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A B S T R A C T   

Audio-visual saliency prediction (AVSP) is a task that aims to model human attention patterns in the perception 
of auditory and visual scenes. Given the challenges associated with perceiving and combining multi-modal sa-
liency features from videos, this paper presents a multi-sensory framework for AVSP. This framework is designed 
to extract audio, motion and image saliency features and integrate them effectively, which can then serve as a 
general architecture for the AVSP task. To obtain multi-sensory information, we develop a three-stream encoder 
that extracts audio, motion and image saliency features. In particular, we utilize a pre-trained encoder with 
knowledge related to image saliency to extract saliency features for each frame. The image saliency features are 
then incorporated with motion features using a spatial attention module. For motion features, 3D convolutional 
neural networks (CNNs) like S3D are commonly used in AVSP models. However, these networks are unable to 
effectively capture the global motion relationship in videos. To tackle this problem, we incorporate Transformer- 
and MLP-based motion encoders into the AVSP models. To learn joint audio-visual representations, an audio- 
visual fusion block is exploited to enhance the correlation between audio and visual motion features under 
the supervision of a cosine similarity loss in a self-supervised manner. Finally, a multi-stage decoder integrates 
audio, motion and image saliency features to generate the final saliency map. We evaluate our methods on six 
audio-visual eye-tracking datasets. Experimental results demonstrate that our method achieves compelling 
performance compared to the state-of-the-art methods. The source code is available at https://github. 
com/oraclefina/MSPI.   

1. Introduction 

Nowadays, humans are frequently exposed to multi-sensory and 
cross-modal stimuli from videos on televisions and mobile phones. 
While watching videos, humans perceive auditory and visual informa-
tion simultaneously and can quickly pay attention to places of interest. 
The understanding of this human visual attention mechanism is an 
active research field in computer vision. Recently, with the advent of 
deep learning, image saliency prediction (ISP) models [5,18,22,37, 
44,54,55,70,81,89,92,98,100] and video saliency prediction (VSP) 
models [47,61,73,96,97,105,107] have made a significant progress in 
predicting visual attention with static images and spatiotemporal visual 
features. However, the audio-visual attention modeling based on deep 
learning methods is still in early stages, because most video saliency 
models primarily focus on visual information, and the collection of 

large-scale eye-tracking datasets for videos [38,60,95] is typically done 
in a soundless environment. 

In videos, visual streams are naturally accompanied by auditory 
streams, which have been embodied in many video-related works 
[1,4,106]. Unlike the fact that the human brain can perceive and process 
these multi-sensory stimuli in a sophisticated and elegant way, most of 
audio-visual models rely on two-stream neural networks to process 
video frames and audio for learning audio-visual features. As shown in 
Fig. 1 (a), current AVSP models [36,67,83,87,108] also utilize two- 
stream networks to simultaneously acquire dynamic visual feature 
representations and auditory semantic feature representations. For the 
audio stream, audio encoders [6,12,33] for large-scale audio classifi-
cation are employed to extract audio feature representation. For the 
visual stream, 3D CNN-based motion encoders obtain visual dynamic 
features over successive video frames. However, on the one hand, 3D 
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convolutions cannot effectively capture the long-range motion re-
lationships among frames. On the other hand, these AVSP models often 
overlook the frame-level static saliency features as temporal dimensions 
gradually decrease by temporal pooling operations. Based on the huge 
success in ISP models, Min et al. [63] directly integrated audio-visual 
saliency maps with static saliency maps produced by ISP models to 
promote the performance under audio-visual scenes. But the potential of 
the ISP models has not been fully explored for AVSP models. 

How to integrate auditory and visual features and acquire audio- 
visual correspondence representation for AVSP models is the key 
issue. Some works [36,67,87] attempt to locate the sounding object 
through different audio-visual fusion methods. They utilize pooling 
operations on audio and visual features before audio-visual fusion. 
These pooling operations either removes the temporal information or 
spatiotemporal information of these features. To explore explicit audio- 
visual correspondence cues, Chen et al. [11] manually annotated the 
audio-visual consistency labels of videos and incorporated an audio- 
visual consistency classifier to regulate the integration of audio and vi-
sual features. However, this approach requires significant efforts to label 
video frames. Recently, self-supervised learning has gained popularity 
and promoted the advancement of audio-visual learning [2,16,29,68]. 
For the AVSP task, Xiong et al. [102] introduced a consistency-aware 
predictive coding module to iteratively minimize the distance between 
audio and visual feature embeddings, which shows a promising future 
for introducing self-supervised methods into AVSP models. 

