENT LEVELS, WHERE RM STSA_N MEANS

REMOVING THE STSA MODULE AFTER Conv_Block_n

Fig. 6. Structures of two variant of STSA module: (a) w/o Temporal Relations.
(b) Single Similarity Matrix.

mentioned in Section III-B, the STSA module achieves that each
feature at different time steps is directly updated by long-range
spatio-temporal relations with the others through the coopera-
tion of two STSA layers, for enhancing the relational features be-
tween time steps. To study the importance of temporal relations
contained in two STSA layers, we construct a variant of STSA
module without capturing temporal relations between time steps,
namely w/o Temporal Relations, as depicted in Fig. 6(a). In this
variant, self-attention mechanism is implemented separately at
different time steps. Specifically, for feature at each time step,
its own query and key are multiplied for similarity matrix that is
then integrated to value by matrix multiplication. Consequently,

this variant captures long-distance spatial relations separately
at each time step, without temporal relations between different
time steps. We replace the STSA module with this variant in
our model and the evaluation results indicate the contribution of
capturing long-range relations between spatio-temporal features
of different time steps in our STSA module.

In the second variant named as Single Similarity Ma-
trix, as depicted in Fig. 6(b), self-attention mechanism is ap-
plied to the whole featureF = [F1,F2,F3,F4] ∈ RC×4×H×W .
Concretely, the input feature F is transformed to query
Ft

q ∈ RC/2×4×H×W , key Ft
k ∈ RC/2×4×H×W , and value Ft

v ∈
RC×4×H×W by embedding layers. In the dot-product attention,
a single similarity matrix with size 4HW × 4HW is generated
from query and key, to capture spatio-temporal relationship. The
experimental results of the Single Similarity Matrix show worse
performance than the proposed model as reported in Table IV.
In this variant, the elements in the similarity matrix are selected
in temporal subspace during the softmax function. For exam-
ple, if the elements representing the relation between F1 and
itself get high values, the elements representing the relations be-
tween F1 and sub-features at other time steps (F2, F3, and F4)
will get low values, which amounts to a disguised weakening
of these elements, and hence leads to an inability to adequately
capture the relations between F1 and sub-features at other time
steps. Our STSA module avoids this drawback, because it di-
rectly captures long-range relations between each sub-feature
and the other three in two STSA layers.

Furthermore, in order to inspect the necessity of two STSA
layers in the STSA module, the STSA layer I and STSA layer
II are removed separately. The comparison results demonstrate
that removing either STSA layer I or STSA layer II results in
degradation of performance compared with the full settings, in
which each of features at different time steps can be updated
by long-range relations with spatio-temporal features of all the
other time steps through the cooperation of two STSA layers.

Moreover, to validate the effectiveness of STSA modules em-
ployed on different levels, we separately remove one of four
STSA modules from the proposed STSANet for evaluation. As
shown in the lower part of Table IV, the performance deterio-
rates in terms of all metrics after removing STSA module at any
level, which suggests that all STSA modules at different levels
have contribution to saliency results.

3) Ablation Study on AMSF Module: To further verify the
contribution of the design of AMSF module, we change the
AMSF module by removing the attentional weighting (AW) op-
eration and spatio-temporal multi-scale (STMS) structure, re-
spectively. As shown in Table V, the two variants with incom-
plete structures result in performance degradation in terms of
all metrics. Our complete AMSF modules integrates multi-level
features with the perception of context in all three subspaces for
better saliency results.

Besides, as shown in Fig. 7, we construct a variant of the
AMSF module about feature fusion, namely Concat-Based,
which replaces addition fusion with concatenation fusion in
the AMSF module. The experimental comparison shows that
the AMSF module helps the proposed model go to a better
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TABLE V
ABLATION STUDY ON THE AMSF MODULE. CONCAT-BASED MEANS

REPLACING ADDITION FUSION WITH CONCATENATION FUSION. AM AND

STMS INDICATE THE ATTENTION WEIGHTING OPERATION AND

SPATIO-TEMPORAL MULTI-SCALE STRUCTURE, RESPECTIVELY

Fig. 7. Structure of the variant of AMSF module: replacing addition fusion
with concatenation fusion in AMSF module.

TABLE VI
COMPARISON RESULTS OF DIFFERENT SUPERVISION MANNERS ON DHF1K,

HOLLYWOOD-2, AND UCF DATASETS

convergence compared with the Concat-Based variant. In our
AMSF module, addition fusion allows highlighting the inter-
secting saliency regions in high- and low-level feature maps,
which helps to collectively consider the multi-level saliency
information during feature fusion. Moreover, addition fusion
brings fewer parameters than concatenation fusion.

F. Discussion on Supervision Manner

Previous work [24] used the ground truths corresponding to
last frames of input video clips for supervise learning. In our
work, as mentioned in Section III-E, the ground truth of mid-
dle frame in the video clip is used to supervise model training.
We refer to the two supervision manners as middle-supervised
and last-supervised for short, and compare them experimen-
tally. As show in Table VI, we adopt two different supervi-
sion manners to train our model on DHF1K, Hollywood-2, and
UCF datasets, respectively. The evaluation results show that the
middle-supervised and last-supervised have close performance
on the DHF1K and Hollywood-2 datasets. On the UCF dataset,
the middle-supervised manner presents a relative advantage in
terms of all metrics. As a result, other experiments are imple-
mented in the middle-supervised manner.

G. Failure Cases and Analyses

Here we present some failure cases and analyze the limitations
of our model as well as the difficulties of VSP task. In Fig. 8, for

Fig. 8. Some failure cases on DHF1K dataset.

the first video (the first two rows), human fixations are mainly on
the wood being processed. However, the results of computational
models are scattered on other objects. Varied scene and all sorts
of objects make it difficult for models to accurately localize the
wood, i.e., the main character of the video. On the other hand,
our STSANet infers saliency results only from a video clip, so
the global context from an entire video is not taken into account,
which causes difficulty in highlighting the main character in such
a complex video. In the second video (the last two rows), human
fixations are distributed on the interaction of the water snake
with other objects, i.e., the water snake and water plants (the
third row), and the water snake and fish (the last row). Although
models are able to capture the motions of the snake, it is hard for
them to perceive the interaction, and thus they fail to precisely
locate the part of the snake’s body.

V. CONCLUSION

This paper proposes a novel Spatio-Temporal Self-Attention
3D neural network (STSANet) for video saliency prediction.
We employ Spatio-Temporal Self-Attention (STSA) modules
at different levels of the 3D convolutional backbone to over-
come the locality of 3D convolution. In each STSA module,
spatio-temporal features are split along the temporal channel
and features at different time steps are transformed by em-
bedding layers, then dot-product attention calculation is imple-
mented between features of different time steps. By this means,
at multiple levels, features at each time step can be updated by
long-range dependencies with features of other time steps. The
integration of 3D networks and spatio-temporal self-attention
mechanism brings performance gains as shown in ablation ex-
periments. Accordingly, this method has the potential to be ap-
plied to other video tasks. Furthermore, we design an Atten-
tional Multi-Scale Fusion (AMSF) module for the integration
of multi-level spatio-temporal features. The AMSF module con-
tains an attentional weighting operation and a spatio-temporal
multi-scale structure, which separately aim to alleviate the se-
mantic and spatio-temporal gaps between features of different
levels. Extensive experiments demonstrate outstanding perfor-
mance of the proposed model compared with all state-of-the-art
video saliency prediction methods.
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