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A B S T R A C T

The human visual system effectively analyzes scenes based on local, global and semantic properties. Deep
learning-based saliency prediction models adopted two-stream networks, leveraged prior knowledge of global
semantics, or added long-range dependency modeling structures like transformers to incorporate global saliency
information. However, they either brought high complexity to learning local and global features or neglected
the design for enhancing local features. In this paper, we propose a Global Semantic-Guided Network (GSGNet),
which first enriches global semantics through a modified transformer block and then incorporates semantic
information into visual features from local and global perspectives in an efficient way. Multi-head self-
attention in transformers captures global features, but lacks information communication within and between
feature subspaces (heads) when computing the similarity matrix. To learn global representations and enhance
interactions of the subspaces, we propose a Channel-Squeeze Spatial Attention (CSSA) module to emphasize
channel-relevant information in a compression manner and learn global spatial relationships. To better fuse
local and global contextual information, we propose a hybrid CNN-Transformer block called local–global fusion
block (LGFB) for aggregating semantic features simply and efficiently. Experimental results on four public
datasets demonstrate that our model achieves compelling performance compared with the state-of-the-art
saliency prediction models on various evaluation metrics.
1. Introduction

Human visual attention mechanism guides humans to observe
scenes selectively and ignore less informative regions, enabling humans
to analyze complex and diverse scenes quickly. Accordingly, in the
field of computer vision, researchers attempt to understand human
attention mechanisms and construct models to imitate this behavior,
proposing a saliency prediction (SP) task (i.e., fixation prediction task).
This task usually refers to predicting human eye fixation locations for
modeling this mechanism. Many applications including object segmen-
tation [1–3], object detection [4], video coding [5] and driver focus of
attention [6] benefit from this task.

When humans freely view images, their attention is influenced
by local, global and semantic information within the visual stimulus.
Early SP models [7–10] leverage neurobiological and psychological
knowledge to extract low-level features, including local contrast, color,
luminance and texture, to predict fixations in natural images. Some
researchers [11–13] have discovered that visual saliency is context-
sensitive and salient regions are highlighted globally over the entire
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scene, such as faces, cars and texts. Combining both local and global
saliency information enhances SP task performance [14]. However,
traditional models have limited generalization capabilities and are not
able to handle complex scenes.

With the prevalence of deep learning and the availability of saliency
datasets [15,16], many SP models [17–19] have adopted deep Con-
volutional Neural Network (CNN)-based architectures to capture local
saliency information, thereby boosting the performance of the SP task.
Rich high-level semantic features extracted by the deep networks help
saliency models to better mimic human viewing patterns [20]. As
for global contextual information, it can be acquired through various
methods. One approach is to incorporate Convolutional Long Short-
Term Memory (ConvLSTM) into the model structure. Additionally,
global information acquisition can be facilitated through the use of a
global saliency model [21], but overall, the method is not an end-to-end
training paradigm. Another method involves capturing global semantic
information in a two-stream manner. For ConvLSTM-based models
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[22,23], global information is captured by the long-range modeling ar-
chitecture, but local saliency features are not enhanced comparatively.
In two-stream models [24,25], images are commonly downsampled to
a lower resolution, resulting in a partial loss of visual information, in
order to learn global saliency features. Recently, transformers [26] have
achieved significant success in the field of computer vision [27–29].
Due to their strong ability to model long-range dependency, they also
have been introduced into the SP model [30]. Multi-head self-attention
(MHSA) in transformer blocks calculates the global spatial similarity
matrix of feature vectors in multiple subspaces (heads). However,
during the matrix computation, the lack of inter-channel interactions
within each head and among heads may limit the representation of
relevant relationships among channels. Attention modules like spatial
attention [31–33] learn the spatial global information by compressing
channels while maintaining the spatial dimension.

Based on the above observations on the drawbacks of existing
traditional and deep learning-based SP models, we propose a global
semantic-guided network (GSGNet) that refines both local and global
saliency features in multi-level visual features, with the aid of global
semantic information. We aim to integrate semantic information into
features from local and global perspectives using hybrid blocks of
convolutional modules and transformers. Due to the inherent charac-
teristics of those two structures, both local and global features are
easily and efficiently learned. To add relevant information regard-
ing feature channels in the MHSA, our key idea is to compress the
information conveyed by channels to represent overall characteristic
in each subspace through effective channel communication and then
the global spatial features can be further refined. In this way, the
global information in the channel domain is taken into account in
the similarity matrix to help highlight global saliency information.
Therefore, we propose a Channel-Squeezed Spatial Attention (CSSA)
module to better exchange information among channels and effectively
capture global features in the spatial domain. A parallel CSSA-based
block called spatial attention inception block (SAIB) is employed to
enrich the global semantic features that are from the deepest stage of
a CNN backbone, which provides semantic information that serves as a
guide for the subsequent learning of local and global saliency features.
To facilitate both local and global feature learning, a local–global
fusion block (LGFB) is designed to effectively and straightforwardly
integrate features from other backbone stages with the refined semantic
features. We leverage the intrinsic properties of CNN and transformer
to build a hybrid block by creating two branches, in which the CNN
branch emphasizes local informative details, while the other employs
the proposed CSSA module for global feature integration. Furthermore,
we evaluate our GSGNet on four widely used eye-tracking datasets. The
experimental results demonstrate that our model achieves compelling
performance compared with other existing SP models. Our code is
available at https://github.com/oraclefina/GSGNet. In summary, the
main contributions of our work are detailed as follows:

• We propose a global semantic-guided network (GSGNet) to incor-
porate global semantic information as a guide to refine multi-level
features and model human fixations based on both local and
global semantic features.

• We propose a channel-squeeze spatial attention (CSSA) module,
which facilitates the exchange of channel information and enables
the successive global feature representation through sequential
channel and spatial interactions.

• We propose a local–global fusion block (LGFB) that combines
the merits of CNN and transformer to enrich local and global
information for visual features at different levels.

. Related work

In this section, we briefly review the related work on saliency
rediction and vision transformer.
2

2.1. Saliency prediction

Traditional models [7,34,35] for saliency prediction primarily de-
pend on hand-crafted features. Early models extracted low-level fea-
tures such as color, contrast and orientation, to generate saliency maps
and integrated them based on feature integration theory (FIT) [36].
Subsequent models attempted to incorporate more sophisticated fea-
tures, like texts, human faces and gaze direction, to predict salient
regions in natural images. While these traditional models have achieved
reasonable performance on the SP task, their reliance on hand-crafted
features limits their ability to effectively handle complex and diverse
scenes, which reflects the weak generalization capability of these mod-
els.

Recently, the development of saliency prediction has been advanced
by deep learning models. Vig et al. [37] proposed a deep convolutional
neural network called eDN, which is capable of automatically extract-
ing visual features and fusing them to generate saliency maps. Later,
Kümmerer et al. [17] made the initial attempt to apply transfer learning
for saliency prediction. The final prediction was computed by selecting
and combining multi-scale features from various layers of AlexNet [38].
The model leveraged the knowledge of image classification tasks and
achieved a significant improvement. Since then, many works have
employed CNN backbones pre-trained on ImageNet [39] as feature
extractors and proposed various methods to utilize and enhance the
semantic information extracted from these backbones.

