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Context-Aware Interaction Network for RGB-T
Semantic Segmentation

Ying Lv , Zhi Liu , Senior Member, IEEE, and Gongyang Li

Abstract—RGB-T semantic segmentation is a key technique for
autonomous driving scenes understanding. For the existing RGB-T
semantic segmentation methods, however, the effective exploration
of the complementary relationship between different modalities is
not implemented in the information interaction between multiple
levels. To address such an issue, the Context-Aware Interaction
Network (CAINet) is proposed for RGB-T semantic segmentation,
which constructs interaction space to exploit auxiliary tasks and
global context for explicitly guided learning. Specifically, we
propose a Context-Aware Complementary Reasoning (CACR)
module aimed at establishing the complementary relationship
between multimodal features with the long-term context in
both spatial and channel dimensions. Further, considering the
importance of global contextual and detailed information, we
propose the Global Context Modeling (GCM) module and Detail
Aggregation (DA) module, and we introduce specific auxiliary
supervision to explicitly guide the context interaction and refine
the segmentation map. Extensive experiments on two benchmark
datasets of MFNet and PST900 demonstrate that the proposed
CAINet achieves state-of-the-art performance.

Index Terms—Context-aware complementation, detail
aggregation, global context, RGB-T semantic segmentation.

I. INTRODUCTION

S EMANTIC segmentation [1], [2], [3], [4], [5], [6], [7], [8],
[9] is a fundamental computer vision task that assigns a class

to each pixel in an image, and thus forms dense semantic regions
and provides scene understanding for many real-world applica-
tions such as autonomous driving [10], [11], robotic manipula-
tion [12], medical diagnosis [13], and virtual reality [14]. Re-
cently, semantic segmentation performance has been improved
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Fig. 1. Samples of RGB-T semantic segmentation from MFNet [18] dataset,
which contains daytime, bright light and nighttime images from top to bottom.

Fig. 2. Three typical categories of architectures in RGB-T semantic segmen-
tation, including a) direct fusion [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], b) feedback fusion [31], [32], [33], and c) our proposed
context-aware interaction fusion network.

significantly [4], [15], [16], [17]. However, unimodal methods
perform poorly in realistic driving scenarios, e.g., cluttered back-
grounds, distant small targets, and unfavorable lighting condi-
tions (dazzle lamps or even darkness), as shown in Fig. 1. It is dif-
ficult to identify pedestrians and vehicles from RGB images, but
they can be clearly identified from thermal images. RGB-based
semantic segmentation is inadequate, and to overcome this prob-
lem, thermal images are introduced. However, this brings new
challenges, such as the effective fusion of cross-modal informa-
tion for RGB-T semantic segmentation. The mainstream RGB-T
semantic segmentation methods can be divided into two cate-
gories (as shown in Fig. 2), i.e., direct fusion [18], [19], [20],
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[21], [22], [23], [24], [25], [26], [27], [28], [29], [30] and feed-
back fusion [31], [32], [33]. The first category (Fig. 2(a)) con-
sists of two backbones that are used to extract features sep-
arately. Then, specific modules are designed for direct fusion
independent of the backbones. The second category (Fig. 2(b))
differs from the first one in that fusion features independent of
the backbone are fed back to the respective backbone, complet-
ing the interaction between the encoder and the fusion layer at
multiple levels, respectively. Both of the above fusion paradigms
have greatly explored the fusion of features based on RGB and
thermal modalities.

However, both categories have their shortcomings. Most di-
rect fusion models use the same module for feature fusion at
different levels, which neglects the characteristics of different
levels. Meanwhile, level-by-level fusion is not conducive to in-
formation interaction between levels. Although the feedback
fusion models complete the feature interaction, the feedback
of interactive information to the backbone leads to information
bottleneck [34], which makes it impossible to recur shallow fea-
tures to deep levels of the model to form high-level semantic
information in the feature extraction stages. In addition, the ef-
fective exploration of complementary relationship between dif-
ferent modalities is not implemented for information interaction
between multiple levels. Moreover, the supervision is only set
at the end of the above two categories of models, and there is no
explicit guiding supervision in the multi-level feature interac-
tion thus making the representation of multi-level fused features
ambiguous and uncertain.

To mitigate the above shortcomings, we propose a Context-
Aware Interaction Network (CAINet) for RGB-T semantic seg-
mentation, aiming to achieve an effective exploration of the com-
plementary relationship between different modalities for the in-
formation interaction between multiple levels. We design a new
fusion paradigm to implement CAINet by combining the advan-
tages of both direct fusion and feedback fusion paradigms, as
shown in Fig. 2(c). Since multiple low-level features can provide
boundary detail features for refining the segmentation results,
we also fully explore them in our CAINet. In addition, we adopt
different auxiliary supervision in CAINet to improve the feature
representation at multiple levels.

