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Abstract— Schizophrenia (SZ) is a common and disabling
mental illness, and most patients encounter cognitive deficits.
The eye-tracking technology has been increasingly used to char-
acterize cognitive deficits for its reasonable time and economic
costs. However, there is no large-scale and publicly available eye
movement dataset and benchmark for SZ recognition. To address
these issues, we release a large-scale Eye Movement dataset
for SZ recognition (EMS), which consists of eye movement
data from 104 schizophrenics and 104 healthy controls (HCs)
based on the free-viewing paradigm with 100 stimuli. We also
conduct the first comprehensive benchmark, which has been
absent for a long time in this field, to compare the related
13 psychosis recognition methods using six metrics. Besides,
we propose a novel mean-shift-based network (MSNet) for eye
movement-based SZ recognition, which elaborately combines the
mean shift algorithm with convolution to extract the cluster
center as the subject feature. In MSNet, first, a stimulus feature
branch (SFB) is adopted to enhance each stimulus feature with
similar information from all stimulus features, and then, the
cluster center branch (CCB) is utilized to generate the cluster
center as subject feature and update it by the mean shift vector.
The performance of our MSNet is superior to prior contenders,
thus, it can act as a powerful baseline to advance subsequent
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study. To pave the road in this research field, the EMS dataset, the
benchmark results, and the code of MSNet are publicly available
at https://github.com/YingjieSong1/EMS.
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I. INTRODUCTION

SCHIZOPHRENIA (SZ) is a dominating reason for dis-
ability [1] and is featured by deficits in multidomain

functioning. The pervasive symptoms of SZ are cognitive
deficits, flat affect, and delusions so as to impair the patients’
social functions, where cognitive deficits are closer to the core
cause [2], [3]. SZ not only torments the patients, but also
brings burdens to their families and the society. Early detection
and timely intervention can greatly enhance treatment effects
and decrease associated costs [4]. The current diagnosis of SZ
relies primarily on symptomatology assessments conducted by
experienced clinicians [5], [6]. This process is time-consuming
and places demands on medical resources, highlighting the
need for the development of novel tools to assist in diagnosis.

Recently, there has been an increasing interest in applying
eye-tracking technology to computer-aided diagnosis [7], [8],
[9]. Abnormalities in eye movement have been identified as
an “endophenotype” of SZ [10], which is also described as “a
window into the psychotic mind” [11] and is an appropriate
tool for evaluating cognition. Compared with healthy control
(HC) group, schizophrenics exhibit scanning behavior with a
restricted view pattern [12]. Contextual cues are crucial for
social cognition. In association with the limited scanning,
inefficient integration of contextual information may affect
the ability of schizophrenics to assess facial mental states
in real life [13]. In contrast to other automatic diagnostic
tools, such as magnetic resonance imaging [14], [15], [16],
[17], [18], electroencephalogram [19], gene [20], [21], and
behavior analysis [22], [23], eye-tracking technology is better,
since it takes less time, costs less money, and causes minimal
discomfort to patients in clinical applications [8], [10].

Among various paradigms based on eye movement, the
free-viewing paradigm is regarded as the most effective
one [24], which requires participants to freely view the dis-
played images (also called stimuli), as shown in Fig. 1. Its
simple task rule makes it easy for all age groups to finish.
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Fig. 1. Fixation density maps of 12 subjects. The first row corresponds to
the subjects in SZ group, and the second row corresponds to the subjects in
HC group.

The fixation density map in Fig. 1 is computed by convolving
the recorded fixations of one subject with a Gaussian kernel
when freely viewing a stimulus. Besides, as shown in Fig. 1,
it can be observed that the within-group variability of visual
attention is significant for both groups (i.e., SZ and HC).
Due to the heterogeneity within each group, subject-level
diagnosis based on multiple stimuli is more reliable than
only one stimulus as input. However, there has been no
large-scale and publicly available eye movement dataset for
subject-level SZ recognition. The existing methods mainly use
their private datasets, as shown in Table I. Despite the effort
of Huang et al. [25] to collect some available eye movement
data, it is hard to adequately assess the generalizability of
methods with such a small number of subjects. Furthermore,
there has been no relevant benchmark so far, which hinders
the development of subsequent studies.

