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Abstract
Anomaly detection (AD), also known as one-class classification and localization, has 
become a challenging task in the field of industrial defect detection where anomalous 
samples can hardly be collected to train a network based on conventional computer vision 
tasks. Knowledge distillation based on a student-teacher (S-T) framework has proved 
its effectiveness in solving such problems in an unsupervised fashion. In this paper, we 
propose a novel asymmetric S-T framework with masked feature regeneration called AST-
MFR. First, to ensure better feature alignment during the training period, we introduce a 
masked feature regeneration (MFR) module to mask multi-level features of the student 
network randomly and regenerate the corresponding features under the guidance of the 
teacher network’s features. Second, to enlarge the feature diversity of unseen anomalous 
samples during the test period, we adopt an asymmetric S-T network structure that is 
sensitive to detecting and locating anomalous parts. We conduct experiments on the 
industrial anomaly detection benchmark dataset MVTec AD and the results demonstrate 
the proposed model achieves competitive performance compared to the state-of-the-art 
methods on both anomaly detection and anomaly localization  .
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1 Introduction

Metaverse technology is a comprehensive application based on various technologies 
such as artificial intelligence, virtual reality, and augmented reality [1–4]. In the field of 
industrial manufacturing, the industrial metaverse builds a combination of the digital and 
physical world that highly improves efficiency through engineering and field service. One 
of the key components of the industrial metaverse is an inspection system that can detect 
anomalous samples and locate anomalous parts. With the usage of the real-time collected 
data, a designed algorithm can analyze and give an alarm to the potential risk automatically 
which greatly saves labor costs and makes the schedule maintenance activities more 
proactive. Currently, great effort is paid to make use of vision-based techniques like object 
detection [5] and segmentation [6] to build up such a high-efficiency inspection system, 
but their limitation is the over-reliance on the large amount of well-labeled anomalous 
samples which are hard to obtain in practical manufacturing. With the absence of such 
anomalous data, anomaly detection (AD), also known as one-class classification, has 
shown great advantages in terms of industrial defect detection and localization, which 
plays an important role during the development of the industrial metaverse.

Knowledge distillation (KD) [7] using a student-teacher framework has proved to be 
a feasible paradigm in AD [8–14]. In such a framework, a powerful teacher which is pre-
trained on a large-scale dataset, such as ImageNet [15], acts as a feature extractor to extract 
multi-level features and a naive student is trained to imitate the intermediate features 
extracted by the teacher. The hypothesis is that since the student network is trained only to 
mimic the features of normal data extracted from the teacher network, in the test period, it 
should extract features similar to the teacher network on normal samples and the features 
extracted by the two networks should be distinguishable enough on those unseen abnormal 
samples. The similarity between the feature maps at each pixel position can be used as 
an indicator to predict an anomaly map which can reveal the anomalous area. However, 
it is always the case that the student-teacher pair tends to extract similar features even on 
abnormal samples because of the over-generalization of the student network.

We look back to the previous works on S-T models and classify the overall frame-
work into two categories, i.e., the identical S-T network structure and the asymmetric S-T 
network structure as shown in Fig. 1. In the identical S-T network structure [8, 12] like 
Fig. 1a, the student network shares completely the same structure as the teacher network. 
The high similarity of the S-T pair makes it easier to mimic the features extracted by the 
teacher network on normal samples. However, this may lead to an unwanted over-gener-
alization of abnormal samples because the same network structure is intended to produce 
the same outcome, which ignores the diversity of abnormal features and makes it hard to 
tell abnormal areas apart from normal ones. In the asymmetric S-T network structure [13] 
like Fig. 1b, a smaller student network compared to the teacher network is used for fear 
that with an entirely identical S-T pair, the features extracted by the two networks may look 
similar even when given abnormal samples. However, a smaller student network hinders 
the student’s learning ability to mimic the intermediate features of the teacher network dur-
ing the training period, thus resulting in unsatisfactory prediction results even on normal 
samples because of poor feature alignment on normal features.