Specifically, we propose the Context-Aware Complementary
Reasoning (CACR) module to exploit complementary relation-
ship between multiple modalities and their long-range depen-
dencies along spatial and channel dimensions. Then the pro-
posed Global Context Modeling (GCM) module provides global
context to guide multi-level feature interactions. The contextual
complementary information and global guidance are obtained
from the CACR and GCM modules at three high-level stages.
In order to explicitly convey the complementary information of
multiple modalities, we assign specific auxiliary supervision to
multi-level features as shown in Fig. 2(c), which has the advan-
tage of explicitly guiding each level of feature representation.
Hence long-range dependencies and multimodal complemen-
tary information are fully utilized with the cooperation of CACR
and GCM. Moreover, the Detail Aggregation (DA) module is
proposed to explore boundary information and binary mask,
which can solve some problems, i.e., binary mask supervision

to alleviate the interference of cluttered background and bound-
ary supervision to further improve performance by perform-
ing boundary detail refinement. Thanks to all this, our model
achieves state-of-the-art performance on MFNet and PST900
datasets.

Our main contributions are summarized as follows:
� We fully explore the complementary relationship be-

tween high-level multimodal features and propose a novel
context-aware interaction fusion paradigm to implement
CAINet, which achieves state-of-the-art performance on
MFNet and PST900 datasets.

� We propose the CACR module for establishing comple-
mentary relationship between multimodal features with
long-term dependence in spatial and channel dimensions,
GCM module to explore global context clues to provide
global guidance for feature interactions, and DA module
to aggregate detailed features to further promote segmen-
tation performance.

� We introduce auxiliary supervision and residual learning
into CAINet. The auxiliary supervision ensures explicit
guidance step by step and the residual learning retains the
high-level global context information.

The rest of this paper is organized as follows. Section II ex-
plains the related work on RGB and RGB-T semantic segmen-
tation. The proposed CAINet is elaborated in Section III. Sec-
tion IV presents the experimental results and analysis of ablation
experiments. Finally, Section V concludes this paper.

II. RELATED WORK

A. RGB Semantic Segmentation

Since the introduction of the fully convolutional network
(FCN) for semantic segmentation, various CNN-based semantic
segmentation models have been proposed and achieved satisfac-
tory performance. However, there are limitations in the receptive
field. Many works attempted to alleviate this weakness. For in-
stance, Chen et al. [35] proposed a deep convolutional network,
which utilizes multiple sampling rates of dilated convolution
in atrous spatial pyramid pooling. Similarly, Zhao et al. [36]
proposed a pyramid scene parsing network that aggregates con-
textual information at different scales.

Sequentially, many semantic segmentation methods inte-
grate attention mechanisms into the convolutional structure.
Wang et al. [37] proposed the non-local network, which lever-
ages weighted sum to aggregate the features of all points to
obtain global features. Hu et al. [38] introduced a novel tech-
nique called SENet, which incorporates global context informa-
tion to adjust channel dependencies and rescale channel weights.
Woo et al. [39] proposed the convolution-based attention mod-
ule, which splits the attention process into two independent
parts, namely, the channel attention and spatial attention mod-
ules. Cao et al. [40] investigated a new global context modeling
framework known as GCNet, which can build long-range de-
pendencies while being computationally efficient. Fu et al. [41]
presented a dual attention network to capture feature dependen-
cies in both the spatial and channel dimensions.
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Following the introduction of visual transformers, subse-
quent advancements in semantic segmentation have led to the
emergence of transformer-based techniques. Zheng et al. [42]
adopted an encoder with transformer structure to tackle se-
mantic segmentation as a sequence-to-sequence prediction task.
Xie et al. [4] introduced a hierarchical structure transformer en-
coder combining both local and global attention mechanisms
to produce powerful representations. Cheng et al. [16] pro-
posed a mask classification paradigm that leverages both in-
stance segmentation and semantic segmentation tasks. Further-
more, Zhang et al. [43] transferred a similar mapping strategy
between a set of learnable class tokens and spatial feature map-
pings to segmentation masks. Lastly, Kim et al. [44] presented a
generalized sample-less learner for arbitrarily dense prediction
tasks called Visual Token Matching (VTM). Overall, these uni-
modal segmentation methods have demonstrated their efficacy
in generating powerful representations for semantic segmenta-
tion. However, in situations with reduced visibility or obstacles
such as fog, rain, snow, or dust caused by adverse weather condi-
tions, as well as in low-light or no-light conditions like nighttime
or inside tunnels, visible light imaging systems may struggle to
effectively detect objects against the background. This is where
the supplementation of infrared technology becomes necessary.

B. RGB-T Semantic Segmentation

Although the RGB semantic segmentation methods show su-
perior performance, they still perform poorly when encoun-
tering scenes with extreme lighting conditions, as depicted in
Fig. 1. So many researchers additionally introduce thermal im-
ages to improve the segmentation performance. Ha et al. [18]
proposed MFNet as a pioneer of RGB-T semantic segmenta-
tion, which uses a two-stream structure for feature extraction
and then fuses these features using concatenation. RTFNet [19]
and FuseSeg [22] adopted a comparable architecture as MFNet,
albeit fusing features through an element-wise summation. Shiv-
akumar et al. [20] proposed a two-stage structure and fused the
output of the first stage with thermal and color images. How-
ever, these methods almost used simple fusion strategies, i.e., the
element-wise summation and concatenation are used to capture
cross-modal features, which may lead to information redun-
dancy by ignoring the differences between cross-modal infor-
mation.