Viewing multiple stimuli provides more information for
accurate recognition, while how to integrate them effectively
becomes a new question to be solved. The existing traditional
and deep-learning-based methods mainly fused the features or
scores of stimuli together through simple average or concate-
nation operation. There is no method to further explore how to
effectively combine multiple stimuli, so as to better represent
the corresponding subject. We believe that such a method is
potential to push this field forward.

To address the abovementioned issues, we contribute a
large-scale and publicly available eye movement dataset for
SZ recognition (EMS) and establish a benchmark of the most
related works. In terms of the issue of effective integration of
multiple stimuli, we propose a novel mean-shift-based method
for SZ recognition, namely, MSNet, which focuses on finding
the cluster center from the feature subspace of stimuli to
represent the corresponding subject. Our key idea is derived
from the classical clustering algorithm, i.e., the mean shift
algorithm [26], [27]. We aim to find the embedding lying in
the densest feature subspace to represent the visual pattern
of an individual, which could maximize the discriminative
information from stimulus features.

Specifically, our MSNet consists of two branches, one
for stimulus features and the other for cluster center. The
stimulus feature branch (SFB) is responsible for enhancing the
representative capacity of each stimulus feature with the help
of the self-attention mechanism [28], while the cluster center
branch (CCB) is responsible for generating the cluster center
and guiding the cluster center to the denser feature subspace
by the mean shift vector. In this way, our MSNet achieves
the best performance in comparison with 12 state-of-the-art
methods (SOTAs).

Our main contributions are summarized as follows.

TABLE I
FREE-VIEWING PARADIGM-RELATED DATASETS

1) We establish a large-scale and publicly available
Eye Movement dataset for schizophrenia recognition
(EMS), which consists of the eye movement data
from 104 schizophrenics and 104 HCs based on the
free-viewing paradigm with 100 stimuli.

2) We conduct the first comprehensive evaluation of the
related 13 methods using six metrics in the eye
movement-based SZ recognition field, which could act
as a benchmark to promote the development of this field.

3) We propose a novel MSNet for eye movement-based
SZ recognition to explore effectively integrating multiple
stimuli. In our MSNet, we design the SFB to enhance the
stimulus feature based on the self-attention mechanism
and the CCB to imitate the mean shift algorithm with
convolution. Extensive comparison proves that the pro-
posed MSNet achieves superior performance compared
with 12 SOTAs.

II. RELATED WORKS

A. Eye Movement Paradigms and Datasets for SZ

As early as over a 100 years ago, Diefendorf and Dodge [31]
had observed the abnormal eye movement data of persons with
mental disorders. Holzman [32] further confirmed the abnor-
malities were also present in schizophrenics. Since then, kinds
of paradigms were proposed to characterize the eye movement
abnormalities of schizophrenics. For example, given the oculo-
motor deficits of schizophrenics, the smooth pursuit paradigm
was designed to capture the eye-tracking dysfunction [29],
[33]. Schizophrenics could be disturbed by distractors more
easily, resulting in impairment in focusing on a stationary
target. As a result, the fixation stability paradigm became a
candidate marker for SZ [10], [24]. Besides, many studies
found the eye movement data of schizophrenics tended to be
a limited scanning pattern, which could be reflected in the
free-viewing paradigm [12], [34], [35].

Among the above paradigms, the free-viewing paradigm
was regarded as the best one whose effect remained stable
regardless of time, sex, medication, or cigarette smoking [24].
Jiang and Zhao [36] supplemented that the free-viewing
paradigm was generalizable and easily applicable to most
people. Therefore, we focus on the free-viewing paradigm and
summarize the related datasets in Table I. For SZ recognition
based on the free-viewing paradigm, the clinical eye movement
data are scarce. Though these studies [10], [24], [29], [30]
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focused on SZ diagnosis, they privatized their datasets, so that
subsequent works could not follow them. Huang et al. [25]
contributed a publicly available dataset, while the scale of
dataset was small, and the benchmark had not been built.
Therefore, to better foster the related research, we establish
a large-scale and publicly available EMS dataset and conduct
a full evaluation/benchmark of eye movement-based SZ recog-
nition on the EMS dataset.

B. Eye Movement-Based Psychosis Recognition

Besides SZ, individuals with autism spectrum disorder
(ASD) [37] and depression [38] also show atypical visual
attention to various visual stimuli. To review the related works
comprehensively, we take ASD and depression recognition
into consideration as well. From the perspective of stimulus
number, the existing methods can be divided into two cate-
gories: stimulus-level methods and subject-level methods.