Based on the above observations, we propose a multi-sensory 
framework for audio-visual saliency prediction, which aims to 
perceive motion, auditory and image saliency information, and then 
combine these modalities based on their respective characteristics. The 
overview of our framework is depicted in Fig. 1 (b), which is divided into 
perception and integration stages. To simulate multi-sensory perception, 
we construct a three-stream network that incorporates motion, audio 
and image saliency encoders to extract multi-modal features. In partic-
ular, to fully realize the potential of ISP models, we obtain frame-level 
saliency features from an image saliency encoder pretrained on image 
saliency datasets [40,41], pursuing the later feature-level fusion in 
latent space. To address the issue of that the 3D CNN-based motion 
encoders currently used in AVSP models cannot well capture long-range 

motion saliency features, we introduce Transformer- and MLP-based 
motion encoders into AVSP. Transformer structure can capture long- 
range relationships by the self-attention operation and MLP structure 
can obtain global information through fully-connected layers. For the 
integration stage, multi-modal fusion methods are based on the char-
acteristics of each modality. The extracted image saliency features are 
incorporated into motion features through a spatial attention module. 
To learn audio-visual correspondence representations in a self- 
supervised manner, we build a audio-visual fusion block that com-
prises Transformer encoder layers, projection layers and predictor 
layers. We employ a cosine similarity loss to align the audio and visual 
features based on the stopgrad operation from [15]. Finally, a multi-stage 
decoder is designed to fully integrate audio and visual features. We 
conducted experiments on six widely-used audio-visual eye-tracking 
datasets and evaluated our multi-sensory framework using 3D CNN 
[26,27,101], Transformer [52,53,57] and MLP [104] as motion en-
coders. Experimental results show that our model achieves compelling 
performance compared to the state-of-the-art methods. 

In summary, the main contributions of this work are detailed as 
follows:  

• We propose a multi-sensory framework for audio-visual saliency 
prediction that can perceive motion, audio and image saliency fea-
tures and integrate them effectively based on their characteristics. 
Furthermore, to demonstrate the general use of the proposed 
framework and the importance of the long-range modeling, we 
evaluate our framework using 3D CNN-, Transformer- and MLP- 
based motion encoders for AVSP. Experiments show that the long- 
range motion capture structures are beneficial for AVSP.  

• We introduce an image saliency encoder into the architecture of 
AVSP. We simplify the structure of ISP models and analyze the 
inherent operating behavior of image saliency features in our 
framework. With prior knowledge of image visual saliency, our 
model gains the ability to extract frame-level saliency features and 
adjust the spatio-temporal saliency features through a spatial 
attention module. 

• We propose an audio-visual fusion block to learn audio-visual cor-
respondence relationships in a self-supervised manner. Transformer 

Fig. 1. Architectures of the audio-visual saliency prediction models. (a) The current two-stream network for audio-visual saliency prediction. (b) The overview of our 
multi-sensory framework for audio-visual saliency prediction. 
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layers and a symmetrized cosine similarity loss are used for the 
representation learning between audio and visual features. 

2. Related work 

In this section, we briefly review the literature on visual saliency 
prediction, audio-visual saliency prediction and self-supervised audio- 
visual learning. 

2.1. Visual saliency prediction 

Compared to detecting salient objects [48–51,71,93,94], visual sa-
liency prediction aims to predict human fixations when human observe 
visual stimulus like images and videos. According to the type of input, 
visual saliency works can be categorized into image saliency prediction 
and video saliency prediction. For image saliency prediction, traditional 
models depend on hand-crafted features including low-level features (e. 
g., color, contrast and orientation) [7,25,35] and high-level features (e. 
g., text and faces) [8,85]. Recently, with the prevalence of deep learning, 
CNN-based approaches have been introduced into saliency prediction 
and have achieved great progress. Many image saliency models are built 
based on an encoder-decoder structures, where the encoders are typi-
cally pre-trained CNN backbones while the decoder strategies are 
various. Some works [24,45,76,81,92] aggregate hierarchical interme-
diate maps from different encoder layers to generate saliency maps. 
Some works [18,69,103] build independent encoders and decoders with 
no feature sharing between them. 

As for video saliency prediction, the majority of the models employ 
long-term temporal modeling structures, such as LSTM [13,39,99], RNN 
[23] and ConvGRU [47], to generate saliency maps over successive 
frames. Some works [36,61,97] build models based on 3D convolutions 
to learn spatio-temporal saliency features. Recently, Ma et al. [59] and 
Zhou et al. [107] proposed transformer-based models to learn long-term 
spatiotemporal features for video saliency prediction, achieving 

outstanding performance. In this paper, we leverage the knowledge 
pertaining to image saliency from ISP models to acquire frame-level 
saliency features. In order to effectively extract long-range motion fea-
tures, we evaluate our multi-sensory framework on various motion en-
coders, including 3D CNN-, Transformer- and MLP-based video 
backbones. 

2.2. Audio-visual saliency prediction 

Psychological studies [72,90] have proven that the auditory mo-
dality can influence the perception of the visual modality. Song et al. 
[80] analyzed eye movement of humans under different types of sound, 
revealing that humans in the audio-visual condition exhibited more 
frequent eye movements. Coutrot et al. [19,20] studied human visual 
behavior in social multi-modal scenarios. Recent works [10,63,83,91] 
have started to employ deep learning-based techniques to model the 
audio-visual attention mechanism and propose approaches to incorpo-
rate visual and audio modalities for AVSP. Tsimami et al. [87] intro-
duced a bilinear fusion operation to integrate multi-modality features. 
Zhu et al. [108] utilized a canonical correlation analysis method to 
capture the correspondence between multi-modal information streams. 
Chen et al. [11] manually annotated the audio-visual consistency labels 
for videos and designed a classifier to control the audio-visual integra-
tion, which is able to learn explicit audio-visual correspondence re-
lationships. Xiong et al. [102] introduced a consistency-aware 
predictive coding module to iteratively minimize the distance between 
audio and visual feature embeddings in a self-supervised manner, which 
shows a promising future for incorporating self-supervised methods into 
AVSP models. 