Due to the hierarchical architecture, CNN extractors can automat-
ically capture multi-level features from the shallower layers to the
deeper layers. The integration of features at multiple levels is a cru-
cial strategy in designing networks for various vision tasks [40–42].
Hu et al. [43] constructed a feature pyramid that includes a spatial
attenuation module to effectively combine and enhance multi-level
features, capturing local and global context within, around and be-
yond the salient objects. Multi-level features are also essential for
SP models. Liu et al. [44] proposed a novel multi-resolution CNN
model to learn bottom-up visual saliency and top-down visual features.
Jia et al. [45] employed a two-stage training approach and leveraged
full-level features from various CNN backbones (i.e., DenseNet [46] and
NasNet [47]). Reddy et al. [48] have decomposed the design of SP
models into four key components, namely input features, multi-level
integration, readout architectures and loss functions. For multi-level
integration, a UNet-like structure was proposed to incorporate multi-
level features, refining low-level and high-level features hierarchically.
Che et al. [25] designed a modified U-Net structure with a novel
cross-scale short connection module to learn multi-scale features. Cor-
nia et al. [18] extracted multi-level features from the last three stages
of VGGNet-16 [49] and fed them into an encoder network to obtain the
prediction. Their experiments demonstrate that the high-level features
make a significant contribution to the final results. Wang et al. [50]
built three decoders with varying receptive field sizes to transfer multi-
level saliency information from the last three stages of the backbone
into three saliency maps which were then fused to obtain the fixation
map. Ning et al. [51] enhanced spatial and temporal information od
multi-level features to generate motion-aware maps to better predict
dynamic saliency in an audio–visual scene. Yang et al. [19] employed a
dilated inception network and high-level features to capture contextual
information at multiple scales. Lai et al. [52] leveraged knowledge from
biological vision and utilized multi-level features from spatial visual
semantics, object-level semantics and a conditional center prior, to
generate saliency maps.

The performance of the above models indicates that rich semantic
information encoded in high-level features is beneficial for the SP task,
which makes the model understand the scene information of natural
images. The integration of contextual information at multiple levels
also plays a crucial role in the task. In this paper, we aim to enhance
the utilization of the high-level semantic features and leverage them to
guide the fusion of multi-level features. We adjust the spatial or channel
dimension of the semantic features to participate in local and global
fusion in the proposed LGFB.

https://github.com/oraclefina/GSGNet
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Fig. 1. The architecture of our proposed GSGNet. Our model takes an RGB image as the input. The encoder captures visual features and learns multi-level representations 𝑓 𝑒
2 , 𝑓 𝑒

3 ,
𝑓 𝑒
4 and 𝑓 𝑒

5 . Then the channel dimension of learned features is reduced by convolutional layers. High-level features 𝑓 𝑒
5 are enhanced by a spatial attention inception block (SAIB)

and then local–global fusion blocks integrate features under the guidance of enhanced high-level features. 𝑓 𝑑
3 , 𝑓 𝑑

4 and 𝑓 𝑑
5 are upsampled to the same spatial size as 𝑓 𝑑

2 . Finally,
the saliency map is obtained by a readout module.
2.2. Vision transformer

Transformer has achieved great success in the domains of natural
language processing (NLP) [53] and computer vision, such as image
classification [27] and object tracking [54], etc. CNNs exhibit an induc-
tive bias towards acquiring local visual representations, whereas trans-
formers possess a remarkable capacity to capture long-range dependen-
cies due to their self-attention mechanism. In addition, many studies
have attempted to improve the effectiveness and efficiency of vision
transformers through various operations on query and key–value fea-
tures to learn multi-scale features [55–57]. Wang et al. [58] designed
spatial-reduction attention to decrease the spatial dimension of the keys
and values. This approach reduces resource consumption and makes
the model flexible to learn multi-scale features. Fan et al. [59] applied
spatial pooling to adjust the feature map size, reducing computational
expenses. For the visual saliency task, some works attempt to capture
global semantic features. Cornia et al. [22] and Liu et al. [23] incorpo-
rated LSTM to capture long-range information. These studies have indi-
cated that modeling the relevant dependence in the spatial domain can
enhance saliency predictions. Dodge et al. [24] and Che et al. [25] con-
structed two-stream networks, in which features from the coarse-scale
inputs provide global information. Recently, Lou et al. [30] have em-
ployed transformer blocks in the SP task to improve mid- and high-level
visual features, resulting in competitive performance when compared
to the state-of-the-art models. Liu et al. [60] leveraged the knowl-
edge of a vision transformer with a token-based multi-task decoder
to propagate global contexts and fuse multi-level tokens for salient
object detection. Moreover, Li et al. [61] proposed a pure transformer-
based network to predict human fixations in dynamic scenes, achieving
exceptional performance on video saliency prediction. However, when
computing attention maps in vision transformers, the dot-product op-
eration typically focuses on the relationships between tokens or pixels.
And the multi-head self-attention operation does not take into ac-
count the channel information and feature interaction between heads.
Woo et al. [31] proposed a spatial module that utilizes average-pooling
and max-pooling along the channel dimension to emphasize informa-
tive regions. Inspired by their research, we propose a channel-squeeze
spatial attention (CSSA) module to capture the global channel infor-
mation in a compression manner and then further refine the global
spatial information by the dot-product operation. To enhance global
3

semantic features in one block, the spatial attention inception block
(SAIB) applies different spatial reduction methods onto parallel CSSA
modules, capturing multi-scale features. Additionally, the proposed
CSSA module takes low-level features with larger spatial dimensions
as queries and high-level features with smaller resolutions as keys and
values to incorporate semantic features from global perspective in the
proposed local–global fusion block.

3. The proposed method

In this section, we describe the details of our method. In Section 3.1,
we present the overall architecture of our proposed model, which is
shown in Fig. 1. In Section 3.2, we describe the details of Channel-
Squeeze Spatial Attention (CSSA) module and corresponding spatial
attention inception blocks (SAIB). In Section 3.3, we show the design
of the Local–Global Fusion Block (LGFB). Finally, we briefly discuss the
readout design and the loss function in Section 3.5.

3.1. Architecture overview

Learned from structures like FPN [62] and U-Net [63] widely used
in dense prediction tasks like semantic segmentation, we design a
general encoder–decoder structure for the SP task, as illustrated in
Fig. 1. The encoder part is DenseNet-161 [46] pre-trained on ImageNet,
which generates low-level features at the early stages and high-level
semantic features at the later stages. The backbone is divided into five
stages and each stage is denoted as Stage 𝑖 (𝑖 ∈ {1, 2, 3, 4, 5}). Here,
we employ four stages ranging from Stage 2 to Stage 5. The multi-
level features, i.e., 𝑓 𝑒

2 , 𝑓 𝑒
3 , 𝑓 𝑒

4 and 𝑓 𝑒
5 , are first fed to the corresponding

1 × 1 convolutional layers to reduce the channel number to 192. The
decoder part consists of a spatial attention inception block (SAIB) that
enhances semantic features 𝑓 𝑒

5 via a parallel CSSA structure, as well
as three LGFBs that leverage these refined global semantic features to
guide both local and global fusion of features from various levels using
a CSSA module and CNN-based architectures. Then we utilize 3 × 3
convolutional layers following the decoder outputs, namely i.e., 𝑓 𝑑

2 , 𝑓 𝑑
3 ,

𝑓 𝑑
4 and 𝑓 𝑑

5 , to reduce the channel dimension to 128. 𝑓 𝑑
3 , 𝑓 𝑑

4 and 𝑓 𝑑
5 are

upsampled 2×, 4× and 8×, respectively. Finally, the readout module
produces the final saliency map of the input image by utilizing these
enhanced features.
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Fig. 2. The details of the Channel-Squeeze Spatial Attention (CSSA) module, Spatial Attention Inception Block (SAIB) and corresponding modules. The CSSA module can take
features of different or same spatial sizes as inputs 𝐱𝐪 and 𝐱𝐤𝐯. The Attention Module 1 takes 𝐱𝐤𝐯 that is processed through a spatial reduction method. SAIB takes features that
are the source of 𝐱𝐪 and 𝐱𝐤𝐯 and enhances features with spatial reduced 𝐱𝐤𝐯.
3.2. Channel-squeeze spatial attention