Many studies have attempted to design specialized feature fu-
sion operations. Guo et al. [21] proposed a multi-stage skip con-
nection between the encoder and decoder. Zhang et al. [23] intro-
duced a strategy of bridging-then-fusing to reduce multimodal
differences and achieved multi-scale contextual feature fusion.
Lan et al. [45] introduced a two-stage multimodal multi-stage
network (MMNet) to extract features from different modalities
separately and the second stage performed feature fusion and
refinement. Wang et al. [46] proposed a double fusion embed-
ded learning approach to force each task to adapt to the fea-
ture representation of the other tasks. Deng et al. [25] intro-
duced channel and spatial attention modules in the encoder to
enhance the feature fusion. Zhou et al. [24], [26], [27], [30], [47],
[48] fused cross-modal features in a specially designed module

and binary boundary-assisted supervision for feature refinement.
Yi et al. [49] proposed an attentional feature fusion network of
channel coordinates to obtain channel and coordinate correla-
tions between multimodal features. Xu et al. [50] introduced
graph convolution to fuse multimodal high-level features from a
global and semantic perspective and also uses multitasking su-
pervision. Zhao et al. [51] performed unimodal feature extrac-
tion separately, spatial attention in shallow layer, shared convo-
lutional blocks in the high layer, and channel attention to fuse
them. Frigo et al. [52] explored match correlation and confidence
weights to explicitly estimate feature matches for decoders by
computing feature correlations. And confidence weights are
used for multimodal feature fusion. Wang et al. [53], [54] pro-
posed modality recovery methods that effectively predict the
distribution-consistent space of missing modalities, achieving
consistency in multimodal distributions and semantic disam-
biguation.

Fu et al. [55] presented the attention mechanism to fuse multi-
level features and added the extracted global information to the
decoding stage. Feng et al. [56] introduced a teacher-student
distillation model that used a boundary-assisted teacher model
to learn cross-modal features and a student model to learn only
thermal image features. Cai et al. [57] proposed a two-branch
network enhanced by boundary refinement and guided fore-
ground background features and fused with high-level features
to preserve semantic information. Zhou et al. [29] proposed an
embedded control gate fusion paradigm, and developed an at-
tention residual learning strategy to ensure effective instruction
of high-level features. Li et al. [28] treated multi-level features
differently, i.e., the high-, middle- and low-level semantic fea-
tures were used to localize, activate target regions, and refine
boundary, respectively.

Above mentioned feature fusion method may ignore the in-
teraction of hierarchical features and cannot sufficiently explore
multimodal complementary information. In recent years, some
interaction fusion methods have been proposed. Zhou et al. [58]
proposed a transformer-based framework to handle the correla-
tion and complementation between multimodal, and later return
the fused features to their respective backbone networks. This
method differs from the feature fusion method mentioned above
as shown in Fig. 2(a), which feeds the fused features to their re-
spective backbones. Wu et al. [32] proposed a complementary-
aware cross-modal feature fusion network (CCFFNet) to select
complementary information from multimodal features and fused
them through a channel weighting mechanism. However, feature
fusion in spatial details is not sufficient. Liu et al. [33] proposed
a vision-transformer-based cross-modal feature rectify fusion
network that exploited global max pooling in terms of channel
and spatial interaction, but the pooling layer may lead to loss
of spatially detailed features. The complementary relationship
between the two modalities may not be well-exploited by these
models.

Aiming to effectively explore multimodal complemen-
tary information, we combine the benefits of two fusion
paradigms, i.e., direct fusion and feedback fusion, we propose
a novel fusion paradigm that builds an interaction space for
reasoning about complementary relationship between different
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Fig. 3. The overview of proposed CAINet. Specifically, CAINet consists of six components including RGB and thermal encoders, interaction space reasoning,
global context modeling, three-decoder supervision, detailed feature fusion, and residual learning of multiple auxiliary tasks supervision. The residual learning [29]
(ARLM) module is to assist context-aware complementary reasoning (CACR) and global context modeling (GCM) to implement multimodal feature interaction;
the detail aggregation (DA) module refines the final segmentation map. During inference, we can remove the other supervised branches and retain the final predictive
semantic segmentation map P4, suggesting that the performance enhancement comes with no added inference cost.

modalities at multi-level stages. And we propose CACR, GCM,
and DA for exploring complementary relationship, harvesting
global contextual cue, and refining segmentation results, re-
spectively. Furthermore, auxiliary supervisions assist high-level
contextual information to guide feature interaction in an ex-
plicit manner. Based on the above, we propose the Context-
Aware Interaction Network, i.e., CAINet, for RGB-T semantic
segmentation.

III. PROPOSED METHOD

The main pipeline of our Context-Aware Interaction Network
(CAINet) can be divided into five stages: RGB and thermal
stream encoder-decoder, context-aware complementary reason-
ing (Section III-B), global context modeling (Section III-C), de-
tail aggregation (Section III-D) and residual learning with auxil-
iary supervision (Section III-E). The overall framework is shown
in Fig. 3.