Inspired by previous works, we summarize two key factors that may boost the 
performance of AD using such an S-T framework. First, S-T networks should extract 
features of high similarity on normal samples. Second, when encountering abnormal 
samples, S-T networks should be sensitive to extracting features as different as possible. 
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That is to say, normal feature alignment and abnormal feature diversity can guarantee a 
good detection result. Thus, we propose a novel asymmetric S-T framework and introduce 
a masked feature regeneration (MFR) block to overcome the problems brought by previous 
KD-based AD methods following the two key factors we summarized above.

Concretely, a novel asymmetric S-T framework is proposed for the diversity of features 
on the abnormal samples. As discussed above, it is often the case that similar features are 
extracted even on abnormal samples in the identical S-T network structure. The proposed 
asymmetric structure of the S-T pair is used so that the model is not intended to produce 
similar outcomes on abnormal samples. Notably, we build our asymmetric S-T framework 
in a completely different way from the previous asymmetric S-T network structure, that 
is, we build the asymmetric S-T pair with an entirely different bottleneck structure like 
Fig. 1c where distinct features can be extracted from the abnormal samples due to the large 
structure difference. Specifically, in our asymmetric S-T framework, the WideResNet-
like network acts as the teacher, and the ResNext-like network acts as the student. Both 
student and teacher networks have the same number of network layers while totally 
different bottleneck block structures. In addition, different from all previous KD-based 
methods where a naive student is used to learn mimicking features from scratch, we use 
a student network that is pre-trained on ImageNet [15]. The pre-trained student network is 
a powerful feature extractor, when facing unseen abnormal samples, it has the potential to 
extract distinguishable features and ensure the diversity of abnormal features.

Moreover, we draw inspiration from some self-supervised learning methods with 
masking augmentation [16–19] and propose a masked feature regeneration (MFR) block to 
ensure a better representation learning process during the training period. The multi-level 
features extracted by the student network are first masked at random spatial positions and 
the masked features are then regenerated under the guidance of the teacher network. Such a 
mask-and-regeneration learning scheme further improves the learning ability of the student 
network to mimic high-alignment features on normal samples during the training period. In 
combination with the asymmetric S-T pair and the MFR block, our proposed method AST-
MFR achieves competitive performance compared to the state-of-the-art on both anomaly 
detection and localization tasks on the benchmark dataset MVTec AD [20].

Fig. 1  The overall framework of different kinds of S-T models. a Identical S-T network structure. b, c 
Asymmetric S-T network structure
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We conclude our main contributions as follows:

• We propose a simple but effective S-T framework for anomaly detection. A novel 
asymmetric S-T pair is introduced for the diversity of features on the abnormal samples.

• We propose a masked feature regeneration module to further enhance the representation 
learning ability of the student network to mimic high-alignment features on normal 
samples.

• Extensive experiments on the MVTec AD dataset demonstrate the effectiveness of our 
method on both anomaly detection and localization.

2  Related work

AD tasks [21–24], that use only normal data for model training have the ability to 
distinguish abnormal samples and also locate the anomalous area. In this paper, we focus 
on anomaly detection and localization of industrial defect images in an unsupervised 
setting. Different from the supervised method, no other auxiliary information is available 
except for the images of normal samples. Under such a setting, we broadly categorize the 
existing methods for AD as reconstruction-based methods, augmentation-based methods, 
and knowledge distillation-based methods.