Due to the inherent characteristic of self-attention [26], transform-
ers possess the ability to capture long-range relationships. Transformer
blocks typically learn diverse feature representations through MHSA,
which first splits features along the channel dimension and then per-
forms a matrix multiplication to obtain spatial attention maps for
non-local learning. However, MHSA does not take into account channel
relationships. Spatial attention modules [31] utilize average-pooling
and max-pooling techniques to aggregate channel information of fea-
tures, refining them to effectively focus on the informative parts in
the spatial dimension. This indicates that by using an appropriate
method for channel interaction, we can enhance the global features
extracted from spatial attention maps, which aligns with the objective
of self-attention to capture long-range dependencies. To explore spatial
semantic information and fully leverage inter-channel relationships,
we propose a Channel-Squeeze Spatial Attention (CSSA) module. The
details of CSSA are illustrated on the left of Fig. 2. Basically, the
modules first learn the overall characteristic by channel compression
and then refine the global spatial information through the dot-product
operation.

Given the inputs 𝐱𝐪 ∈ R𝐶×𝐻×𝑊 and 𝐱𝐤𝐯 ∈ R𝐶×ℎ×𝑤 (𝐻 ≥ ℎ and
𝑊 ≥ 𝑤), we first inject positional information to the features by depth-
wise convolution as in [64]. And it is proven that larger padding causes
convolutions to encode more absolute positional information [65]. The
process is defined as follows:

𝐱𝐪 = 𝐱𝐪 + 𝑑𝑤𝑐𝑜𝑛𝑣(𝐱𝐪),
𝐱𝐤𝐯 = 𝐱𝐤𝐯 + 𝑑𝑤𝑐𝑜𝑛𝑣(𝐱𝐤𝐯),

(1)

where 𝑑𝑤𝑐𝑜𝑛𝑣(⋅) indicates depth-wise convolution operation with
padding 3 and kernel size 7. Then we apply linear projections through
the 1 × 1 convolutional layer to get the feature embeddings which
are queries 𝐪, keys 𝐤 and values 𝐯. Following the procedure of MHSA,
the features are simply divided along the channel dimension in order
into groups. After the grouping, we obtain the query vector 𝐐, the key
vector 𝐊 and the value vector 𝐕. The size of 𝐐 is R𝑁×𝐻×𝑊 ×𝑑 and the
size of 𝐊 and 𝐕 is R𝑁×ℎ×𝑤×𝑑 , where 𝑁 is the number of groups and 𝑑
is the channel dimension within a group. In the experiment, we set 𝑁
to 4 to ensure enough features in each group, since the dimension of
features is reduced to 192. The process is as follows:

𝐐 = Group(𝑐𝑜𝑛𝑣(𝐱𝐪)),
𝐊 = Group(𝑐𝑜𝑛𝑣(𝐱𝐤𝐯)),
𝐕 = Group(𝑐𝑜𝑛𝑣(𝐱𝐤𝐯)),

(2)

where 𝑐𝑜𝑛𝑣(⋅) means 1 × 1 convolutional layer and Group(⋅) is the
grouping operation.
4

For channel interaction, average pooling captures the overall spa-
tial features, but it assigns equal importance to all channels. Max
pooling only focuses on the highest values. Meanwhile, when these
operations are applied to the grouped features, there is no exchange
of information among groups. To tackle this issue, we apply 3D convo-
lutions [66], which were initially introduced to extract visual features
from video frames and acquire temporal feature representations. Here,
the time axis represents the group dimension. Therefore, with the
sliding window of 3-dimensional kernels and channel compression, 3D
convolutions can effectively enhance the spatial features within and
among groups. To compute the spatial similarity matrix 𝐬, we perform
channel squeeze operations on 𝐐 and 𝐊, respectively. After the squeeze
operations and reshape operation, 𝑑 is compressed to 𝑑𝑐 (𝑑 ≥ 𝑑𝑐 ≥ 1)
and we obtain 𝐪 ∈ R𝑁×𝐻𝑊 ×𝑑𝑐 , 𝐤 ∈ R𝑁×𝑑𝑐×ℎ𝑤 and 𝐯 ∈ R𝑁×𝑑×ℎ𝑤. This
process can be defined as:

𝐪 = Reshape(CS(𝐐)),

𝐤 = Reshape(CS(𝐊)),

𝐯 = Reshape(𝐕),
(3)

where CS(⋅) is the channel squeeze operation, i.e., average-pooling,
max-pooling or 3D convolution. Then we perform the matrix multipli-
cation between 𝐪 and 𝐤 to obtain spatial similarity matrix 𝐬 ∈ R𝐻𝑊 ×ℎ𝑤

and apply softmax function on it as follows:

𝐬 = Sof tmax(𝐪⊗ 𝐤), (4)

where ⊗ denotes the matrix multiplication. The transposed 𝐯 is
weighted by the similarity matrix 𝐬 and then is reshaped to 𝐶 × 𝐻 ×
𝑊 . Lastly, the reconstructed features are added with the residual
connection of 𝐱𝐪, generating the output features 𝐱𝐨𝐮𝐭 ∈ R𝐶×𝐻×𝑊 as
followed:

𝐱𝐨𝐮𝐭 = Reshape(𝐬⊗ 𝐯T) + 𝐱𝐪, (5)

Based on the input features operations, CSSA is applied in two basic
modules, i.e., attention module 1 and attention module 2 shown in
Fig. 2. The attention module 1 employs a spatial reduction operation
to decrease the spatial resolution of 𝐱𝐤𝐯. This approach reduces com-
putational costs and facilitates effective learning of feature representa-
tions [58]. In addition to the attention part, transformer blocks [27,67]
follow a standard design structure. The features are first improved by
a residual attention module and then processed by a residual feed-
forward neural network (FFN) module, as shown in Fig. 2. Inspired
by the inception module [68] which intends to capture multi-scale
contextual features in one block, we build a Spatial Attention Inception
Block (SAIB) based on CSSA. The original inception module employs
several convolutional layers with varying kernel sizes, enabling the
learning of multi-scale features with diverse receptive sizes. By using
different spatial reduction operations, the CSSA module can effectively
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Fig. 3. Illustration of the proposed local–global fusion block. 𝑓s is the enhanced global semantic features and 𝑓 is from low- and mid-level features. The blue branch is to fuse
features locally with semantic embedding (SE) and spatial attention (SA), while the yellow branch is to integrate two-level features from a global perspective. Finally, 𝑓local and
𝑓global are mixed together through a residual FFN module. In the experiment, 𝑘 in semantic embedding branch is set to 7.
extract features from multiple perspectives and enhance the feature
representations. As illustrated in Fig. 2, SAIB employs two attention
modules to obtain multiple feature representations. Following these
modules, a 1 × 1 convolutional layer is utilized to reduce the dimension
of the concatenated features to 𝐶, which are then fed into the FFN
module to obtain the enhanced features. In Fig. 1, the SAIB enhances
the features 𝑓 𝑒

5 and uses spatial reduction operations like average-
pooling and bilinear downsampling to downsample the features to a
fixed spatial size 3 × 3.