2.3. Self-supervised audio-visual learning 

Recently, self-supervised learning methods like contrastive learning 
[14,15,30] have been introduced into audio and visual representation 

Fig. 2. The architecture of our multi-sensory framework for audio-visual saliency prediction. (a) The overview of our method, which consists of a three-stream 
encoder, an audio-visual fusion block, a decoder for further feature fusion and a Readout block to generate saliency maps. (b) The detailed audio-visual fusion 
block. (c) The detailed decoder and the SA block. (d) The structure of other four components, containing a 3D Sep-Inception Block [101], T&C Block, 3D version of 
ConvNeXt Block [56] and Readout Block. 
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learning [3,28,34,66]. Most approaches utilize single-modality back-
bones to generate representations of each modality, which are then 
optimized with self-supervised loss [75,78]. Recent works attempt to 
learn joint audio-visual representations using a single backbone [65,74]. 
Shvetsova et al. [79] proposed a multi-modal, modality-agnostic fusion 
transformer to exchange information from audio, video and text and 
trained the model with a combinatorial loss to obtain multi-modal 
shared embedding space. Gong et al. [29] combined contrastive 
learning and masked data modeling to learn a joint audio-visual repre-
sentation, which can capture both modality-unique and audio-visual 
paired information. These studies show that the contrastive learning 
methods can obtain the multi-modal correlation feature representation. 
Thus, in this paper, we propose to utilize a symmetrized cosine similarity 
loss to supervise audio-visual feature representation learning with 
transformer encoder, projector and predictor layers for AVSP. 

3. Approach 

In this section, we first introduce the overview of our multi-sensory 
framework for audio-visual saliency prediction, and then describe the 
detailed structure of each module and loss function. 

3.1. Overview 

Our framework contains two stages, i.e., a perception stage with a 
three-stream encoder for audio, motion and image saliency feature 
extraction, and a integration stage with multiple fusion blocks and a 
decoder to fuse audio-visual, motion-image saliency and multi-stage 
features, respectively. The detailed architecture is illustrated in Fig. 2. 
Given a frame sequence V ∈ ℝHv×Wv×3×Tv and an audio spectrogram 
A ∈ ℝHa×Wa , the audio-visual saliency model generates the saliency 
map. First, the audio and visual streams are encoded with three feature 
extractors ℰA, ℰV and ℰIS. Second, the extracted audio and motion 
features are fed into an audio-visual fusion block to learn audio-visual 
correspondence features, while the extracted image saliency features 
are taken into a 3D Sep-Inception block to enhance temporal saliency 
features for the later fusion with motion features. Next, the decoder 
integrates image saliency, audio-visual and multi-scale visual features. 
Finally, a readout block is used to generate the final saliency map. 

3.2. Three-stream encoder 

To extract audio, motion and image saliency features for AVSP, a 
three-stream network with ℰA, ℰV and ℰIS is established. As depicted in 
Fig. 2 (a), audio feature representation fa is extracted through an audio 
encoder ℰA: 

fa = ℰA(A ) ∈ ℝha×wa×Ca (1) 

Visual input is encoded in a pyramid motion features extractor ℰV 

and an image saliency extractor ℰIS: 

fvi = ℰV(V ) ∈ ℝhvi ×wvi ×Cvi ×Tvi , i = 1, 2, 3, 4 (2)  

fIS = ℰIS(V ) ∈ ℝhIS×wIS×CIS×Tv (3)  

where i represents different stages of the motion extractor. For ℰA, we 
use a ResNet-18 [32] variant that is pre-trained on VGGSound [12] for 
sound classification. For ℰV, we conduct experiments on multiple pyr-
amid video backbones of different structures, including three 3D CNN- 
based backbones (S3D [101], X3D [26] and SlowFast [27]), one MLP- 
based backbone (MorphMLP [104]) and three Transformer-based 
backbones (VideoSwin [57], Uniformer [52] and MViTv2 [53]), which 
are pre-trained on Kinetics 400 [42]. The Transformer- and MLP-based 
backbones are able to effectively capture long-term motion features. 
As for ℰIS, we adopt the ImageNet-pretrained MobileNet-V2 [77] and 
ConvNeXt-T [56] as ISP models, which are then finetuned on image eye- 
tracking datasets, i.e., SALICON [40] and MIT1003 [41]. During the 
training process for AVSP, the weights of the audio and image saliency 
encoders are frozen. 

3.3. Incorporating image saliency features 

To obtain static saliency features, an image saliency model finetuned 
on image saliency datasets can provide comprehensive image saliency 
information. Image saliency prediction models [24,45,76,81] propose a 
variety of designs to capture, enhance and fuse saliency features, but 
they all have a typical encoder-decoder architecture. The detailed de-
signs of decoders are various, but the encoders are basically the same 
and features in the encoders can easily be obtained. Thus, we simplify 
the ISP architecture as the one in Fig. 3 with Conv+BN + ReLU as a 

Fig. 3. The architecture of the ISP model and the visualization of averaged feature in each block from the encoder. The red dotted box here represents the image 
saliency features that are used for the later fusion in our framework. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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transition layer between the encoder and the decoder. Features in the 
deep stages of ISP models, which include semantic information such as 
objects, faces and text, are crucial for explaining free viewing behavior 
in natural scenes [46,82]. The features in the last two stages with a large 
receptive field contain rich semantic information. From the averaged 
features in Fig. 3, the features in the deep stages highlight the salient 
regions and are more similar to the saliency map. Therefore, we obtain 
the image saliency features from the last two stages of the encoder as 
shown in the red dotted box in Fig. 3. Since the image saliency encoder 
already possesses the ability to highlight the salient regions in images, it 
is beneficial to freeze its weights during training, which also reduces the 
consumption of graphic memory. 