2.1  Reconstruction‑based methods

In order to learn the distribution pattern of the normal samples, this kind of method 
completes the task of image reconstruction in an encoding-decoding manner. It is assumed 
that the model which is only trained to reconstruct normal samples extrapolates badly on 
abnormal ones and the high reconstruction error can be used to indicate anomalous areas. 
Some generative models, like autoencoder (AE) [25], variational autoencoder (VAE) [26], 
and generative adversarial network (GAN) [27] have been widely used as the basic network 
structure. Yan et  al. [28] introduced a multi-level reconstruction framework with an 
adaptive attention-level transition strategy for anomaly detection and localization. Zhang 
et al. [29] proposed a multi-task framework to combine image reconstruction with other 
semantic tasks to learn efficient representations and also introduced a novel hard example 
mining strategy to further improve the reconstruction quality. Although this kind of 
method generally works well, the reconstruction error heavily relies on the high quality of 
reconstructed images thus over-generalization on abnormal areas can be fatal to detecting 
the defects. In our framework, we distill multi-level knowledge from the teacher network 
and calculate the anomaly score map in the feature space where abundant information on 
the anomalies can be obtained compared to the simple reconstruction on the image level. 
In order to control the over-generalization on abnormal areas, a memory mechanism 
[30–32] is introduced to AE by building a memory bank to store some prototype features 
during feature encoding and selectively choose the features in the memory bank to decode. 
The memory module which linearly combines the stored memory items hinders the 
reconstruction of some anomaly-like normal areas and requires extra storage space for the 
established memory bank.
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2.2  Augmentation‑based methods

Augmentation-based methods try to introduce synthetic, or so-called pseudo outliers in the 
training period. Schluter et al. [33] created naturally synthetic anomalies by pasting patches 
of different sizes to different locations of anomaly-free images with Poisson image editing 
to make the edge of the created anomaly look more natural and more similar to the realistic 
irregularities. Such a method requires a dedicatedly designed process for creating synthetic 
anomalies where an extra dataset is needed to serve as the source of the anomaly area 
images. Moreover, it is also possible that the trained model overfits the synthetic anomalies 
while performing badly on real-world defects.

2.3  Knowledge distillation‑based methods

Knowledge distillation (KD) is first used for model compression [34], where knowledge 
from an over-parameterized teacher is transferred to a lightweighted student. Recently, KD 
has been also used for doing AD tasks. A trainable student network is guided to mimic 
the features on normal samples extracted by a pre-trained teacher network and features on 
those unseen abnormal samples are expected to be distinct between teacher and student. 
Deng et al. [11] introduced a reverse distillation paradigm and designed modules to fuse 
multi-level features and compact embedding space, Cao et al. [12] adopted hard samples 
mining in training and proposed a novel loss function to distill knowledge from teacher 
network, Salehi et al. [13] used a smaller student network and distilled multi-level features 
to detect anomalies. These works all use an identical S-T pair or a smaller student network, 
and a naive student network trained from scratch, whereas our work introduces a novel 
asymmetric S-T framework with a pre-trained student, which is more suitable for AD as 
discussed in Section 1.

3  Proposed framework

This section elaborates on the details of the proposed AST-MFR, whose main framework 
is illustrated in Fig. 2. The student-teacher framework used in our AST-MFR has a novel 
asymmetric structure, which is different from the prior works. The teacher network we 
used is a pre-trained WideResNet-like network, while the student network is a pre-trained 
ResNext-like network. The two variant versions of ResNet [35], i.e., WideResNet [36] 
and ResNext [37] have entirely different bottleneck structures. During the training period, 
multi-level features are extracted by both teacher and student networks respectively. The 
MFR module is proposed to first mask the features from the student network at each stage 
and then regenerate the features under the guidance of the teacher network. We calculate 
the similarity of features at three stages as objective loss and the loss maps are regarded as 
the anomaly score maps at different resolutions.