3.3. Local–global fusion block

There exist semantic gaps between high-level semantic features and
other-level features in the CNN backbone. Simple fusion operations,
such as addition and concatenation, are insufficient and ineffective
in integrating features of multi-levels. As is widely recognized, CNNs
possess an inductive bias that enables them to capture local details,
whereas transformers are adept at modeling long-range dependencies.
Thus, the integration of multi-level features at both local and global
levels can be achieved by combining CNNs and transformers. Moreover,
high-level features contain abundant contextual information that can
guide the integration of low- and mid-level features from two perspec-
tives. We propose a Local–Global Fusion Block (LGFB) that incoporates
semantic information into features both locally and globally.

Transformers exhibit great performance, but at the expense of signif-
icant computational resources, which are closely tied to the resolution
and dimensions of the features. Given the low resolution of the high-
level semantic features, it is already low in computation costs. Since
the semantic features have a small resolution, which reduces the com-
putation cost in the spatial domain, we intend to reduce the channel
dimension of the features. Therefore, we aim to decrease the channel
dimension of the features. Inspired by ShuffleNet [69], we employ
channel split operation before two branches to reduce computational
requirements. As depicted in Fig. 3, 𝑓 is split into two parts based on
the channel dimension for local and global fusion. The global branch
(yellow lines in Fig. 3) utilizes the proposed CSSA to integrate features
globally to learn relative importance in the spatial domain, while the
local branch (blue lines in Fig. 3) uses convolution-based modules
to fuse features locally. For the global branch, CSSA is exploited to
enhance global information, with low- and mid-level features 𝑓 as the
query 𝐱𝐪 and global semantic features 𝑓s as the key–values 𝐱𝐤𝐯. As for
the local branch, since the encoder has already owned a great ability
to capture local features, we apply two simple CNN-based feature
embedding structures in our decoder, i.e., semantic embedding and
spatial attention.

Semantic Embedding (SE): Semantic features usually have a small
resolution and are full of contextual information. Therefore, features
𝑓 are suitable to be processed as the kernels of convolutions. Inspired
5
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by [70], we modify the 𝑓s with 1 × 1 convolutional layer and max-
pooling operation to 𝑘 × 𝑘 kernels and use softmax to normalize the
sum of values to 1 in the spatial domain. Then we employ a depth-
wise convolution with the semantic kernels to enhance the other-level
features. The kernels are dynamically generated from semantic fea-
tures 𝑓s, which adjust weights with the input. The whole process is
depicted in the middle of Fig. 3. When 𝑘 is set to 1, the semantic
embedding becomes similar to the channel attention in SENet [71].
The channel attention generates attention weights by compressing the
spatial information, which results in a loss of spatial information. In
contrast, our semantic embedding is exploited to learn the spatial
relationship for each channel of features individually by adopting
depth-wise convolution with dynamic semantic kernels for local spatial
feature fusion.

Spatial Attention (SA): As shown in Fig. 3, we first apply a 3 × 3
convolution to squeeze the dimension of global semantic features 𝑓s
to 1. Then a sigmoid function scales the values of features between
0 and 1 to obtain a spatial attention map. Finally, the attention map
is upsampled and multiplied by the low-level features to highlight the
informative regions.

The fused maps after SA and SE are concatenated, and a 1 × 1
convolutional layer is used to restore the channel dimension to half.
After passing through two branches, the concatenated features of 𝑓local
and 𝑓global are fed into a residual FFN module to interact with channel
information. Due to the limitations of graphics memory, the LGFB-1
shown in Fig. 1 takes the down-sampled features of 𝑓 𝑒

2 that are gen-
erated after a 1 × 1 convolutional layer as input. A resize-convolution
operation is used to restore the features to their original spatial size
(88 × 88).

3.4. Visualizations of learned features on CSSA and LGFB

We visualize the attention maps for similarity matrix 𝐬 of CSSA in
various parts of the GSGNet, as shown in Fig. 4. The final two images
in the top row show that the attention maps, which were learned
from high-level features 𝑓 𝑒

5 in two groups, assigned great importance
to the corresponding position as the ground truth. However, since the
semantic features have a small resolution, these attention maps lack
detailed spatial information. As illustrated in the middle row of Fig. 4,
it can be observed that the average attention maps from LGFBs focus on
the salient regions that closely resemble the ground truth in the spatial
domain. This suggests that CSSA has effectively learned the global
relevant importance in the spatial domain. In the bottom row, attention
maps of the four groups in LGFB-1 are illustrated. It is evident that each
group acquires its distinct features. Specifically, Group 1 and Group
2 exhibit a corresponding relationship with the averaged attention
map and the ground truth, whereas Group 3 and Group 4 represent
redundant attention maps. Overall, each group learns complementary
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Fig. 4. Visualizations of CSSA attention maps from the similarity matrix 𝐬. The top row has two groups of SAIB. The middle row is the average attention map of LGFB-1, LGFB-2
and LGFB-3. And the bottom row is the attention map from four groups of LGFB-1.
Fig. 5. Visualization of attention maps of the local and global branches in LGFB-1.
features that spread throughout the entire image. And based on the
average result (LGFB-1-Avg), the weight of less important features
constitutes a minor proportion. In model pruning [72–74], it is proven
that attention heads in MHSA learn diverse feature representations,
many of which are found to be redundant and can be removed without
causing a significant impact on the overall performance of the model.

We also visualize where the two branches of the LGFB focus on in
Fig. 5. The local branch appears to prioritize local characteristics and
is capable of capturing intricate details. It effectively highlights human
faces and identifies informative regions such as bottles and food, which
are overlooked by the global branch. And the global branch compares
the global relationships and suppresses less informative regions, high-
lighting the most salient parts. Like the example in the second row,
the global branch inhibits the attention weights of individuals in the
audience. The visualization demonstrates that both global and local
fine-grained features are crucial for the SP task.

3.5. Readout module and loss function

Readout Module: The readout module is usually exploited to aggre-
gate the refined features and convert the feature maps into a saliency
map with the same resolution as the input. As illustrated in Fig. 1,
6

the enhanced features, 𝑓 𝑑
2 , 𝑓 𝑑

3 , 𝑓 𝑑
4 and 𝑓 𝑑

5 , from four stages are con-
catenated together and then fed into the readout module. Inside the
module, we employ two stacks of 1 × 1 convolutional layer and 7 × 7
depth-wise convolution to reduce the dimension (512 → 128 → 64) and
fuse features. The depth-wise convolution has a large effective receptive
field which is helpful to aggregate semantic information. Then we
utilize two 4 × 4 depth-wise transposed convolutions which have few
parameters to upscale the map by 4 times to the original resolution.
Finally, we use two 3 × 3 convolutions to generate the saliency map.