A. Architecture Overview

We employ two MobileNet-V2 [59] networks pretrained on
ImageNet [60] as the backbone. As suggested in ECGFNet [29],
we remove the last down-sampling operations, hence enlarging
the resolution of the feature map, so the output stride becomes 16
instead of 32. Let the multistage RGB and thermal features ob-
tained from the i-th (i ∈ {1, 2, 3, 4, 5}) block of MobileNet-V2
be FR

i and FT
i , respectively. They are followed by the decoder

layers and independently supervised to obtain the coarse seg-
mentation maps denoted as Srgb and Sthermal, respectively. To
establish a multimodal complementary relationship for RGB and
thermal features with long-term dependencies in both spatial and
channel dimensions, we use the CACR module at three levels
(i.e.,FR

3−5 andFT
3−5). Additionally, we introduce the GCM mod-

ule to explore global context clues and provide global guidance
for feature interactions. Following the GCM module is a de-
coder to generate a global coarse segmentation map Sglobal. The
DA module aggregates detailed features and further improves
segmentation performance. We employ the Attention Residual
Learning Module (ARLM) [29] to establish a upsample stream
with auxiliary supervision and target supervision running in par-
allel. This upsample stream consists of four stages, where the
auxiliary supervision is carried out sequentially for attention, bi-
nary, and boundary supervision. In contrast, the target supervi-
sion exclusively focuses on semantic segmentation supervision.
Ultimately, through residual learning, we obtain progressively
refined semantic segmentation maps. The predicted segmenta-
tion map P4 from the fourth stage serves as the final segmenta-
tion result.

B. Context-Aware Complementary Reasoning

There exists a complementary relationship between multi-
modal semantic regions, and how to effectively tap this com-
plementary relationship is crucial for multimodal information
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Fig. 4. Illustration of a) the context-aware complementary reasoning (CACR) module, b) the global context modeling (GCM) module, where δ, γ, and origin
represent feature maps from different convolution layers and c) the detail aggregation (DA) module.

fusion [50]. We propose the CACR module to construct an in-
teraction space, which reasons about the complementary rela-
tionship on a long range of the interaction space, including the
spatial and channel dimensions. Specifically, the CACR mod-
ule views the inputs as a set of features (i.e., pixels) with the
corresponding feature dimensions (e.g., spatial structure, color,
surface temperature, and local and global texture), which enable
the exchange of long-range contexts, enhancing multimodal fea-
tures at the local level and global level simultaneously. We ap-
ply the CACR module in three high-level stages of our model,
i.e., {FR

3−5, F
T
3−5}, and their outputs are CR3, CR4, and CR5,

respectively, as shown in Fig. 3.
The detailed structure of the CACR module is shown in

Fig. 4(a). The inputs to the CACR module are the high-level
features FR/T

3 , FR/T
4 , and F

R/T
5 . Given an input feature X ∈

RC×H×W converted to a collection of featuresP ∈ RC×D, where
D = H×W is the number of features, and each channel con-
tain information. The image of C×H×W can only provide
two-dimensional information of objects and cannot be used for
geometry analysis directly. In contrast, the features C×D rep-
resent the spatial and attribute information of the feature [61],
so it can be easily used for geometry analysis and processing.
For context interaction space transformation, we let the model
learn a transfer function f(·):

T (X) = f(X;ω) = Xω, (1)

where ω is the learnable convolution layer, two different dimen-
sional features are then obtained, which are T 1 ∈ RN×H×W and

T 2 ∈ RM×H×W . We set N = C and M = C/2. We aim to build
a similarity correlation between the regions of two features and
further complement multimodal features in the interaction space
based on regional correlations:

I =
[Flatten

(
T 2

)
]T ∗ Flatten (T 1

)
N ×M

, (2)

where Flatten(·) denotes that map these features to feature set
space and ∗ denotes the matrix multiplication. We get the sim-
ilarity correlation features I ∈ RM×N of the interaction space,
which contains the multimodal feature description of each pixel
and can capture the relationship between any regions, and then
reason about the complete multimodal feature map. In practice,
‘Size Normal’ as shown in Fig. 4(a) is to simply divide the fea-
ture map by its size N ×M to control the numerical amplitude
of the feature map.

In particular, the similarity correlation I is then adaptively
assigned to each feature of the region in the interaction space.
Fig. 4(a) shows the implementation of this process and the in-
ference along two different dimensions through two fully con-
nected layers. By doing so, the features can communicate with
each other based on complementary relationship between mul-
timodal features, which allows the exchange of long-range con-
texts. Therefore, the complementary reasoning CR is given as
follows:

CR′ = σ((FC2(σ(FC1(I) + I)))), (3)

CR = Expand(X + Flatten(T 1)T ∗ CR′), (4)
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where σ denotes the ReLU activation function, FC1 represents
the fully connected layer along the N dimension, and FC2 de-
notes the M dimension. Expand(·) represents to extend these
features to restore the H and W dimensions. Here, we fol-
low similar correlations to reason about complementarity and
apply two fully connected layers to assign feature dimensions
(from the interaction space dimension to the original dimension).
After this, we obtain three high-level complementary features
CR3, CR4 and CR5. Specifically, CACR module is different
from convolutional blocks and vision transformers [62], where
the former ones perform a sliding window on the image to extract
features from local regions, and the latter ones treat an image
as a sequence of patches and extract features via self-attention
mechanism [63] in a global range, as well as different from the
GCN [64] module with edge and adjacency matrix. The CACR
module establishes the similarity correlation between the mul-
timodal feature regions and is a novel approach that constructs
an interaction space to reason about the complementary rela-
tionship, allowing it to capture both local and global contextual
information in a flexible and adaptive way.