The extracted saliency features from ISP encoder contains rich sa-
liency information, but are in weak representation of temporal proper-
ties. To better incorporate the image saliency features into multi-stage 
visual features from ℰV, a sep-inception block [101] is utilized. This 
block enhances the spatiotemporal relationship and obtains the tem-
poral enhanced image saliency features fsal ∈ ℝhIS×wIS×512×T (T = 4) for 
later fusion. The detailed structure is shown in Fig. 2 (d) (1). The 
extracted image saliency features fIS are passed through a temporal 
MaxPool operation first to reduce the temporal dimension. Later, the 
enhanced image saliency features fsal are passed to the decoder for the 
saliency feature fusion. The detailed process of feature fusion is shown in 
Fig. 2 (c) (1). We utilize a spatial attention (SA) module to incorporate 
image saliency features fsal into multi-stage motion features from fv1 , fv2 

and fv3 . As illustrated in Fig. 2 (c) (1), for inputs fsal and f ∈ ℝh×w×C×T, the 
channel of features fsal is first squeezed to 32 through a 3D Conv-BN- 
ReLU layer. We adopt a trilinear interpolation to align the spatial size 
between fsal and f . Next, a 3 × 3 × 3 convolutional layer and a sigmoid 
activation layer are used to generate a spatial attention mask 
M ∈ ℝh×w×1×T . Finally, the spatial relationship of f is refined by the 
attention mask and a residual connection is applied to obtain the fused 
features. The whole process is as follows: 

M = σ(Conv3D(Up(ReLU(BN(Conv3D(fsal) ) ) ) ) ),

f ′ = f + f ⊙ M (4)  

where σ(⋅) represents the sigmoid function, ⊙ means the element-wise 
multiplication. 

We visualize image saliency features in our framework in Fig. 4. Our 
findings are as follows: the image saliency features from the saliency 
encoder highlight the salient regions but have a weak expression in the 
temporal relationship (in the third row); enhancing the image saliency 
features with spatiotemporal enhancement blocks can help adjust the 

saliency features to better align with motion features (in the first row); 
our SA block can provide temporal saliency mask M, as it gradually 
adjusts spatial attention weights and concentrates on salient regions (in 
the second row). 

3.4. Audio-visual fusion 

To integrate audio-visual features, we adopt three transformer 
encoder layers with 4 heads and 512 embedding dimension to jointly 
process the extracted audio and visual features. The audio input fa is 
flatten to audio tokens a ∈ ℝNa×Cav . The visual input fv4 is flattened and 
through a linear layer to obtain visual tokens v ∈ ℝNv×Cav . Then tokens a, 
v are added with sinusoidal positional embedding [88] and concate-
nated together to obtain Xav ∈ ℝN×Cav (N = Na + Nv). Transformer layers 
process Xav to get the final audio-visual embedding X'

av. The whole 
process is defined as follows: 

a = Flatten(fa) + Ea,

v = Linear
(
Flatten

(
fv4

) )
+ Ev,

Xav = Concat(a, v),
X'

av = Transformer×3(Xav)

(5)  

where Ea and Ev are the positional embedding of audio and visual fea-
tures, respectively. 

To learn audio-visual cues in a self-supervised manner, we follow the 
method used in [15,78]. The method can perform contrastive learning 
on different views of an image or multi-modality features of audio and 
vision using a symmetrized cosine similarity loss to learn the feature 
embeddings with stopgrad. The primary objective of stopgrad is to pre-
vent model collapsing when models are trained from scratch. Given our 
utilization of pre-trained encoders, the training of our models is stable. 
Thus, to maintain the consistency of the learning method and to learn 
audio-visual features, we minimize the cosine embedding distance D 

between audio modality and visual modality with stopgrad. Given two 
vectors p and z, in which p represents the output vector from a predictor 
head and z is the output vector from a projector head or directly from the 
encoder followed by the stopgrad operation, we obtain the following 
equation: 

D (p, stopgrad(z) ) = −
p

‖p‖2
⋅

z
‖z‖2

(6)  

where ‖⋅‖2 is l2 -norm. As shown in Fig. 2 (b), processed by the three 
transformer layers, the concatenated features X'

av are first split and 

Fig. 4. Visualization of image saliency features from the 3D Sep-Inception block and SA block.  
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averaged into a ∈ ℝCav and v ∈ ℝCav , and audio-visual features fav are 
used for later multi-stage integration. Then a and v are fed to projectors 
which are MLP layers with a batchnorm layer as the output to generate 
feature representations a1 and v1. Next, A-predictor and V-predictor are 
utilized to obtain the audio vector a2 and visual vector v2. Finally, we 
use the negative cosine loss to minimize the cross-modal distance 
among these features. Thus, a symmetrized cosine similarity loss is 
defined as follows: 

L audio− visual =
1
2
(D (a2, stopgrad(v1) )+D (v2, stopgrad(a1) ) ) (7)  