3.1  Asymmetric S‑T pair

ResNet family models have been widely used in many computer vision tasks for their 
incredible power in extracting features from the input images. We adopt two different bot-
tleneck structures to build the asymmetric student-teacher network. In Fig. 3, we illustrate 
three different kinds of bottleneck structures. In the teacher network, we use the bottleneck 
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block like Fig. 3b, which is wider than the traditional bottleneck block used in ResNet, i.e., 
Fig.  3a. The teacher network itself is expected to extract discriminative enough features 
that are vital for spotting anomalies. In [36], a network with a wider version of the bot-
tleneck block has been proven to be an effective way to improve performance. Despite that 
we can further extend the representation capability of the teacher network by simply adding 
more convolutional layers, a deeper network may face the problem of gradient vanishing if 
designed improperly. Although ResNet has relieved such a question by introducing residual 
connection in the bottleneck, it is still possible that only a part of the whole network learns 
the meaningful representations and the other part contributes little to the final goal.

As for the student network, we want to adopt a bottleneck structure different from the 
one used in the teacher network, so we turn to the bottleneck block used in ResNext like 
Fig. 3c. Such a block takes the strategy of repeating layers and uses a factor named cardi-
nality to determine the number of branches with the same structure. The input is first split 
into several parts and then merged together, and the number of branches is easy to control 
by setting cardinality to the desired number. This kind of bottleneck has lower complexity 
than the one used in ResNet while achieving better performance [37].

The whole pipeline of the teacher and student network is demonstrated in Fig. 3d. We 
follow the overall pipeline of ResNet and take the first three network stages with 4 × , 8 × , 
and 16 × downsampling rates while discarding the last stage. The features at higher levels 
might be too abstract for detecting anomalies because industrial defects usually have little 
semantic information and some low-level features like edge or outline may be more helpful. 
Both the student and teacher networks have the same number of layers, while different 
bottleneck blocks are used in stage 1, stage 2, and stage 3.

3.2  Masked feature regeneration module

Masked image modeling (MIM) is motivated by masked language modeling in the field 
of NLP [38]. Chen et  al. [39] first tried to reconstruct pixels from a masked picture. 

Fig. 2  The overall framework of AST-MFR. The student and teacher with asymmetric structure serve as 
feature extractors to extract three levels of intermediate features. The features extracted by the student net-
work are first masked at each level and then regenerated under the guidance of the teacher network. At 
inference time, the similarity between the features extracted by the two networks is calculated and the final 
anomaly score map is obtained by accumulating the multi-level similarity maps
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MIM has proved to be an effective way to learn representations [16], and the key point 
is that the masking operation can reduce the high spatial redundancy of images. We 
take inspiration from MIM and further extend it to our work by masking multi-level 
features of the student network and using the features of the teacher network to guide 
the regeneration. Specifically, we mask multi-level features instead of the raw input 
image, and the masked features are regenerated to mimic the corresponding features 
from the teacher network. In this way, we reformat the knowledge-distilling process as 
a feature regeneration process under the guidance of the teacher network.

As shown in Fig. 4, the input feature fi is first masked randomly at the pixel level. 
Then the masked feature fm is regenerated by a feature generation block consisting of 
two convolutional layers. The regenerated feature freg is then guided to mimic the fea-
ture from the teacher network, the detailed process is shown in Algorithm 1. The MFR 
module is used in all three stages of our student network. With such a feature regenera-
tion operation, the student network can be trained to extract features with higher simi-
larity to the teacher network on normal samples.

Fig. 3  The bottleneck structure used in the ResNet family models. a A bottleneck block in ResNet. b A 
wider bottleneck block in WideResNet. c A bottleneck block in ResNext with cardinality = 32. A layer 
is shown as [input channels, kernel size, output channels]. d The pipeline of the student and teacher net-
work. The blue part means the convolutional layer, the red part means the max-pooling layer, the green part 
means the bottleneck blocks, and n represents the number of blocks used. The teacher and student share the 
same network pipeline except for the kind of bottleneck used in stage1 to stage3 
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3.3  Training process