C. Global Context Modeling

Many efforts try to overcome the limitation of local convo-
lution operators by introducing a global context, such as global
pooling of SENet [38], ASPP [65], and self-attention mecha-
nism [63]. Although we also incorporate a global paradigm,
in the proposed approach, we go one step further and perform
higher-level global reasoning on the complementary relation-
ship between multi-level features in the GCM module as shown
in Fig. 4(b). The GCM module yields the global context mod-
eling feature G, which will be used as a global guide for joint
auxiliary supervision with the ARLM.

Auxiliary and target tasks require global contextual informa-
tion to provide object location cues, as stated in GLCNet [66],
global information is essential to enhance semantic prediction.
The key is to improve the semantic representation of each chan-
nel using global context modeling. To account for this, As shown
in Fig. 4(b), we first aggregate three high-level complementary
features by channel concatenation to produce semantic guidance
CRc. Then, we use RM to represent the relationship modeling,
which can be obtained as follows:

A = [Conv2D(CRc)]T ∗ Conv2D(CRc), (5)

RM = Conv1D (β(A)) +
exp(A)∑c

j

∑c
i exp(A)

, (6)

where Conv2D denotes 2D convolution layer with a 1× 1 ker-
nel and stride 1, β represents the Softmax function along with
channel dimension, and Conv1D denotes the 1D convolution
with a 1× 1 kernel and stride 1. Further, global context features
G can be obtained as follows:

G = Reshape [Conv 2D3(CRc)]T ∗ Conv 1D2(RM), (7)

where Reshape represents feature dimension reshaping,
Conv2D3 denotes a 2D convolution with a 1× 1 kernel and
stride 1, Conv1D2 denotes the 1D convolution with a 1× 1
kernel and stride 1. And G as the global guidance, combines

with residual learning of ARLM to associate auxiliary and tar-
get supervision. In addition, G passes through the decoder to get
a global coarse segmentation map after the interaction, which
may lose detail information, so next we will construct the DA
module for feature map refinement.

D. Detail Aggregation Module

The features play different roles at different levels in the
convolutional neural network (CNN). The low-level ones
(e.g.,FR/T

1 andFR/T
2 ) contain boundary information and abun-

dant texture. Inspired by this observation, we propose a sim-
ple yet effective DA fusion scheme to well utilize multimodal
features in uniting the ARLM module for auxiliary bound-
ary detail supervision, further boosting the performance of our
CAINet.

As shown in Fig. 4(c), we combine the RGB and thermal fea-
tures FR

i and FT
i (i = 1, 2) by concatenation along the chan-

nel direction in the AD module. In order to maintain the per-
formance while greatly reducing computational costs, we use
depthwise separable convolution to get the combined features
F c
i . For the thermal features, we utilize a global max pooling

layer and convolution with 7× 7 kernel size to improve the ex-
traction of spatial information, and here the extracted thermal
features are denoted as T s

i . Finally, the detail aggregation fea-
tures Di are obtained by a channel attention layer calculated as
follows:

Di = CA
(
F c
i (σ (F c

i + T s
i )) + FT

i

)
, (8)

where CA denotes the channel attention layer. After we ob-
tain the detail aggregation features Di, and through subsequent
ARLM steps, we obtained the boundary and binary map, refining
the final semantic segmentation result.

E. Residual Learning With Auxiliary and Target Tasks

In order to explicitly convey the correlation between multi-
ple modalities and target regions, we adopt the idea of residual
learning to achieve cross-modal feature interaction in a collab-
orative manner with the CACR and GCM modules. Residual
learning refers to the use of global context features G to grad-
ually guide the interactions of multi-level complementary fea-
tures, and is performed step-by-step with multi-level interac-
tion features and global information. As shown at the bottom
of Fig. 3, the ARLM has three inputs, e.g., the global context
features G, and the complementary features CR5 and CR4 for
ARLM1, after which the predicted segmentation map P1 and
the predicted attention map Att1 are obtained. After the same
step-by-step calculation as above, predicted results can be ob-
tained from residual learning, which are P2, Att2, P3, the pre-
dicted binary map binary, P4, and the predicted boundary map
boundary.