Loss function: Metrics for SP are classified into location-based and
distribution-based ones. Following [30,48,75,76], we use the combi-
nation of Kullback–Leibler Divergence (KL) and Pearson’s Correlation
Coefficient (CC) as a loss function. KL measures the difference between
two probability distributions and CC tells how correlated two variables
are:

𝐾𝐿(𝐏,𝐐) =
∑

𝑖
𝐐𝑖 log(𝜖 +

𝐐𝑖
𝐏𝑖 + 𝜖

), (6)

𝐶𝐶(𝐏,𝐐) =
𝜎(𝐏,𝐐)

𝜎(𝐏) × 𝜎(𝐐)
, (7)

where 𝐏 and 𝐐 are the predicted maps and GT maps, respectively, 𝑖 is
the pixel index, 𝜖 is a regularization term and 𝜎(𝐏,𝐐) is the covariance
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of 𝐏 and 𝐐. Since KL and CC are both distribution-based metrics, in
ection 4.5.4, we also conducted experiments on Normalized Scanpath
aliency (NSS), which is a location-based metric. NSS is computed as
he average normalized saliency at fixated locations and defined as
ollows:

𝑁𝑆𝑆(𝐏,𝐐𝐵) = 1
𝑁

∑

𝑖
𝐏𝑖 ×𝐐𝐵

𝑖 ,

here 𝑁 =
∑

𝑖
𝐐𝐵

𝑖 and 𝐏 =
𝐏 − 𝜇(𝐏)
𝜎(𝐏)

(8)

where 𝐐𝐵 is the binary fixation map.
During the training phase, we observed that features from Stage-

4 and Stage-5 tend to dominate and overwrite low-level features from
Stage-2 and Stage-3. This suggests that the shallow-stage features are not
learned adequately. Experiments in [77] indicate that saliency models,
such as Deepgaze II [78], rely on higher-level features in the deeper
stages to obtain saliency maps. Conversely, the low-level features in the
lower stages have a minimal impact on the final prediction. To address
this issue, we employ deep supervision during the training phase and
apply binary cross entropy (BCE) loss to supervise 𝑓 𝑑

2 and 𝑓 𝑑
3 at the

early training stage. Two side outputs, each comprising two 3 × 3
convolutional layers, are applied to 𝑓 𝑑

2 and 𝑓 𝑑
3 . These auxiliary outputs

are only used for initializing the weights of the shallow stages, in order
to achieve a proficient starting point for learning the weights in the
encoder and the corresponding components in the decoder. After the
first training epoch, we discontinue supervision on 𝑓 𝑑

2 and 𝑓 𝑑
3 , and only

use the KL and CC for the rest of the training. The total loss function is
defined as follows:
𝐿𝑜𝑠𝑠(𝐏,𝐆) =𝐾𝐿(𝐏,𝐆) − 𝐶𝐶(𝐏,𝐆)

+ 𝛼[𝐵𝐶𝐸(𝐏2,𝐆2) + 𝐵𝐶𝐸(𝐏3,𝐆3)]
(9)

where 𝐏𝑖 is the saliency map generated from 𝑓 𝑑
𝑖 , 𝐆 is the ground-

truth map and 𝐆𝑖 is the ground-truth map which is resized to the same
resolution as 𝑓 𝑑

𝑖 (𝑖 ∈ {2, 3}). To balance the gradient and maintain the
optimization direction controlled by saliency metrics, 𝛼 is empirically
set to 0.001 during the first epoch and later set to 0.

4. Experiment and results

4.1. Datasets

In the experiments, we use the following five widely used saliency
prediction datasets.

SALICON [15] is currently the largest saliency prediction dataset
which offers 10,000 training images, 5000 validation images and 5000
test images. Jiang et al. designed a mouse-tracking paradigm to sim-
ulate the natural viewing behavior of humans and the aggregation of
the mouse trajectories represents the probability distribution of visual
attention. Ground truths of the test set are held out and predictions can
be submitted to the SALICON Saliency Prediction Challenge1 for further
evaluation.

MIT1003 [79] is an eye-tracking dataset containing 1003 natural
indoor and outdoor scenes which are 779 landscape images and 228
portrait images. Groud-truths are generated by fixation data from 15
observers aged 18–35.

MIT300 [80] contains 300 natural images and collects eye move-
ment data from 39 observers. It is held out and used as a benchmark
test set in the MIT/Tübingen Saliency Benchmark.2

TORONTO [8] contains 120 natural images and the eye movement
data is collected from 20 observers.

PASCAL-S [81] consists of 850 natural images from the PASCAL
VOC 2010 dataset with eye-tracking data of 8 observers.

1 http://salicon.net/challenge-2017/.
2 https://saliency.tuebingen.ai/.
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4.2. Evaluation metrics

There are a variety of metrics [82] that are proposed to evaluate
the similarity and dissimilarity between the ground-truth labels and the
predicted saliency maps. In [83], these metrics are classified into two
categories as location-based and distribution-based metrics based on
the form of the ground truth. For the former, metrics like NSS (Nor-
malized Scanpath Saliency), IG (Information Gain) [84], AUC (Area
under ROC Curve) and sAUC (Shuffled AUC) use the original fixation
locations as the ground truth. Metrics like CC (Pearson’s Correlation
Coefficient), SIM (Similarity) and KL (Kullback–Leibler Divergence)
require continuous distribution maps which are obtained by blurring
each fixation location through a Gaussian filter. For KL, the lower
value represents better performance, while the others opposite. In the
experiment, for convenience, we use KL, CC, SIM, AUC and NSS metrics
to evaluate the results of ablation studies. For the evaluation on the
TORONTO and PASCAL-S datasets, the seven metrics are used. We use
a center bias as the baseline model in IG and set the number of fixation
maps to 10 in sAUC.

4.3. Implementation details

We follow a similar procedure in the state-of-the-art SP models [78,
85]. The parameters of our encoder DenseNet-161 are first initialized
by the weights pre-trained on ImageNet, and then trained on the
SALICON training set and monitored by the SALICON validation set.
Then we fine-tune the model on the MIT1003 dataset. The dataset is
randomly divided into two subsets which contain 903 and 100 images,
respectively, while the former is used for training and the latter is for
evaluation. We apply Adam optimizer [86] with an initial learning rate
of 1 × 10−4 and set the batch size to 10 and training epochs to 20. The
learning rate is decreased by a factor of 0.01 after two epochs and then
decreased by a factor of 0.01 every five epochs. The minimal learning
rate is 1 × 10−8. All input images are resized to 352 × 352 pixels.

4.4. Comparison with the state-of-the-art models

We compare our method with state-of-the-art models, including
DVA [50], GazeGAN [25], SimpleNet [48], MSI-Net [85], CEDNS [85],
DINet [19], DeepGaze I [17], DeepGaze II [78], SAM-ResNet [22], EML-
NET [45], SalED [76], TranSalNet [30], SalFBNet [75], ACSalNet [87],
FSM [88], TempSAL [89] and UNISAL [90], and traditional models,
including ITTI [7], GBVS [91], SUN [35], AIM [8] and CAS [34].
For SALICON and MIT300, we obtain their corresponding scores from
the benchmarks by submitting the predicted saliency maps to the
evaluation system.

Quantitative Comparison: The quantitative results of SALICON
est set are presented in Table 1. It can be observed that our model is
ompetitive with the state-of-the-art and ranks among the top three in
erms of seven metrics. CC (0.912) and AUC (0.870) scores of our model
re superior to other models. Our model is comparable to SalED on KL
0.190) metric. And our model ranks third on sAUC and IG. Compared
o other metrics, NSS falls short of the highest score (2.050) attained
y EML-NET and CEDNS. The main reason is that those two models
se NSS as a component of their loss functions, generating more con-
entrated prediction points. Higher NSS means the predicted saliency
aps are more discrete, while distribution-based metrics like KL and CC
refer more continuous maps. Our NSS-version model achieves the best
erformances on NSS (2.060), sAUC (0.748) and IG (0.914). However,
he performance on KL, CC and SIM drops, which reflects that to some
egree the location-based and distribution-based metrics may have an
dversarial relationship. The results on MIT300 are shown in Table 2,
n which our model achieves competitive performance with other SP
odels. Our model outperforms all compared models on AUC, sAUC

nd KL. Our scores on CC and SIM are slightly lower than SalFBNet, and
he performance on NSS is consistent with the SALICON benchmark.

http://salicon.net/challenge-2017/
https://saliency.tuebingen.ai/
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Table 1
Quantitative performance comparison on SALICON benchmark. The best results are
marked in red.