3.5. Decoder 

Multi-stage integration can effectively improve the performance for 
saliency prediction [17,36]. Inspired by this, our decoder is based on a 
multi-stage fusion structure. As presented in Fig. 2 (c), the visual inputs 
fv1 , fv2 and fv3 are first processed by a T&C block (Temporal and 
Channel lateral block) to reduce the channel dimension and align the 
temporal dimension, while the inputs fv4 and fav are first concatenated 
and then passed into the T&C block. The detailed structure of T&C 
block is shown in Fig. 2 (d) (2). 1 × 1 × 1 and T-convolutional layers 
are used for channel and temporal dimension adjustment. The dotted 
line represents that this operation is not performed if the temporal 
dimension of input satisfies the temporal setting (Temporal dimension 
is 4). These two operations can ease the burden of computing, but result 
in a loss of spatiotemporal information. Thus, an enhancement block is 
exploited to enhance spatiotemporal features and we adopt a 3D 
version of ConvNeXt block [56] (in Fig. 2 (d) (3)), by replacing 2D 
convolutional layers with 3D convolutional layers and utilizing 
depthwise separable convolutional layers to enhance temporal and 
spatial features. After T&C blocks, the features from fv1 , fv2 and fv3 are 
fused with image saliency features fsal as discussed in Section 3.3. Then 
the enhanced multi-stage features are fused through addition with 
dense connections from deep stages to early stages. The saliency map is 
obtained using the Readout Block (in Fig. 2 (d) (4)) that consists of 3D 
Conv, BN, ReLU and Upsampling layers. Finally, the predicted saliency 
map is normalized by a softmax operation. 

3.6. Loss function 

For saliency prediction, we adopt the combination of Pearson's 
Correlation Coefficient (CC) and Kullback–Leibler Divergence (KL) as 
the saliency loss L sal, in which CC estimates the correlation between 
two variables and KL measures the differences between two probability 
distributions. The process is as follows: 

CC(P,Q) =
σ(P,Q)

σ(P) × σ(Q)
, (8)  

KL(P,Q) =
∑

i
Qilog

(

ε+ Qi

Pi + ε

)

, (9)  

L sal(P,Q) = KL(P,Q) − CC(P,Q), (10)  

where P and Q are the predicted and ground-truth saliency maps, 
respectively, i is the pixel index, ε is a regularization term and σ(P,Q) is 
the covariance of P and Q. 

For audio-visual learning, as discussed in Section 3.4, the symme-
trized negative cosine similarity is exploited to supervise the audio- 
visual correspondence learning. Thus, we deploy the total loss func-
tion as follows: 

L total(P,Q) = L sal(P,Q)+ λ⋅L audio-visual, (11)  

where λ is the weight of audio-visual loss and is set to 1 by default. 
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4. Experiment 

In this section, we first describe the datasets and evaluation metrics 
in Section 4.1 and Section 4.2. Then we introduce the details of imple-
mentation in Section 4.3. In Section 4.4 and Section 4.5, we compare our 
method with the state-of-the-art AVSP models and analyze the impor-
tance of image saliency features, audio-visual features and motion fea-
tures to our framework by ablation studies. 

4.1. Datasets 

In the experiments, we use the following six audio-visual eye- 
tracking datasets: 

DIEM [64] dataset contains 84 video clips covering music videos, 
game trailers, advertisement, news clips, movie trailers, commercials 
and documentaries. 

ETMD [43,86] dataset is composed of 12 video clips from several 
Hollywood movies. 

SumMe [31,86] dataset consists of 25 unstructured video clips 
which are acquired in a controlled psychological experiment. 

AVAD [62] dataset contains 45 video clips with 5–10 s, which cover 
several audio-visual scenarios, i.e., playing basketball, playing the 
panio, etc. 

Coutrot1 [20] contains 60 video clips with 4 visual categories: one 
moving object, landscapes, several moving objects and faces. 

Coutrot2 [21] contains 15 video clips from a meeting with 4 
persons. 

4.2. Evaluation metrics 

Following the former works [67,87,91,106], we utilize five metrics 
containing NSS (Normalized Scanpath Saliency), AUC (Area under ROC 
Curve), sAUC (Shuffled AUC), CC (Pearson's Correlation Coefficient) and 
SIM (Similarity) for evaluation. 

4.3. Implementation details 

The default visual inputs of the network consist of 16 frames of 224×

224. The audio is resampled at 16 kHz and the audio spectrogram is 
generated using a 512 FFT and a 160 hop length setting. The initiali-
zation of the three-stream encoders is as discussed in Section 3.2. For the 
six audio-visual eye-tracking datasets, we adopt the same three-fold 
splitting strategy as STAViS [87]. We present the average results of 
each metric in the following experiments. We use the AdamW [58] 
optimizer with an initial learning rate of 1e-4, and the learning rate is 
reduced by a factor of 10 after 60 epochs. We train our model for a total 

of 120 epochs and monitor the model every 10 epochs. The batch size is 
set to 4. We evaluate our framework using various video backbones and 
larger visual inputs, which requires adjusting the batch size to accom-
modate a 12GB GPU. For smaller batch sizes, we replace the batchnorm 
layers in projectors and predictors with layernorm layers to avoid 
gradient explosion. 