The training process shifts the feature distribution of the student network on the normal 
samples to the feature distribution of the teacher network. During the whole training 
period, the parameters of the teacher network won’t be updated and only the student 
network is trainable. Considering a set of anomaly-free input images D{I1, I2,… , In} , for 
each input image  In ∈ ℝ

h×w×c , where h, w, and c denote the height, the width of the input 
image, and the number of channels of the input image, respectively, we use the student 
network and the teacher network to extract the feature at three stages and get the feature 
outputs   
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Fig. 4  Illustration of our masked feature regeneration module. A random mask is generated and applied to 
the input feature. The masked feature is then regenerated by the feature generation block and the regener-
ated feature is learned to mimic the corresponding feature from the teacher network
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The loss for an entire sample is the average of the feature distance at every pixel position 
across all three stages as shown in Eq. (2) and Eq. (4). The total loss is the sum of Lcos and 
LL2

 shown in Eq. (5). We set α = 1 to pay equal attention to the two losses.

3.4  Testing process

During the test period, we terminate the operation of the masking feature but reserve the 
feature generation blocks. Given a test image Itest , we calculate the cosine distance and L2 
distance between the feature vectors after the feature generation blocks and the features 
from the teacher network after the last layer in each stage according to Eq. (1) and Eq. (3). 
The distances between feature vectors at all pixel positions are calculated to form the 
distance maps, i.e., M1 , M2 and M3 shown in the bottom part of Fig. 2. We obtain the final 
anomaly score map by accumulating the three maps after upsampling them to the input 
image size. For anomaly detection, we take the maximum score of the anomaly map to 
decide whether an image is anomalous.

4  Experimental results

4.1  Experimental protocol

1) Dataset. We assess the performance of our method on the MVTec AD [20] dataset, 
which is widely used as a benchmark in the field of anomaly detection and localization 
in an unsupervised setting. MVTec AD comprises 15 different categories, including 10 
kinds of objects and 5 kinds of textures. A set of 3629 images is used for training and 
validation and the other set of 1725 images is used for testing. The test set contains both 
images with various kinds of defects and anomaly-free images, while the training set 
contains only images without defects. All the image resolutions vary from 700 × 700 
to 1024 × 1024 pixels. Pixel-wise ground truth labels are provided for all images with 
defective areas for the convenience of evaluation.

2) Evaluation metrics. Following the previous works [8, 11, 13, 14, 40–42, 46, 47], we 
utilize two widely adopted metrics to evaluate the performance of our method on 
anomaly detection and localization, including the area under the receiver operating 
characteristic curve (ROCAUC) and the per-region overlap (PRO) curve [9, 43]. 
ROCAUC is used both for evaluating image-level anomaly detection performance 
and pixel-level anomaly localization performance. PRO score is derived through the 
computation of the normalized area under the PRO curve, limited to a 30% pixel-wise 
false-positive rate, which is a strict metric that weights different-scale anomalies equally.

3) Experimental settings. All images in MVTec AD are re-sized to 256 × 256. The model is 
trained to detect and locate anomalies in one category at a time. In our model, we adopt 
the first three stages of WideResNet50 as the backbone of the teacher network and the 
first three stages of ResNext50 as the backbone of the student network. Both the student 
and teacher networks load the pre-trained parameters supplied by the PyTorch. In the 
training period, we utilize Adam optimizer [44] with β = (0.9, 0.999). The learning rate 
is set to 0.001. We train 200 epochs with a batch size of 32. At test time, a Gaussian filter 
with σ = 4 and an average pooling operation with k = 5 have been applied to smooth the 

(5)Lall = Lcos + �LL2
.
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final anomaly score map. Our experimental platform is as follows: CPU is Intel Xeon 
E5-2620, GPU is NVIDIA Titan XP, and PyTorch is configured with Python 3.8.

4.2  Comparison with state‑of‑the‑arts

For anomaly detection, we take ROCAUC as the main evaluation metric and report the 
performance of our method tested on the MVTec AD dataset as well as the prior state-
of-the-art (SOTAs) including, MKD [13], RDAD [11], CutPaste [40], DRAEM [41], 
PaDiM [42], STFPM [8], DeSTSeg [14], MTHM [29], MLIR [28], ER [46] and OCR [47]. 
For anomaly localization, we take both ROCAUC and PRO as the evaluation metric and 
compare the performance of our method with the methods mentioned above (expect for 
OCR [47] which only reports its image-level anomaly detection performance) and IKD 
[12] which is specifically designed for anomaly localization.