Models sAUC↑ IG↑ NSS↑ CC↑ AUC↑ SIM↑ KL↓

GazeGAN [25] 0.736 0.720 1.899 0.879 0.864 0.773 0.376
SimpleNet [48] 0.743 0.880 1.960 0.907 0.869 0.793 0.201
MSI-Net [85] 0.736 0.793 1.931 0.889 0.865 0.784 0.307
SAM-ResNet [22] 0.741 0.538 1.990 0.899 0.865 0.793 0.610
CEDNS [92] 0.744 0.845 2.050 0.840 0.863 0.732 –
DINet [19] 0.740 0.436 1.981 0.905 0.864 0.798 0.700
EML-NET [45] 0.746 0.736 2.050 0.886 0.866 0.780 0.520
SalFBNet [75] 0.740 0.839 1.952 0.892 0.868 0.772 0.236
SalED [76] 0.745 0.909 1.984 0.910 0.869 0.801 0.190
TranSalNet [30] 0.747 – 2.014 0.907 0.868 0.803 0.373
FSM [88] 0.732 0.716 1.863 0.875 0.862 0.772 0.365
ACSalNet [87] 0.744 0.890 1.981 0.905 0.868 0.798 0.232
TempSAL [89] 0.745 0.896 1.967 0.911 0.869 0.800 0.195

Ours (w NSS) 0.748 0.914 2.060 0.900 0.869 0.787 0.208
Ours 0.746 0.907 1.988 0.912 0.870 0.800 0.190

Table 2
Quantitative performance comparison on MIT300. The best results are marked in
red.

Models AUC↑ sAUC↑ NSS↑ CC↑ KL↓ SIM↑

ITTI [7] 0.543 0.536 0.408 0.131 1.496 0.338
GBVS [91] 0.806 0.630 1.246 0.479 0.888 0.484
AIM [8] 0.762 0.665 0.882 0.342 1.248 0.410
CAS [34] 0.758 0.640 1.019 0.385 1.072 0.432
SUN [35] 0.694 0.626 0.762 0.277 1.282 0.393

DVA [50] 0.843 0.726 1.931 0.663 0.629 0.585
GazeGAN [25] 0.861 0.732 2.212 0.758 1.339 0.649
EML-NET [45] 0.876 0.747 2.488 0.789 0.844 0.676
CASNet II [93] 0.855 0.740 1.986 0.705 0.586 0.581
TranSalNet [30] 0.873 0.747 2.413 0.807 1.014 0.690
DeepGaze I [17] 0.843 0.723 1.723 0.614 0.668 0.572
DeepGaze II [78] 0.873 0.776 2.337 0.770 0.424 0.664
MSI-Net [85] 0.874 0.779 2.305 0.779 0.423 0.670
SalFBNet [75] 0.877 0.786 2.470 0.814 0.415 0.693
UNISAL [90] 0.877 0.784 2.369 0.785 0.415 0.676

Ours 0.878 0.788 2.423 0.811 0.410 0.690

In order to verify the generalization ability of our model and make a
omprehensive comparison, we also evaluate models on the TORONTO
nd PASCAL-S datasets, as shown in Table 3. For traditional models,
TTI is implemented based on the code provided by [91]. Other models
re implemented with SMILER [94]. As for the deep learning-based
ethods, we use their public codes and to make a fair comparison, the
sed model weights are trained on SALICON. From the comparison,
e see that our model achieves a better performance on most of the

even metrics than other SP models. This indicates that our model
as a better generalization ability to be applied to other datasets. In
ddition, our model has a moderate amount of calculation costs and
8

odel parameters compared with other deep learning-based SP models.
On the TORONTO dataset, our model achieves the best performance on
the seven evaluation metrics. Also, on the PASCAL-S dataset, our model
outperforms other models on five metrics apart from SIM and AUC.

Qualitative Comparison: We visualize the predicted saliency maps
of our model and six deep learning-based SP models (DVA, MSI-Net,
DINet, GazeGAN, SAM-ResNet and TranSalNet) in Fig. 6. As shown
in Fig. 6, our model is able to capture salient regions with low-
level features such as contrast as well as high-level attributes such
as humans, texts and animals. Compared with other deep learning-
based models, our model can effectively weigh the relative importance
relationship among salient regions in complex scenes. For instance, as
shown in the fourth column of Fig. 6, some compared models ignore the
human in red and some make an incorrect estimate of the importance
of salient regions. In contrast, our model captures every salient region
and correctly judges the relative importance of these areas.

4.5. Ablation study

In this section, we conduct ablation studies on the proposed archi-
tecture to understand the influence of each component.

4.5.1. The contribution of main components
We quantitatively evaluate the contributions of the main compo-

nents of our models and test the four variants five times for each and
report the average and standard deviation scores over random seeds for
more accurate comparison. The results are displayed in Table 4. We
build a strong baseline model based on the FPN structures. Features
from high-level to low-level are progressively added together and the
features of the largest size are fed to the readout module to obtain the
predicted saliency map with the same resolution as the input image.
And we can observe from Table 4 that the baseline model provides
a strong comparison standard. Next, Spatial Attention Inception Block
(SAIB) is added over the baseline to enhance global semantic fea-
tures. The performance gains large improvement on SIM, CC, KL and
NSS, which reflects the necessity of semantic information enrichment.
Local–Global Fusion Blocks (LGFB) aim to integrate multi-level features
sufficiently from local–global perspectives and the model obtains the
appealing performance gain as the SAIB does. This indicates that the
local and global fusion method is effective and essential for the SP task.
From Table 4, it is obvious that the SAIB and LGFB bring significant
improvements on KL metric by 5% compared with the baseline model.

4.5.2. Ablation study of CSSA
To fully assess the effectiveness of CSSA module, we conduct ab-

lation studies on SALICON validation set. The results are presented in
Table 5, in which the order is the number of groups, channel-squeeze
method and compression ratio, listed in parentheses. 𝛽 represents com-
pression ratio and g is the number of groups. For 3D convolution, we
initialize the kernels by adopting truncated normal distribution.

Importance of CSSA module: In Table 5 (A), we remove CSSA

modules from SAIB and LGFB and keep semantic embedding and spatial
Table 3
Quantitative performance comparison on TORONTO and PASCAL-S. We also report the implementation backend (Platform), model parameters (Params) and multiply–accumulate
operations (MACs). Note that all the deep learning-based models are trained on SALICON for a fair comparison. The best results are marked in red.