4.4. Comparison with state-of-the-art methods 

We compare our methods with 5 state-of-the-art AVSP models on the 
six audio-visual eye-tracking datasets, as shown in Table 1. For our 
method, we offer 3D CNN-based and Transformer-based models with 
two types of resolutions (224 × 224 and 224× 384) in Table 1. From 
Table 1, it can be observed that current AVSP models are trained on 
various visual resolutions and methods like STAViS are trained in a low 
resolution, which may hurt their performance. In the AVSP research 
field, most of the models have not released their codes, while AViNet 
and STAViS have released their codes. Thus, we retrain STAViS with 
224 × 384 visual inputs and the results are denoted by * in Table 1. 
Compared to the original STAViS, STAViS* achieves improvements on 
the most of the evaluation metrics, like CC in AVAD from 0.6086 to 
0.6539, CC in ETMD from 0.5690 to 0.5849, NSS in Coutrot2 from 5.28 
to 5.64 and CC in Coutrot1 from 0.4722 to 0.4965, and obtains a similar 
performance in DIEM and SumMe. However, STAViS* still lags behind 
our methods on the six datasets. 

For the 3D CNN-based model of ours, “Ours (S3D)” outperforms 
other AVSP models on the six audio-visual datasets apart from CASP- 
Net. Compared with CASP-Net, “Ours (S3D)” with 224 × 384 out-
performs it on DIEM, AVAD, Coutrot1 and Coutrot2, and falls short on 
ETMD and SumMe. Our transformer-based model “Ours (MViTv2-S)” 
with 224 × 224 outperforms the above 3D CNN-based models on the 
most of evaluation metrics. With a higher resolution, our method ach-
ieves a 3.85% improvement on CC in Coutrot1, increasing from 0.5832 
to 0.6057. Overall, our 3D CNN-based models show compelling per-
formance with other AVSP models and the superior performance of the 
transformer-based method demonstrates that the strong ability to cap-
ture long-term dynamic saliency features benefits the AVSP task. 

We also visualize some frame samples from DIEM, ETMD, SumMe, 
AVAD, Coutrot1 and Coutrot2, along with the corresponding saliency 
maps of the state-of-the-art AVSP models in Fig. 5. We can observe that 
in the ETMD column, our model pay attention to the shoe in man's hand 
while other models care more about the man's hand. In the DIEM col-
umn, STAViS and AViNet are influenced by the surround objects and 
there is significant difference from the groud truth. In the Coutrot2 
column, our model correctly identifies the speaking man, while STAViS 
and AViNet mistakenly highlight the second person. Overall, our results 

Fig. 5. Visual comparison with other state-of-the-art AVSP models.  
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are closer to the ground truths. 

4.5. Ablation study 

In this section, we conduct ablation studies to evaluate the image 
saliency, audio and motion components in our framework. To evaluate 
the effectiveness of the image saliency encoder and the audio-visual 
fusion block, we adopt S3D and MobileNetV2 as the base settings for 
the motion encoder and image saliency encoder, respectively, for a 
convenient comparison. As shown in Table 2, we create seven variants. 
The baseline model is the visual-only model supervised by L sal. In V1, 
audio is introduced into the model and the variant is optimized by L total. 
In V2, the image saliency encoder is incorporated into our framework. 
For V3 and V4, the difference lies in whether the audio-visual symme-
trized loss L audio− visual is used or not. We further analyze the audio-visual 
method and audio-visual loss in Table 4 and Table 5. For V5, we replace 

Ta
bl

e 
2 

A
bl

at
io

n 
st

ud
ie

s 
of

 t
he

 i
m

ag
e 

sa
lie

nc
y 

fe
at

ur
es

 a
nd

 a
ud

io
-v

is
ua

l 
fu

si
on

 o
n 

th
e 

te
st

 s
et

s 
of

 D
IE

M
, 

ET
M

D
, 

Su
m

M
e,

 A
VA

D
, 

Co
ut

ro
t1

 a
nd

 C
ou

tr
ot

2 
da

ta
se

ts
. 

ℰ
IS

 

(C
on

vN
eX

t-T
*)

 is
 n

ot
 fi

ne
tu

ne
d 

on
 im

ag
e 

sa
lie

nc
y 

da
ta

se
ts

. ℰ
IS

 (C
on

vN
eX

t-T
†
) d

ir
ec

tly
 p

ro
vi

de
s s

al
ie

nc
y 

m
ap

s i
ns

te
ad

 o
f i

m
ag

e 
sa

lie
nc

y 
fe

at
ur

es
. T

he
 b

es
t r

es
ul

ts
 a

re
 

hi
gh

tl
ig

ht
ed

. 

Fig. 6. Comparison of the seven variants (V1, V2, V3, V4, V5, V6 and V7) with 
the baseline model. The y-axis represents the difference in averaged metric 
scores of the six audio-visual eye-tracking datasets between the baseline and the 
compared variant. For a better display, the NSS scores are multiplied by 0.1. 

Table 3 
The performance of image saliency models with different encoders on the image 
saliency datasets, viz. the validation sets of SALICON and MIT1003. For the 
validation set of MIT1003, 103 images are selected for the evaluation. The best 
results are highlighted.  