In particular, in auxiliary supervision, the purpose of us-
ing attention maps for supervision is to explicitly reason about
complementary relationship between multimodal features. The
ground truth of attention map Q is obtained by using corrosion
expansion and Gaussian fuzzy operation on the ground truth of
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binary map.1 And we take the sum of mean square error and
the modified linear correlation coefficient metric [66] as the loss
function:

LAtti =
1

N

n∑
i=1

‖Atti −Q‖2 − cov(Atti,Q)√
var(Atti)

√
var(Q)

, (9)

where cov and var represent covariance and variance, respec-
tively.

For P1 and P2, we utilize Lovász-Softmax [67] to respec-
tively calculate their losses as Lseg1 and Lseg2, which has the
perceptual quality and proportional invariance, and gives small
objects proper correlation and false negative counts compared
to the cross-entropy loss. The two semantic segmentation losses
are Lseg1 and Lseg2 as follows:

Lseg1 =
1

|C|
∑
c∈C

ΔJc
(m(c)),

m(c) =

{
1− P1(c) if c = Y (c)

P1(c) otherwise ,
(10)

where Y denotes the semantic segmentation label, |C| rep-
resents the class number, ΔJc defines the Lovász extension
of the Jaccard index. Lseg2 is similar to Lseg1. For P3 and
P4, we use the weighted cross-entropy function to calculate
their losses, denoted as Lseg3 and Lseg4 with the following
function:

Lseg3 = − 1

N

N∑
i=1

ω
(
Y i log(P i

3)
)
, (11)

Lseg4 is similar to Lseg3. For these four semantic segmen-
tation losses, we add them together to obtain the target loss
Ltarget. For binary and boundary,2 we use the weighted
binary cross-entropy loss function to calculate the binary
loss and boundary loss, donated as Lbinary and Lboundary ,
respectively.

Lbinary = − 1

N

N∑
i=1

ω(Y i
bi log(binary

i)

+ (1− Y i
bi) log(1− binaryi)), (12)

where N denotes the total number of input pixels, ω denotes
the class weights computed following [68], and Ybi denotes the
ground truth of binary map. Lboundary is similar to Lbinary .
Furthermore, for the coarse segmentation maps Srgb, Sthermal,
and Sglobal produced by the three decoders of the backbone
network, we adopt the ordinary cross-entropy loss, and define
the sum of these three losses as Ldecoder. To sum up, the fi-
nal loss for auxiliary and target supervision is calculated as
follows:

Ltotal = Ltarget + LAtt1 + LAtt2 + Lbinary

+ Lboundary + Ldecoder. (13)

1The ground truth of binary map is obtained by setting the non-zero elements
of the label values in the semantic segmentation map to 1.

2The ground truth of boundary map is obtained by performing Canny edge
detection on the ground truth of binary map.

IV. EXPERIMENTS

A. Experimental Protocol

1) Datasets: We train and evaluate the proposed CAINet on
two RGB-T semantic segmentation datasets: MFNet [18] and
PST900 [20]. The MFNet dataset contains 1569 RGB-T image
pairs (820 taken during the day and 749 at night) and has 9 cate-
gories, including background, car, person, bike, curve, car stop,
guardrail, color cone, and bump. The resolution size of the image
pairs is 480× 640 pixels. We divide the dataset into three parts:
training set, validation set, and test set, using the same splitting
scheme as proposed in MFNet. The PST900 dataset contains
894 aligned RGB and thermal image pairs taken by the Stereo-
labs ZED Mini stereo camera and the FLIR Boson 320 camera,
respectively. This dataset contains five categories: background,
fire extinguisher, backpack, hand drill, and survivor. The resolu-
tion of the RGB and thermal images is 1280× 720. This dataset
is divided into two parts, the training set and the test set, with
597 pairs constituting the training and 288 pairs constituting the
test set.

2) Evaluation Metrics: We used two metrics to quantita-
tively evaluate the performance of semantic segmentation, which
are the mean accuracy (mAcc) and the mean intersection over
union (mIoU). The mean accuracy is calculated as the ratio of
the number of correct pixels for each class to the number of all
predicted pixels for that class, and then the average value is cal-
culated by summation. The mean intersection over union is the
average result of summing the intersection of the true values of
the predictions for each class and the ratio of the sums. These
measures are defined as follows:

mAcc =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

, (14)

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

, (15)

where k is the number of classes (including unlabeled) and class
id = 0 indicates “unlabeled”,Pij is the number of pixels belong-
ing to class i and is predicted as class j.

3) Implementation Details: We train our model by loading
a pre-trained MobileNet-V2 [59] model on the ImageNet [60]
dataset. The RGB branch and the thermal image branch are first
trained separately. Then their model parameters are loaded and
the GCM decoder branch is trained. Finally, the trained basic
model parameters are loaded and the whole model is trained
together with the residual learning branch. The batch size of
each iteration is 8 images. The learning rate is initialized as
5× 10−4. The network parameters are learned by back-
propagating the model using the Adam optimization algorithm.
We use an early termination algorithm to prevent network over-
fitting. The experiments are performed on the publicly available
Pytorch 1.12.0 [69] framework, using a workstation with a TI-
TAN RTX GPU (24 GB RAM).