Models Platform Params (M) MACs (G) TORONTO PASCAL-S

AUC↑ NSS↑ CC↑ SIM↑ KL↓ sAUC↑ IG↑ AUC↑ NSS↑ CC↑ SIM↑ KL↓ sAUC↑ IG↑

ITTI [7] – – – 0.8014 1.2969 0.4779 0.4779 0.9688 0.6495 0.4114 0.8176 1.3034 0.4248 0.3587 1.2868 0.6572 0.4206
SUN [35] – – – 0.6846 0.7095 0.2376 0.3569 1.4530 0.6178 0.0048 0.6555 0.5928 0.1852 0.2681 1.7914 0.5919 −0.0822
AIM [8] – – – 0.7677 0.8370 0.3115 0.3684 1.4448 0.6743 0.1035 0.7804 0.8279 0.2776 0.2820 1.6810 0.6560 0.0159
CAS [34] – – – 0.7827 1.2695 0.4481 0.4372 1.0208 0.6854 0.3715 0.7763 1.1229 0.3561 0.3372 1.4048 0.6691 0.3121
GBVS [91] – – – 0.8315 1.5191 0.5691 0.4864 0.8478 0.6342 0.5311 0.8565 1.5212 0.4984 0.3957 1.1382 0.6652 0.5719

GazeGAN [25] PyTorch 230.48 81.93 0.8504 1.8535 0.6668 0.5814 0.6955 0.6955 0.7584 0.8813 1.9719 0.6130 0.5004 0.8771 0.7358 0.8985
DVA [50] Caffe 25.07 – 0.8622 2.1237 0.7152 0.5842 0.6538 0.6874 0.8119 0.8853 2.2614 0.6559 0.5163 0.8808 0.7221 0.9256
SAM-ResNet [22] Theano 70.09 – 0.8632 2.1440 0.7391 0.6232 1.8749 0.7138 −0.2905 0.8959 2.3381 0.7023 0.5605 1.2365 0.7544 0.5958
TranSalNet [30] PyTorch 76.56 54.33 0.8598 2.0097 0.7043 0.5867 0.6138 0.7135 0.8255 0.8927 2.1947 0.6673 0.5043 0.8023 0.7567 0.9636
DINet [19] Tensorflow 27.04 – 0.8630 2.1373 0.7477 0.6250 0.5757 0.7215 0.8893 0.8935 2.3240 0.6986 0.5535 0.7478 0.7546 1.0479
MSI-Net [85] Tensorflow 24.93 – 0.8694 2.1192 0.7419 0.6203 0.5412 0.7188 0.9175 0.8924 2.2646 0.6850 0.5363 0.7481 0.7516 1.0323
ACSalNet [87] PyTorch 47.35 43.48 0.8649 2.0118 0.7093 0.6006 0.5833 0.7146 0.8374 0.8969 2.2611 0.6886 0.5237 0.7574 0.7505 1.0139
FSM [88] Tensorflow 2.13 – 0.8625 2.0070 0.7155 0.6099 0.5982 0.7160 0.8486 0.8924 2.2221 0.6798 0.5398 0.7585 0.7523 1.0144
TempSAL [89] PyTorch 242.52 79.97 0.8686 2.1102 0.7451 0.6241 0.5415 0.7183 0.9109 0.8959 2.3243 0.6991 0.5481 0.7142 0.7604 1.0709

Ours PyTorch 31.38 29.78 0.8717 2.1556 0.7564 0.6255 0.5321 0.7242 0.9236 0.8966 2.3549 0.7074 0.5519 0.7126 0.7604 1.0762
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Fig. 6. Visual comparisons with start-of-the-art SP models. The first five columns are from SALICON validation set. The last two columns are from TORONTO and PASCAL-S,
respectively.
Table 4
Ablation study on main components of the proposed model on SALICON validation set. We test the variants in five times and the average and standard deviation scores of the
five metrics are reported as mean(±std) in the table. The best results are highlighted.

Baseline SAIB LGFB KL↓ CC↑ SIM↑ NSS↑ AUC↑

✓ 0.1933(±0.00120) 0.9087(±0.00034) 0.8007(±0.00018) 1.9388(±0.00220) 0.8721(±0.00009)
✓ 0.1850(±0.00119) 0.9118(±0.00014) 0.8041(±0.00038) 1.9420(±0.00147) 0.8727(±0.00003)

✓ 0.1850(±0.00124) 0.9118(±0.00016) 0.8040(±0.00019) 1.9421(±0.00147) 0.8727(±0.00005)
✓ ✓ 0.1822(±0.00061) 0.9128(±0.00012) 0.8051(±0.00036) 1.9434(±0.00112) 0.8729(±0.00008)
Table 5
Ablation study on CSSA module on SALICON validation set. As listed in parentheses, the order is the number of groups, channel-squeeze method
and compression ratio. The best results are highlighted.

Type KL↓ CC↑ SIM↑ NSS↑ AUC↑

Ours Full model(4, 3D Conv, 0.25) 0.1822 0.9129 0.8053 1.9419 0.8730

(A) w/o CSSA 0.1875 0.9109 0.8024 1.9397 0.8723

(B)
Vanilla 0.1831 0.9124 0.8048 1.9429 0.8728
Max 0.1834 0.9125 0.8048 1.9417 0.8728
Avg 0.1839 0.9127 0.8050 1.9419 0.8730

(C)

𝛽 = 1 0.1826 0.9123 0.8042 1.9439 0.8729
𝛽 = 0.75 0.1836 0.9124 0.8047 1.9434 0.8729
𝛽 = 0.5 0.1835 0.9124 0.8048 1.9430 0.8729
𝛽 = 0 0.1829 0.9124 0.8043 1.9420 0.8729

(D)

g = 1 0.1848 0.9120 0.8044 1.9435 0.8727
g = 8 0.1818 0.9129 0.8050 1.9436 0.8729
g = 12 0.1832 0.9126 0.8050 1.9431 0.8729
g = 16 0.1835 0.9125 0.8047 1.9435 0.8729
9



Knowledge-Based Systems 284 (2024) 111279J. Xie et al.
Table 6
Ablation study on LGFB on SALICON validation set. loc is the local branch, while glo is the global branch. The best
results are highlighted.

Type KL↓ CC↑ SIM↑ NSS↑ AUC↑

Ours Full model 0.1822 0.9129 0.8053 1.9419 0.8730

(A) w/o global semantics 0.1846 0.9119 0.8044 1.9416 0.8728

(B)
w/o loc 0.1837 0.9120 0.8042 1.9405 0.8728
w/o glo 0.1866 0.9122 0.8049 1.9455 0.8728

(C) w channel attention [71] 0.1840 0.9121 0.8043 1.9432 0.8728

(D)
Sequential (loc-glo) 0.1829 0.9125 0.8052 1.9453 0.8729
Sequential (glo-loc) 0.1835 0.9125 0.8054 1.9461 0.8729
attention blocks to solely enhance local features. Compared with the
baseline model in Table 4, this variant gains improvements on the five
metrics. And in comparison with our full model, the performance drops
off as expected, reflecting that introducing long-range modeling ability
is beneficial for our model.

Different Channel-Squeeze Methods: Here, we compare three
different channel-squeeze ways: average and max along the chan-
nel dimension, and 3D convolution with the vanilla transformer. The
vanilla transformer is implemented as in [30]. Experimental results
with various channel-squeeze methods are shown in Table 5 (B). Max
and average operations reduce the channel dimension of queries and
keys to 1 and still achieve considerable or even better performance
compared with the vanilla transformer, which reflects the redundancy
of features. We can observe that 3D convolution achieves the best
performance than others on four metrics, i.e., KL, CC, SIM and AUC,
and its performance is slightly weaker on NSS.

Different Compression Ratios: We investigate the influence of
different compression ratios of 3D convolution on performance. The
compression of the channel dimension can force the model to learn
practical information from redundant features. Unlike average and
max operations, 3D convolution brings extra parameters required for
optimization and the compression ratio is hard to determine. We test
the ratio on empirical settings ranging from 0 to 1. The ratio in Table 5
(C) represents the compression degree of the channel dimension. If the
ratio is 0.25, the channel dimension is reduced to 25% of the original
one. When the ratio is 0, the channel dimension of feature maps is
squeezed to 1. Compared with the results in Table 5 (C), it is observed
that our model with 25% achieves the best performance on KL (0.1822),
CC (0.9129), SIM (0.8053) and AUC (0.8730) and obtains a similar
performance on NSS as discussed before.