We validate the performance on the MVTec AD dataset and document the results as 
shown in Tables 1 and 2. It is worth noting that our method has surpassed the former arts 
on both image-level detection and pixel-level localization, we achieve a new SOTA per-
formance of 98.7% on the image-level ROCAUC, 98.0% and 94.3% on the pixel-level 
ROCAUC and PRO. The methods [40] and [41] both use algorithms to introduce syn-
thetic anomalies during the training period, but it is possible that the models overfit the 
synthetic anomalies and perform weakly on the real anomalies. The method [42] estimates 
the feature distribution for patch-level Mahalanobis distance, while the method limits the 
anomaly detection to Mahalanobis distance specific to each patch and it performs subpar 
in some categories with complex distributions. Noticeably, the methods [8, 11–14] used 
for comparison also adopt the S-T framework but perform inferior to our method, which 
is strong evidence to demonstrate the effectiveness of our method. In order to better dem-
onstrate the robustness of our method, we further divide all defective areas into two kinds, 
one with large scales like broken parts, misplaces, and pollution, and the other with small 
or slender structures like cracks, missing parts, and stains. As shown in Fig. 5, our method 
performs well on both kinds of defective areas and predicts the anomaly score maps close 
to the ground truth mask. To further demonstrate the performance of the model on detect-
ing defects of different scales, we manually divide every defect category into three parts 
according to the anomalous pixel ratio in all pixels: the defects are defined as small ones 
if the ratio is under 5%, the defects are defined as middle ones if the ratio is between 5 and 
20%, and the defects are defined as large ones if the ratio is higher than 20%. We report 
the anomaly detection results on defects of different scales in Table 3, and the quantitative 
results show that our method performs well on all scales of the defects which further dem-
onstrates the robustness of our method.

4.3  Ablation studies

We assess the effectiveness of the AST framework and MFR module on both anomaly 
detection and localization and report corresponding results in Table 4. We follow the previ-
ous work [8] and first use an identical structure of S-T pair as the baseline, where both the 
student and teacher network adopt the WideResNet50 as the backbone. Then we introduce 
the MFR module and apply it to the first three stages of the student network. Such a module 
helps the student to learn features of high alignment on the normal samples and boost the 
performance on both anomaly detection and localization. We achieve further performance 
improvement by alternating the whole network by an AST framework, where we adopt 
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the pre-trained WideResNet50 as the backbone of the teacher network and the pre-trained 
ResNext50 as the backbone of the student network. Such an asymmetric structure and a 
more experienced student benefit a lot for the insurance of the diversity of the features on 
abnormal features as well as a better knowledge transfer process during the training period.

Fig. 5  Visualization examples of large defects (left) and tiny and indistinctive defects (right). For each 
example: a source image, b ground truth mask, c prediction of anomaly score map

Table 3  Quantitative results of 
image-level ROCAUC (%) on 
defects of different scales

Category Small Middle Large

bottle 100.0 100.0 100.0
cable 98.9 99.0 100.0
capsule 97.8 99.7 100.0
carpet 98.1 100.0 100.0
grid 99.7 100.0 −
hazelnut 100.0 100.0 100.0
leather 100.0 100.0 −
metal_nut 100.0 100.0 100.0
pill 96.0 99.1 100.0
screw 94.1 − −
tile 100.0 100.0 99.9
toothbrush 89.6 100.0 100.0
transistor 100.0 100.0 96.3
wood 96.7 99.7 98.0
zipper 97.6 99.3 100.0
average 97.9 99.8 99.5