Encoder SALICON [40] MIT1003 [41]  

CC↑ NSS↑ CC↑ NSS↑ 

MobileNetV2 [77] 0.8838 1.8646 0.7022 0.8398 
ConvNeXt-T [56] 0.9072 1.9281 0.7564 0.8150  

Table 4 
Ablation studies of the audio-visual loss weight λ on the test sets. The average 
scores of each metric on the six datasets are given. The best results are 
highlighted.  

λ Average 

CC↑ NSS↑ AUC↑ sAUC↑ SIM↑ 

0 0.6062 3.3865 0.9190 0.6707 0.4653 
0.1 0.6072 3.3778 0.9189 0.6715 0.4636 
0.5 0.6086 3.3859 0.9189 0.6716 0.4644 
1 0.6135 3.4438 0.9196 0.6732 0.4705 
3 0.6076 3.3948 0.9187 0.6703 0.4675  
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the image saliency encoder in V4 with ConvNeXt-T. The V6 variant 
utilizes an image saliency encoder (ConvNeXt-T*) that is not trained on 
image saliency datasets. In V7, we directly fuse motion features with 
saliency maps generated by the image saliency encoder (ConvNeXt-T†) 
instead of using image saliency features. We calculate the average of the 
five metrics from the six audio-visual eye-tracking datasets and illustrate 
the difference in the averaged metric scores between the baseline and 
variants in Fig. 6. For motion features, we conduct experiments on the 
video backbones of various structures and the influence of temporal 
property to the AVSP task. The results are presented in Table 6, Fig. 8 
and Fig. 9. 

Ablation Study on the Image Saliency Features: As discussed in 
Section 3.3, it is beneficial for the performance of AVSP task by incor-
porating image saliency features. In Table 2, V2 variant shows im-
provements in every metrics on the six audio-visual eye-tracking 
datasets compared to the baseline model, which reflects that the image 
saliency encoder indeed can benefits the AVSP task. Additionally, it is 
predictable that the better performance of an image saliency model can 
result in more informative saliency information. Here, we use two 
different ISP models by replacing the image backbone. In Table 3, it can 
be observed that the ConvNeXt-T-based image saliency model achieves a 
better performance on the validation set of SALICON and MIT1003. 
Thus, we replace the MobileNetV2-based image saliency encoder with 
the stronger ConvNeXt-T-based one as the variant V5 in Table 2. 
Compared with V4, V5 variant obtains better performance and has a 
sharp growth in Fig. 6. When ℰIS is not equipped with image saliency- 
related knowledge, V6 suffers a performance degradation as shown in 

Fig. 7. The gradient norm curves during the first 20 epochs under different λ 
settings (batch size is 4). Zoom-in for a better view. 

Table 5 
Ablation studies of different audio-visual fusion methods on the test sets. The 
average scores of each metric on the six datasets are given. Avg refers to average 
pooling and Max refers to max pooling. C refers to the channel dimension and S 
refers to the spatial dimension. AVFB is our audio-visual fusion block. The best 
results are highlighted.  

Method Average 

CC↑ NSS↑ AUC↑ sAUC↑ SIM↑ 

bilinear + Avg + C [87] 0.6045 3.3762 0.9181 0.6715 0.4626 
bilinear + Max+S [36] 0.6013 3.3721 0.9175 0.6679 0.4648 
AVIM [102] 0.6079 3.4181 0.9186 0.6707 0.4669 
AVIM+CPC [102] 0.6096 3.4233 0.9189 0.6712 0.4675 
AVFB 0.6135 3.4438 0.9196 0.6732 0.4705  
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Fig. 6. Additionally, V5 achieves better performance than V7, which 
shows that the fusion in feature level is better than direct fusion using 
image saliency maps, since the generated image saliency maps have no 
temporal information. 

Ablation Study on the Audio-visual Fusion: As shown in Table 2 
V1, the incorporation of audio features into saliency models leads to 
enhancements in all metrics for each dataset, in comparison to the 
baseline model. The consistent improvements on the six audio-visual 
eye-tracking datasets demonstrate the effectiveness of introducing the 
audio-visual fusion block. To testify the necessity of the symmetrized 
cosine similarity loss L audio-visual, we exclude it from the L total in V3 
variant. Compared to the V4 variant, the V3 variant achieves worse 
performance on SumMe, AVAD, Coutrot1 and Coutrot2. In particular, 
the CC scores of AVAD and Coutrot2 drop from 0.6813 to 0.6639 and 
from 0.7693 to 0.7502, respectively. In Fig. 6, we can observe a sharp 
decline on CC, NSS, sAUC and SIM metrics from the V4 variant to the V3 
variant. It suggests that the symmetrized cosine similarity loss is a 
crucial component in our framework for AVSP. We also conduct 

experiments on the weight of the audio-visual loss λ. From Table 4, it can 
be observed that λ has an impact on the performance and too large or too 
small λ leads to a noticeable performance drop. λ heavily influences the 
learning direction of our model at the early optimization stage based on 
the gradient norm curves in Fig. 7. When λ is set to 3, the gradient norm 
value almost doubles as λ equals 0, making L audio-visual and L sal almost 
equally affect the optimization of our model at the early epoch. A per-
formance drop can be observed in Table 4 compared with λ = 1. Our 
goal to generate saliency maps determines that the saliency loss L sal 

plays a major role during the training process. Under an appropriate 
setting, the audio-visual loss L audio-visual helps our AVSP model achieve a 
better performance. 