Duan et al. [39] released the Saliency4ASD dataset in 2019,
which was the first open dataset for eye movement-based ASD
recognition based on the free-viewing paradigm. It was a pity
that the annotation of subject was absent. As a result, only
the stimulus-level methods, which rely on the features from a
single stimulus, could be carried out. Rooted in this dataset,
a set of stimulus-level methods sprang up. For example,
Wu et al. [40] designed two branches of ResNet [41]. One was
to capture the semantics of the stimulus, and the other was for
eye movement features. Tao and Shyu [42] further associated
convolutional neural networks with long short-term memory
(LSTM) networks to mine the time information of scanpath.
Wei et al. [43] proposed the field-of-view maps that effectively
extract spatiotemporal features of scanpath. The stimulus-level
methods could reflect the difference between patients and HCs,
but these methods could not handle the heterogeneity within
group relying on only one stimulus as input [44], resulting in
limited performance.

The subject-level methods are based on a set of stimuli. Due
to the lack of publicly available datasets, the relevant studies
are mainly based on their private datasets. These works [10],
[24], [25], [45] calculated statistics of eye movement data
for each stimulus, which were then concatenated together as
subject-level features. Škunda et al. [46] concatenated the fixa-
tion density maps of stimuli as input and used a convolutional
neural network for classification. Xie et al. [47] came up
with a two-stream deep learning network to obtain semantic
features and eye movement patterns, and the features of each
stimulus were concatenated subsequently. Jiang and Zhao [36]
utilized VGGNet [48] to learn the different eye movement
patterns between the patient group and HC group based on
one stimulus. Then, they selected a subset of discriminative
stimuli using the Fisher score and simply averaged the features
of stimuli to represent corresponding subjects. Xia et al. [8]
computed the score of each stimulus and averaged these scores
to get the subject-level scores afterward.

In comparison with the stimulus-level methods, the
subject-level methods need to fuse the information from
multiple stimuli, which is relatively unexplored. The fusion
through average or concatenation assumes that each stimulus

TABLE II
EXAMPLE OF THE EMS DATASET, WHICH IS PART OF THE EYE

MOVEMENT DATA OF ONE STIMULUS. FIX.
IS SHORT FOR FIXATIONS

contributes equally to psychosis recognition by default, but this
is not the case. How to integrate the information of multiple
stimuli effectively is a problem to be solved.

C. Clustering for Deep Learning

Clustering algorithms can progressively acquire the rep-
resentation of a category, i.e., cluster center. The classical
clustering algorithms have achieved remarkable success, such
as K -means clustering [49], mean shift algorithm [26], [27],
and so on. Recently, researchers have tried to combine deep
learning with classical clustering algorithms [50], [51], [52].
For example, Zheng et al. [53] adopted locality sensitive
hashing to cluster the query features adaptively so as to reduce
the computation cost. Inspired by the traditional clustering
algorithm [49], Yu et al. [54] regarded the object queries as
cluster centers and updated the centers by pooling pixel fea-
tures. Benefiting from K -means clustering [49], Yu et al. [55]
redesigned the cross attention by replacing the softmax oper-
ation with the argmax operation to facilitate the performance.
Zeng et al. [56] used the K -nearest-neighbor-based density
peaks clustering algorithm [57] to get the cluster centers and
then assigned the token features to the corresponding cluster
centers.

As far as eye movement-based SZ recognition is concerned,
we try to represent the viewing pattern of the subjects, that is,
find the cluster center of multiple stimulus features. Motivated
by the mean shift algorithm [26], [27], we use the mean shift
vector to guide our model to find the cluster center lying in
the denser feature subspace, which is the core of the CCB.

III. DATASET

To push the progress of eye movement-based SZ recognition
research, we collected a large-scale dataset named EMS.
Table II provides an example for a quick overview of the EMS
dataset. The details of data acquisition are as follows.