Table 4  Effects of AST and MFR 
on the final ROCAUC results

Exp. MFR AST Image-level Pixel-level

1 96.0 97.0
2 √ 96.5 97.3
3 √ 98.4 97.9
4 √ √ 98.7 98.0
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Complexity analysis We study the computing complexity of the proposed method. The 
WideResNet50 is chosen as the teacher network and different backbones are chosen as 
student networks. As shown in Table 5, we report three metrics used for measuring the 
complexity of the model: Parameters, FLOPs, inference time, and the corresponding 
performance of different student networks. Although it costs more inference time when 
using ResNext50 as the backbone, it has both fewer parameters and FLOPs compared to 
WideResNet50 and ResNet50. What’s more, the best performance is achieved on both 
tasks of anomaly detection and localization with ResNext50. Therefore, we choose to use 
ResNext50 as the final backbone of the student network for the better balance between 
model complexity and model performance.

Effects of asymmetric S‑T structure We further conduct experiments to explore the 
necessity of using an asymmetric S-T structure. We retrain the model with three S-T 
networks of the same structure (with an MFR module) and compare the model per-
formance with the one using an asymmetric S-T structure. As the results are shown in 
Table  6, the models with the same S-T structure like ResNet50, WideResNet50, and 
ResNext50 all perform inferior to the one with an asymmetric S-T structure. Since 
WideResNet50 and ResNext50 are strong feature extractors as teacher networks and 
have good learning ability as student networks, they have better performance than 
ResNet50 on both anomaly detection and localization. While we further boost per-
formance by introducing the asymmetric S-T structure, as discussed before, the novel 
structure further enlarges the feature difference in the anomalous areas. The experi-
mental results validate the effectiveness and rationality of the asymmetric S-T struc-
ture used in our method.

Effects of different masking rates We investigate the effects of masking rates on the final 
results. As shown in Fig. 6, we choose different masking rates r = {0.1, 0.3, 0.5, 0.7, 0.9} 
and report the following results on both anomaly detection and localization. We achieve 
the optimal result on the masking rate of 0.3 and 0.5. The key point behind such an MIM 
method is the reduction of spatial redundancy of the feature map and a low masking rate 
like 0.1 does not achieve the desired effect. On the other hand, the excessive operation of 

Table 5  Complexity of different backbones used for the student network

Backbone Para(M) FLOPs(G) Time(ms) Image-level Pixel-level

WideResNet50 49.6 26.6 9.6 98.5 97.9
ResNext50 33.2 18.9 10.1 98.7 98.0
ResNet50 36.3 21.2 8.9 98.5 98.0

Table 6  Effects of the 
asymmetric S-T structure on the 
final ROCAUC results

Teacher ResNet50 WideResNet50 ResNext50 WideResNet50
Student ResNet50 WideResNet50 ResNext50 ResNext50

Image-level 97.9 98.4 98.3 98.7
Pixel-level 97.7 97.9 97.8 98.0
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masking also harms representation learning since the generation blocks may find it hard to 
regenerate features with little useful information.

Effectiveness of a pre‑trained student network We evaluate the performance of our pro-
posed method with a student network trained from scratch and display the results in the 
second column of Table 7. A more experienced student network has a stronger capabil-
ity of representation learning during the training period. It extracts more discriminative 
features on ab-normal samples compared to a naive student network trained from scratch, 
which contributes a lot to both anomaly detection and localization.

Combinations of different backbone usage We use three kinds of different backbones 
to get six different combinations of asymmetric S-T pairs and assess the corresponding 
performance on both anomaly detection and localization as shown in the last six columns 
of Table  7. An obvious performance drop happens when ResNet50 acts as the teacher 
network for its lack of representative capacity. We find that even with a simpler student 
like ResNet50, the pre-trained student combined with the MFR module still has a strong 
ability to perform feature learning and gets satisfactory performance. The optimal result 
is achieved under the combination of WideResNet50 and ResNext50 due to the large archi-
tecture gap in terms of the bottleneck block.