B. Comparison With State-of-the-art Methods

1) Evaluation on MFNet Dataset: We compare our CAINet
with nineteen state-of-the-art methods, most of which are
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TABLE I
QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF MFNET DATASET

TABLE II
COMPARISON OF THE NUMBER OF PARAMETERS AND EXECUTION EFFICIENCY

OF EACH METHOD

recently proposed RGB-T semantic segmentation methods, in-
cluding MFNet [18], two versions of RTFNet [19], PSTNet [20],
MLFNet [21], FuseSeg [22], ABMDRNet [23], MMNet [45],
EGFNet [24], FEANet [25], MTANet [26], MFFENet [30], GM-
Net [27], CCFFNet [32], CCAFFMNet [49], DSGBINet [50],
CMX-SegF-B2 [33], FDCNet [51], and ECGFNet [29], and
LASNet [28]. The quantitative results on MFNet dataset are
shown in Table I, including eight categories and overall

average performance. Specifically, our proposed CAINet
achieves the highest performance with 58.6% in mIoU, outper-
forming the second-best methods by 0.4% (i.e., CCAFFMNet
and CMX-SegF-B2 with 58.2% in mIoU). Among all categories,
our method performs very well in the bike and bump, outper-
forming the second-best method by 2.9% in mAcc and 1.2% in
mIoU in the bike, and 7.7% in mAcc and in 1.3% mIoU in the
bump, respectively.

Of course, our model also has a slight limitation in that for
small and obscured objects, our method will segment the con-
tiguous morphology of the target, but compared to other meth-
ods, most do not miss detection, as shown in Fig. 5. Based on the
visualizations, it can be inferred that the model proposed in this
study outperforms the other methods, despite the possibility of
some roadblocks being undetected. Overall, the CAINet model
demonstrated favorable results in scenarios of high background
lighting, as thermal imaging provides a reliable representation of
heat that remains consistent across diverse lighting conditions.

2) Evaluation on the PST900 Dataset: We also compare the
proposed CAINet on the PST900 dataset with ten state-of-
the-art methods. They are all RGB-T semantic segmentation
methods, including MFNet [18], PSTNet [20], MFFENet [30],
EGFNet [24], MTANet [26], GMNet [27], CCFFNet [32], DS-
GBINet [50], FDCNet [51], and LASNet [28]. The quantita-
tive performance of our proposed method and the compared

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on April 12,2024 at 04:02:19 UTC from IEEE Xplore.  Restrictions apply. 



6356 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 5. Visual comparisons of the proposed method and seven state-of-the-art methods in typical daytime and nighttime images of MFNet. The proposed CAINet
provides suitable results under a variety of lighting conditions.

methods on the PST900 dataset is reported in Table III. Our
method demonstrates competitive performance on the PST900
dataset, securing six first-place and two second-place rankings
across all 12 metrics. Of particular significance, our method out-
performs the second-place LASNet by 0.34% in mIoU, ranking
first in this metric. Additionally, our method achieves first place
in mAcc, surpassing EGFNet by 0.25%. It is worth noting that
our method exhibits significant performance improvements in
the ‘Backpack’ and ‘Survivor’ categories. Our analysis under-
scores the effectiveness of CAINet on the PST900 dataset and
its potential for generalization to different datasets. Furthermore,
compared to previous methods, our approach provides accurate
and reliable segmentation results, as visualized in Fig. 6.

3) Computational Complexity: We present a comparison of
model parameters and floating-point operations (FLOPs) in
Table II. Compared to other models, our model achieves
the highest mIoU and comparable mAcc while utilizing only
12.16 M parameters and 123.62 G FLOPs, showcasing the high-
est computational efficiency.

C. Ablation Studies

To explore the effectiveness of our proposed modules on
RGB-T semantic segmentation, we perform ablation studies
on the MFNet dataset using the same hyperparameters as in
Section IV-A. Specifically, we evaluate the effectiveness of the
proposed four modules of ARLM, DA, CACR and GCM with

individual and joint contributions, as well as multiple auxiliary
supervision and target supervision.

1) The Individual and Joint Contributions of Four Modules:
We delete and replace the above mentioned modules, and pro-
vide five variants to evaluate the individual contributions of
the four modules. 1) Baseline, 2) Baseline+ARLM, 3) Base-
line+ARLM+DA, 4) Baseline+ARLM+CACR, and 5) Base-
line+ARLM+GCM. For “Baseline”, we retain three supervised
decoders where RGB and thermal image features were fused at
the end using the ASPP module [65]. Among them, ARLM is
special in the framework, and the other modules must be com-
bined with ARLM to function, so ARLM cannot be removed.
For convenience, the deleted modules are replaced with ASPP
modules. Quantitative results are shown in Table IV, where “

√
”

indicates that the corresponding module is retained, and no mark
represents that the corresponding module is removed. “Baseline”
only achieves 51.9% in mIoU, which is 6.7% lower than our
vanilla CAINet, indicating that these three modules can also im-
prove the accuracy of segmentation when acting together. With
the help of DA, CACR or GCM in conjunction with ARLM, the
No.2, No.3, No.4 and No.5 variants improve the performance
considerably compared to “Baseline”.