A. Subjects

A total of 104 schizophrenics from Shanghai Mental Health
Center and 104 HCs from Shanghai University were recruited.
The schizophrenics all met the diagnostic criteria based on
the structured clinical interview for diagnostic and statistical
manual of mental disorders (DSM-IV-TR) [5]. The subjects
had normal vision or corrected vision, and the right hand
was the dominant hand. All subjects were willing to take
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TABLE III
DEMOGRAPHIC CHARACTERISTICS OF SZ AND HC GROUP. FOR AGE,

EDUCATION, AND DURATION OF ILLNESS, THE REPORTED VALUES
ARE MEAN (STANDARD DEVIATION). “−” REPRESENTS NO

RELEVANT DATA

Fig. 2. Examples of stimuli. Ima. is short for images. Each row is overlaid
by the fixation density maps (visualized by heatmaps) of one subject in SZ
group or HC group.

part in this study and signed the informed consent. The
details of exclusion criteria were the same as those in [25].
We employed independent t-tests for continuous variables
and chi-square tests for categorical variables to measure
the between-group differences of demographic characteristics.
As shown in Table III, the two groups were statistically
matched on age, gender, and educational background. The
average duration of illness is 5.26 years. In experiments,
we retained the eye movement data of 48 subjects as the test
set, and the remaining 160 subjects were used for fourfold
cross validation, where the proportion of SZ group was all
50%.

B. Stimuli

Each subject was instructed to finish the free-viewing task.
The 100 images were presented as stimuli in a random order
with each one showing for 5 s. Given the atypical visual
attention of schizophrenics [12], [58], we selected four cat-
egories of stimuli, i.e., social scenes, natural scenes, synthetic
images, and manipulated images. The stimuli were mainly
selected from the MIT dataset [59] and the OSIE dataset [60].
We also supplemented some images from the Internet. The
examples of four categories are shown in Fig. 2. For the
category of social scenes, as shown in the first column of
Fig. 2, schizophrenics are usually unable to scan rapidly and
uptake of social contextual information, especially in case of
multiple faces. The poor integration of contextual cues in

Fig. 3. (a) Devices and (b) scene for data acquisition.

social scenes shows significant deficits of schizophrenics in
informing social cognition [13], [61]. Besides, we purposefully
select stimuli with objects distributed far from the center or
with complex content in the category of natural scenes and
synthetic images to characterize the restricted visual pattern
of schizophrenics. The restricted visual pattern impedes the
processing of environmental information and further impairs
the cognitive function [12]. We make the stimuli intricate by
blurring, adding noise, splicing, or rotating in the category
of manipulated images, so as to better characterize cognitive
impairment.

C. Experimental Procedure

As shown in Fig. 3, we chose the EYELINK 1000 plus
desktop eye tracker to collect eye movement data in a therapy
room. The sampling rate was set to 1000 Hz. The eye tracker
was coupled to a 19-in display screen with a resolution of
1024 × 768. Subjects were positioned at a distance of 0.6 m
away from the screen, and the subject’s head was fixed with
the special chin support. We utilized the nine-point calibration
manner and recorded data of the eye with smaller calibration
errors. This study was approved by the ethics committee of
Shanghai Mental Health Center.

IV. PROPOSED METHOD

A. Network Overview

As shown in Fig. 4, we extract the feature map of each stim-
ulus by the saliency prediction model, i.e., RINet [62], which is
detailed in Section IV-D. For the feature map of each stimulus,
the features lying in the fixation positions are concatenated as
initial stimulus features f i

∈ R1×N×C (i ∈ {1, 2, . . . , 100}),
and then, all these initial stimulus features are concatenated as
input F ∈ R100×N×C , where 100 is the number of stimuli, and
N 1 and C2 denote the number of fixation and the dimension
of channel, respectively. The proposed MSNet consists of two
branches. The initial stimulus features F are fed into the SFB
first. This branch contains a fixation embedding layer and
four stacked stages to enhance the representative ability of
each stimulus feature. After the fixation embedding layer and
each stage in the SFB, the stimulus features are passed to the
CCB. This branch consists of cluster center generator (CCG)

1Since the average of fixations is 14 in the EMS dataset, the number of
fixation N is set to 14. When there are fewer than 14 fixations, we append
null to the end.