Effects of different locations to add MFR module In this work, we propose the MFR 
module to mask the student’s features first and then regenerate the features according to the 
teacher’s features. Since there are three different stages during the feature extraction, we 
conduct experiments to study the effect of the location of the added MFR module on the 
final results. As the results shown in Table 8, we observe a performance boost when singly 
adding the MFR module to each stage, and the MFR module added at stage2 helps most 
since the middle-level features are not that abstract while containing information like edges 

Fig. 6  Model performance under 
different masking rates. We 
depict the trend of variation of 
image-level ROCAUC in blue 
dots, and the one of pixel-level 
ROCAUC in red dots
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and contours which are beneficial for detecting anomalies. We observe further performance 
boost when adding the MFR module to the different stages at the same time and the best 
performance is achieved by adding the MFR module to all three stages. The results have 
shown that the designed MFR module can strengthen the student network’s learning ability 
and the features of all three stages are vital for anomaly detection.

4.4  Failure cases and analyses

Although our method achieves good performance on most of the categories in the MVTec 
AD dataset, there is a significant accuracy drop in screw and toothbrush. We visualize 
some of the false detection examples and try to make an explanation for such failures. As 
shown in Fig. 7, we find that our method is sensitive to some disturbances like fiber and 
stain existing in the background areas and predicts a relatively high anomaly score in these 
areas. Since we take the maximum of the anomaly score map as the anomaly score of the 
given image, such a normal image without other kinds of real defects is misclassified as an 
anomaly due to the occurrence of a high anomaly score in the background area. It is rea-
sonable, however, since the model is trained in the absence of abnormal samples and does 
not have any prior knowledge of the real defects, it is only taught to mimic features from 
the teacher network of the normal areas. Such disturbance, although regarded as a pseudo 
flaw, does never appear in the training set, so it is excusable that our method treats it as 
irregularity. In order to make up for such a mistake, we make use of SAM [45] to get the 
binary mask of the foreground object and multiply the mask with the anomaly score map to 
restrict the predicted anomalous areas only appearing around the object area. After remov-
ing the disturbance from the background (RB), we further boost image-level ROCAUC on 
both screw and toothbrush by 2.1% and 5.9% as shown in Table 9. Although there is a per-
formance drop in transistor where background areas are not easy to separate in some cases, 
we improve the performance on most of the object categories after removing disturbance 
in the background. A more effective way to relieve such unwanted disturbance in the back-
ground areas can be further explored in future research for even better anomaly detection 
performance.

Table 8  Effects of different 
location to add MFR module on 
the final ROCAUC results

stage1 stage2 stage3 Image-level Pixel-level

96.0 97.0
√ 97.4 97.3

√ 98.3 97.8
√ 98.1 97.6

√ √ 98.6 97.8
√ √ 98.4 97.9

√ √ 98.5 98.0
√ √ √ 98.7 98.0
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5  Conclusion

In this paper, we follow the KD-based methods and propose AST-MFR for AD. We 
discuss the shortcomings of the previous KD-based methods for AD and summarize two 
key factors towards a better performance of AD: normal feature alignment and abnor-
mal feature diversity. According to this, we propose a novel S-T framework to com-
plete the task of AD in an unsupervised setting, and our asymmetric structure of stu-
dent and teacher networks brings a better model performance. In addition, we further 
extend the method of MIM and propose the MFR module to mask the features of the 
student network and regenerate them under the guidance of the teacher network. Such 

Fig. 7  Failure examples of our method. For each example: a source image, b binary mask of the foreground 
object, c ground truth of the anomaly area, d prediction before removing background areas, e prediction 
after removing background areas
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a feature regeneration process enhances the learning ability of the student network for 
better knowledge transfer and results in a high similarity of features on the normal sam-
ples. Experimental results show that our method has outperformed the prior arts on both 
anomaly detection and localization.
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