Different Numbers of Groups: In Table 5 (D), we conducted exper-
iments with different numbers of groups. Since the features’ channel
dimension in the decoder is either 192 or 96, the group embedding
dimension is set to 32 for larger groups (8,12,16). From Table 5 (D),
we can see that the performance drops off with more groups. When
the group number is 4, the performance has reached a saturation state.
The limitation of the channel dimension might result in performance
degradation with more groups.

4.5.3. Ablation study of LGFB
To verify the effectiveness of the local–global feature fusion block,

we conduct ablation studies about local and global structures.
Importance of the global semantics: In Table 6 (A), we remove

the guidance of the global semantic features and enhance multi-level
features by themselves. This leads to a performance degradation, re-
flecting that the global semantic features help to refine the fusion of
local and global features.

Importance of the local and global branches: We test the model
performance with only one branch used (w/o loc and w/o glo). In
the experiment w/o glo, we keep the semantic embedding (SE) and
spatial attention (SA) block by removing the CSSA module and the FFN
module. In Table 6 (B), with only one type of fusion, the performance
of loc and glo degrades on four metrics compared with our model. This
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Table 7
Ablation study on loss function on SALICON validation set. The BCE-a indicates that
BCE loss is used during the training phase. And the BCE-1 means that BCE loss is only
utilized for epoch one. The best results are highlighted.

Type KL↓ CC↑ SIM↑ NSS↑ AUC↑

base 0.1839 0.9122 0.8037 1.9405 0.8727
w BCE-a 0.1841 0.9111 0.8019 1.9356 0.8725
w BCE-1 0.1822 0.9129 0.8053 1.9419 0.8730
w BCE-1 + 0.5*NSS 0.1887 0.9030 0.7982 2.0088 0.8737

indicates that feature fusion from both global and local perspectives is
necessary to improve our model’s performance. The CNN-Transformer
hybrid structures are skilled in extracting both local and global features
based on the visualization in Fig. 5.

Semantic embedding and channel attention: To evaluate the per-
formance between the proposed semantic embedding and the channel
attention in SENet [71], we replace the semantic embedding parts with
the channel attention in our model. In Table 6 (C), the variant w channel
attention shows a performance degradation on KL, CC, SIM and AUC.
The reason is that the channel attention aims to highlight the features
based on channels and cannot capture local spatial features, while our
semantic embedding learns the spatial relationship and enhances the
semantic features in the spatial domain for each channel of features.
Additionally, the FFN part in LGFBs already plays a role in communi-
cating channel information. Thus, the channel attention does not bring
much improvement for our model.

Structure of the local and global branches: In the LGFB, we
establish a parallel structure to fuse local and global features. We
examine the proposed block in a sequential mode. From Table 6 (D),
we can observe that the Sequential (glo-loc) achieves better performance
on SIM and NSS but worse performance on KL, CC and AUC compared
with our model. Overall, both the parallel structure and the sequential
structures can obtain good performance.

4.5.4. Ablation study of loss function
In the experiment, we apply a deep supervision method with su-

pervision on the Stage 2 and Stage 3 to obtain a better learning start
status. From Table 7, initializing the weights of shallow layers in the
encoder and the corresponding part in the decoder by deep supervision
(w BCE-1) achieves a better performance. And if we train our model
with the BCE loss during the whole training phase as w BCE-a, the
performance of the model has a drop. The reason might be the different
numerical ranges among BCE, KL and CC, causing the unbalanced
gradient backward. Since the metrics related to SP are of real concern,
BCE is only used as an auxiliary function and can be removed after
one epoch (w BCE-1). When the loss function is applied at the early
stage of training, it helps to ease the situation that low-level features
are ignored or overwritten and improves the model performance. In
addition, we also conduct an ablation study on NSS metric and the
result is in the last row of Table 7. We add NSS to our loss function,
which brings improvements on the location-based metrics, i.e., NSS

(1.9446 → 2.0088) and AUC (0.8030 → 0.8037), and a decline on the
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Fig. 7. Some failure cases. The first two images are from PASCAL-S and the last two are from MIT1003. Both are excluded from the training set. In the last two columns, our
model is finetuned on MIT1003 training set and on CAT2000, respectively. In (e), we visualize the features in the shallow stage of our model, the output of the FFN, the FFN
sum of the skip-connection in LGFB-1 and the 3 × 3 convolution, from left to right, respectively.
distribution-based metrics, i.e., KL (0.1830 → 0.1887), CC (0.9129 →

0.9030) and SIM (0.8053 → 0.7982), which is the same phenomenon
as the SALICON test set. As suggested in [83], the choice of these
location-based and distribution-based metrics is application-related.
NSS is suitable for tasks, like image-retargeting, that require the relative
importance of different image regions. KL is appropriate for detection
applications, as it can penalize failures and enable models to ignore
areas of low probability.

4.6. Failure cases and analysis

With the aid of global semantic features, the GSGNet achieves
promising performance on the various eye-tracking datasets. But there
are still some situations that our model cannot handle well. In Fig. 7,
we visualize some instances of failure using our model, indicating
potential directions for future research. The example in Fig. 7(a) depicts
a common failure scenario, in which there is no meaningful semantic
content (such as the black screen), causing humans to pay attention
to the image center. Models trained on the datasets full of semantic
scenes cannot well deal with this. Incorporating a center bias as a
prior like [17] is a possible solution. The model finetuned on CAT2000
appears to address the problem, but the results of other images show
that the model has a center-biased behavior. Secondly, in Fig. 7(b), our
model, trained on the SALICON dataset, predicts the shape of the air-
plane, which makes it suitable for auxiliary use in applications such as
object segmentation [95]. However, the situation is tricky for modeling
human eye fixations. In some cases, humans may observe the shape
of an object, whereas, in other cases, they may not. Finetuning our
model on MIT1003 alleviates this issue, reflecting that the dataset bias
impacts the model’s behavior. Moreover, in Fig. 7(c) and (d), for deep
learning-based models, the challenges lie in the unnatural images, since
in this situation human attention is significantly influenced by low-level
properties such as texture and color. Finetuning the model on MIT1003
enables our model to focus on the clustered objects. However, it still
falls short in the color scenario. In Fig. 7(e), we provide a visualization
11
of the process of generating the features in shallow layers and observe
that the model has learned the color-related features, as indicated by
the red circle. However, as the features continue to be processed (from
left to right in Fig. 7(e)), the color information gradually diminishes
and is overwhelmed by the semantic features. One possible solution is
to build a separate module to process the features in the shallow layers
and design a method to adaptively adjust the importance of the low-
level features for the final prediction. Overall, the current eye-tracking
datasets have inherent characteristics that can influence the behaviors
of saliency prediction models. Saliency models like UNISAL [90] have
proposed a domain-shift modeling method with domain-adaptive batch
normalization, prior, fusion and smoothing to learn dataset-related
knowledge from multiple eye-tracking datasets. Additionally, a high-
quality dataset containing diverse scenarios can be further studied for
saliency prediction using methods such as semi-supervised [75] and
self-supervised learning.

5. Conclusions

In this paper, we propose a semantic-guided network for predicting
saliency maps. Features in the encoder’s deepest layer contain rich
semantic and contextual information, which are further refined by the
channel-squeeze spatial attention (CSSA)-based blocks, which capture
global representations from the processed spatial attention maps. Addi-
tionally, multi-level features are integrated by the local–global fusion
block (LGFB) combining the merits of CNNs and transformers, fusing
local and long-range spatial information at multiple perceptual levels.
We have conducted relevant ablation studies and evaluated our model
on four saliency datasets. Quantitative and qualitative results have
demonstrated the effectiveness of the proposed model on the SP task.
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