2The channel dimension C is 1056. We elaborate on the process of
extracting the feature map of each stimulus in Section IV-D.
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Fig. 4. Overview of the proposed MSNet. Given a set of stimuli, the features at fixation positions are concatenated as the initial stimulus features, where the
fixation number N is simplified to 4 for understanding. These features are enhanced by the SFB in a multistage manner. The other branch, namely, the CCB,
is designed to generate the cluster center with the CCG module and move the cluster center to the denser feature subspace with the CCS module. Finally, the
updated cluster center is fed into the classification head.

module and cluster center shift (CCS) module to generate
and move the cluster center. The two modules are detailed in
Sections IV-C1 and IV-C2, respectively. Finally, the updated
cluster center represents the visual pattern of the corresponding
subject, and the classification head is exploited to distinguish
whether the subject belongs to HC or SZ group based on the
final cluster center. The classification head contains a layer
normalization [63], a fully connected layer, and a sigmoid
activation function.

B. Stimulus Feature Branch

Because of the inherent inductive biases, convolution archi-
tecture is unable to capture long-range contextual information,
while the self-attention mechanism [28] has shown great
potential in acquiring long-range information [64]. Here,
we design the SFB based on the self-attention mechanism.
As for the initial stimulus features F, they are only built
upon each individual stimulus. There is a lack of long-range
information integration among stimuli. We aim to enhance
each stimulus with similar information from all stimuli based
on the self-attention mechanism. Specifically, the SFB is
comprised of a fixation embedding layer and four stacked
stages.

First, a fixation embedding layer is adopted to reduce the
channel dimension and reshape the feature F to F0

∈ R100×C0
,

where C0 is the dimension of channel. The process in fixation
embedding layer can be described as follows:

F0
= rs(conv(F; Wfe)) (1)

where rs(·) denotes the reshape operation and conv(∗; Wfe)

represents the 1 × 1 convolutional layer with parameters Wfe.
The following four stages, i.e., Stage-i (i ∈ {1, 2, 3, 4}), are
based on the same structure shown in Fig. 5. We first employ
layer normalization and a convolutional layer to reduce the
channel dimension by half, which makes the stimulus features

Fig. 5. Structure of each stage in SFB.

compressive. After the subsequent layer normalization, the
stimulus features are mapped to the queries Qi , keys Ki , and
values Vi by one convolutional layer, where i corresponds to
Stage-i . Following the original Transformer [65], we compute
the scaled dot-product attention Attention(·) as follows:

Attention
(
Qi , Ki , Vi)

= Softmax

(
Qi

⊗
(
Ki)T

√
d i

)
Vi (2)

where Softmax(·) and ⊗ denote the softmax function and
matrix multiplication, respectively, and d i is the dimension
of Ki . In terms of a certain stimulus feature, the dot-product
function of its query with all keys measures the similar infor-
mation between it and all stimulus features. Then, according
to the dot-product function, a weighted sum of the values
is computed as output, where this stimulus feature can be
enhanced by aggregating similar features to its output. Besides,
we also apply a residual connection after the scaled dot-
product attention. The outputs of Stage-i are denoted as Fi .

C. Cluster Center Branch

After the SFB, we focus on finding the cluster center among
these stimuli features to represent the visual pattern of the
corresponding subject. The classical algorithm, i.e., mean shift
algorithm [26], [27], has done a good job in locating the
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cluster center. As a result, we imitate the mean shift algorithm
with convolution to design the CCB. The original mean shift
algorithm consists of the following two steps for each sample.

1) Step 1: Selecting a sample x as the initial cluster center
randomly.

2) Step 2: Computing the mean shift vector m(x) as
Eq. (3), and shifting the cluster center to x+m(x). Then,
iterating this operation until the cluster center reaches a
peak of sample density

m(x) =

∑
xi ∈S w(xi )(xi − x)∑

xi ∈S w(xi )
(3)

where S denotes the set of selected samples and w(·) is
a weight function.

Corresponding to these two steps, we design the following two
modules in the CCB, namely, the CCG module and the CCS
module, to generate and move the cluster center, respectively.