Furthermore, we compare our audio-visual fusion method with those 
used in AVSP models [36,87,102]. Bilinear fusion operation [84], AVIM 
(Audio-Visual Interaction Module) and CPC (Consistency-aware Pre-
dictive Coding) are introduced to compare with the designed audio- 
visual fusion block. Those models with bilinear employ average pool-
ing or max pooling along the temporal dimension, which removes the 
temporal information, before the later audio-visual fusion. STAViS 
performs bilinear along the channel dimension, while AViNet performs it 
along the spatial dimension. The experimental results are given in 
Table 5. The bilinear-based and AVIM-based models perform worse than 
our model. This demonstrates that our audio-visual fusion method 
achieves a better ability of audio-visual feature integration. 

Ablation Study on the Motion Features: We conduct experiments 
on seven video backbones of 3D CNN, Transformer and MLP. From 
Table 6 and Fig. 8, we can observe that “MViTv2-S" achieves the best 
performance in terms of most evaluation metrics. Other Transformer- 
based models, such as VideoSwin and Uniformer, also achieve good 
performance. It suggests the long-range relationship captured by the 
Transformer is beneficial for AVSP. “MorphMLP-S" obtains worse per-
formance than “SlowFast-4× 16“. In 3D CNN-based AVSP models, 
“SlowFast-4× 16“achieves the highest performance and is comparable 
with Transformer-based models. SlowFast-4 × 16 falls short of X3D-L 
and MorphMLP-S on the Top-1 scores of Kinetics 400 in Fig. 8, but its 
variant still achieves better performance in AVSP. The reason is that 
SlowFast designs a fast branch to effectively capture dynamic features. 
Additionally, in Table 6, we report the model efficiency of the param-
eters (Params) and multiply-accumulate operations (MACs). The frozen 
ℰA and ℰIS take up to 41.53 M in Params and 75.38 G in MACs. It is 
observed that the greater performance of AVSP models requires more 
computing resources, as the parameters of “MViTv2-S" and “SlowFast- 
4× 16“are similar but the “MViTv2-S" requires large computing burden. 

To further observe the temporal relationship to the AVSP task, we 
infer “Ours (MViTv2-S)” in reverse order and the results are shown in 
Fig. 9. From Fig. 9, we can observe that the reverse inference has a more 

Fig. 8. Comparison of the motion encoders ℰV with various structures. The y- 
axis represents the difference in averaged metric scores of the six audio-visual 
eye-tracking datasets between “Ours (MViTv2-S)” with 224 × 384 visual inputs 
and the compared models. The bars in the figure represent the Top-1 accuracy 
of each video backbone on Kinetics 400. For a better display, the NSS scores are 
multiplied by 0.1. 

Fig. 9. The influence of the temporal order of video frames to the AVSP model's performance in the CC and the NSS metrics on the six audio-visual eye- 
tracking datasets. 
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significant impact on datasets containing videos of longer duration like 
DIEM, SumMe and ETMD. However, it has a minimal impact on datasets 
containing videos of shorter duration like AVAD, Coutrot1 and Coutrot2. 
This behavior is highly related to the video content, indicating that the 
dataset bias about motion properties affects our AVSP models. 

4.6. Failure cases and analysis 

As indicated by the aforementioned experimental results, the pro-
posed multi-sensory framework can achieve better performance on 
various audio-visual eye-tracking datasets. However, as shown in 
Fig. 10, the coexistence of static texts in the center and dynamic objects 
in natural scenes, such as the bees and texts within the frames, poses a 
challenge for our model in effectively capturing the inherent relation-
ship between them. Our model focuses on the central texts while dis-
regarding the presence of flying bees. The second example, shown in the 
fourth, fifth and sixth columns, portrays a scene in which three people 
seat together with the person in the middle talking. In such audio-visual 
scene, our model can generate good saliency maps as shown in the re-
sults of the second and third frames. However, our model exhibits a 
failure in accurately predicting the saliency map of the first frame. Since 
this frame is located at the early segment of the video clip, the collected 
eye-tracking data begins from the central point of the screen. Even 
though the audio-visual relationship has been established, it is impor-
tant to consider the temporal order of a video from a holistic perspective, 
as it can also influence the eye movement behavior of humans. 

5. Conclusion 

In this paper, we present a multi-sensory framework for audio-visual 
saliency prediction by perceiving and integrating motion, audio and 
image saliency features. To obtain multi-sensory information, a three- 
stream encoder is utilized to extract audio, motion and image saliency 
features. In particular, we simplify the architecture of image saliency 
models and analyze the operating mechanism of image saliency features 
in our framework. In order to tackle the issue of the weak ability to 
capture long-term motion features in 3D convolutions, we introduce 
various Transformer-based and MLP-based video backbones to extract 
dynamic saliency features for AVSP. To learn joint audio-visual repre-
sentations in a self-supervised manner, an audio-visual fusion block is 
designed to enhance the audio-visual correspondence features with the 
supervision of a symmetrized cosine similarity loss. A multi-stage 
decoder is used to integrate audio-visual and multi-stage motion 

features in order to generate the final saliency map. We conduct 
comprehensive experiments on the image saliency, audio and motion 
features in our framework. Experimental results on the six audio-visual 
eye-tracking datasets demonstrate that our models achieve impressive 
performance compared to other state-of-the-art AVSP models. 
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