In addition, we provide three variants to evaluate the joint
contribution of the three modules, as shown in Table IV: 6) Base-
line+ARLM+CACR+GCM, 7) Baseline+ARLM+DA+GCM,
and 8) Baseline+ARLM+DA+CACR. With the cooperation of
the modules, the performance of the above three variants is fur-
ther improved compared to the single module. We find that with
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TABLE III
QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF PST900 DATASET

Fig. 6. Qualitative comparison for semantic segmentation of RGB-T images on PST900 [20] dataset.

the fusion of the CACR and GCM modules, the results are higher
than the results of the other two joint modules, which confirms
the boost of the RGB-T semantic segmentation performance
by explicit auxiliary supervision with attention maps. The per-
fect cooperation of the three modules results in an excellent full
CAINet, reaching 58.6%.

2) The Effectiveness of Auxiliary Supervision and Target Su-
pervision: The multi-task supervision model is widely used in
industry because it can improve the model performance and ac-
celerate the convergence of model training without increasing

the reasoning time and computational complexity of the model.
To evaluate the effectiveness of the ARLM module in conjunc-
tion with DA, CACR, and GCM for explicit auxiliary supervi-
sion and target supervision, we provide eight combinations of
supervision in Table V, including 1) three supervisions of the
decoder at the end of the model, 2) four target supervisions of
residual learning branch for four semantic segmentation loss
Lseg , 3) retaining supervision of two attention maps, 4) keeping
supervision of only the binary map, 5) retaining supervision of
only the boundary map, 6) joint supervision of the binary and
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TABLE IV
QUANTITATIVE RESULTS (%) OF ASSESSING THE INDIVIDUAL AND JOINT

CONTRIBUTIONS OF THE FOUR MODULES IN CAINET ON MFNET [18]
DATASET

TABLE V
QUANTITATIVE RESULTS (%) OF ASSESSING THE INDIVIDUAL AND JOINT

CONTRIBUTIONS OF THE FIVE KINDS OF SUPERVISION IN CAINET ON

MFNET [18] DATASET

the boundary map, 7) joint supervision of the attention and the
boundary map, and 8) joint supervision of the attention map and
the binary map. We observe that discarding one or all of the su-
pervision is detrimental to the final segmentation performance.
With the effective and explicit guidance of multi-auxiliary su-
pervision, the role of each functional module can be fully ex-
ploited. The GCM interacts as a global context-guided feature
of the CACR in an explicit paradigm and the DA can enhance
the representation of target edges and contour surfaces, which
helps to refine the CAINet final segmentation results. The joint
supervision achieves our CAINet final segmentation results in
up to 58.6% outperforming other results.

D. Generalization to RGB-D Data

To assess the generalization ability of CAINet, we conduct
training and testing using the NYU-Depth V2 dataset [76]. In
addition, we compare our results with those of other multimodal
semantic segmentation methods, taking depth images instead of
thermal images as input. The comparative results are presented in

TABLE VI
QUANTITATIVE COMPARISON RESULT(%) ON THE TEST SET OF THE

NYU-DEPTH V2 DATASET

Fig. 7. Segmentation results for RGB-D images. The proposed CAINet deliv-
ers superior segmentation across various scenes compared to the other methods
on the test set of the NYU-Depth V2 dataset. (a) RGB image, (b) Depth image,
(c) GT, (d) RDFNet [74], (e) SA-Gate [75], (f) CAINet.

Table VI. CAINet demonstrates superior performance, indicat-
ing its applicability to RGB-D data. Many RGB-D segmentation
methods struggle with issues stemming from the limitations of
depth image capture devices, such as sensitivity to lighting con-
ditions, which often results in suboptimal segmentation. The
proposed CAINet, with its CACR and GCM modules, effec-
tively addresses these challenges. Some segmentation results
are shown in Fig. 7 for a visual comparison.

V. CONCLUSION

In this paper, we review existing state-of-the-art multimodal
fusion methods for RGB-T semantic segmentation, including
feature fusion and feature interaction paradigms. By consider-
ing the advantages of both, we propose a new fusion paradigm,
the context-aware interaction network (CAINet), in which the
interaction space is constructed to exploit auxiliary tasks and
global contexts for explicitly guided learning. Compared to pre-
vious work, it is more effective in tapping the complementary
relationship between multimodal regions in terms of long-term
dependencies in spatial and channel dimensions. Moreover, the
CACR module views the inputs as a set of features and per-
forms long-term dependencies in the interaction space. This
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mitigates cross-modal divergence, greatly improving the se-
mantic segmentation performance. Furthermore, with our pro-
posed GCM and DA modules, global context information and
boundary details are well-explored. Extensive experiments and
analysis demonstrate our method outperforms state-of-the-art
methods on MFNet and PST900 datasets. Ablation experimental
results verify the efficacy of our method. While we achieve better
results with CAINet, there is room for improvement in terms of
the number of parameters and computational complexity. Fur-
thermore, if we intend to deploy CAINet on mobile devices,
a more lightweight model is required. Therefore, in our future
work, we will focus on investigating lightweight algorithms to
better adapt to embedded platforms.
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