1) CCG Module: The CCG module is responsible for
choosing an appropriate stimulus feature as the initial cluster
center. Following the mean shift algorithm, the cluster centers
are most likely to lie in the densest place. We redesign the
affinity matrix to represent the density of features. Specifically,
as shown in Fig. 4, the input F0 contains the features of
100 stimuli. In other words, each row of F0 represents the
feature of one stimulus. We apply the layer normalization [63]
to F0 and denote its i-th row and j-th row as ri and r j ,
respectively. Then, the cosine similarity between every two
features is calculated to obtain the affinity matrix A ∈ R100×100

as follows:

A(i, j) =
ri · r j

∥ri∥∥r j∥
(i, j ∈ {1, 2, . . . , 100}) (4)

where · is dot product and ∥·∥ means L2 norm. The numerator
of Eq. (4) computes the dot product of features from every two
stimuli, and the denominator of Eq. (4) computes the product
of the L2 norms of features from every two stimuli. Based
on Eq. (4), we observe that the affinity matrix A belongs to
[−1, 1]

100×100. The higher value stands for the more similarity
between features. Then, the affinity matrix A is summed along
row to get the density vector D ∈ R100×1. Each row of A
indicates the similarity between a certain stimulus feature and
all features, so that we regard the sum along row as the feature
density. We utilize the argmax operation and elementwise
multiplication to pick out the stimulus feature with the highest
density as the initial cluster center. Moreover, a convolutional
layer is adopted to align the dimension with the next CCS
module, and the final feature is denoted as x1

∈ R1×(C0/2).
2) CCS Module: The intuition of mean shift is gradient

ascent, and the original mean shift algorithm achieves this
target using the mean shift vector m(x). When computing
m(x), the contribution of each sample is different. It is more
reasonable to treat samples unequally using a weight function,
i.e., w(·). Here, we come up with the CCS module to compute
m(x) with a density-based weight function.

We design CCS-i (i ∈ {1, 2, 3, 4}) to match the correspond-
ing four stages in SFB. Here, we take the first CCS module,
i.e., CCS-1, as an example for clarification (shown in the
bottom-right part of Fig. 4). Due to the prior knowledge, that

is, these stimulus features all belong to one subject, we take all
of them into the selected set. We get the subtraction between
F1 and x1 to obtain the vector F1

s ∈ R100×(C0/2) pointing from
the initial cluster center to the enhanced stimulus features,
which is the same as the original mean shift algorithm.
As for the weight function, we calculate the density vector as
mentioned in Section IV-C1 and then normalize it as D1

n ∈

R100×1 by using the min–max normalization. An adaptive
threshold ϵ1 is learned from D1

n through a fully connected
layer. Afterward, the portion of D1

n that is smaller than the
threshold ϵ1 is set to zero using the subtraction operation and
ReLU, resulting in D1

t ∈ R100×1. In the end, D1
t is reweighted

to sum to one so as to get the weight function D1
w. Similar

to (3), we multiply F1
s by D1

w and average the result as the
mean shift vector m1

∈ R1×(C0/2) as follows:

m1
= mean

(
D1

w ⊙
(
F1

⊖ x1)) (5)

where mean(·) denotes computing the mean of rows, and ⊙

and ⊖ represent elementwise multiplication and subtraction,
respectively. The mean shift vector m1 is utilized to shift
the initial cluster center x1 by the elementwise summation
operation. Subsequently, a convolutional layer is adopted to
align the dimension of the shifted cluster center with the next
CCS module, resulting in x2

∈ R1×(C0/4) as follows:

x2
= conv

(
x1

⊕ m1
; W1

ccs

)
(6)

where ⊕ is elementwise summation and W1
ccs is the parameters

of convolutional layer. Notably, there is no convolutional layer
in CCS-4, because CCS-4 is the last module.

D. Implementation Details

The proposed MSNet was implemented by PyTorch [68]
with an NVIDIA TITAN Xp GPU. The loss function adopted
in the training procedure was binary cross entropy. We fol-
lowed DeiT [69] and applied AdamW [70] with a momentum
of 0.9 and a weight decay of 5 × 10−2 to optimize the
model. The batch size was set to 8. The initial learning rate
of training was set to 5 × 10−4 and decreased according to a
cosine schedule [71]. To facilitate converging in the training
procedure, we applied the warming-up stage for the adaptive
thresholds ϵi (i ∈ {1, 2, 3, 4}) for 50 iterations. The channel
dimension C0 was 896. Our MSNet was trained for 50 epochs
for each cross validation. The schizophrenics were labeled
with 1, and the HC group was labeled with 0 as ground truth.
We utilized the maximum between-class variance method to
select a threshold for each validation set, which was the same
as [8]. The subject with score above the threshold was given
a positive SZ diagnosis.

As for extracting the feature map from 100 stimuli, we chose
the saliency prediction model, i.e., RINet [62], and fine-tuned
it on our EMS dataset for 20 epochs. The initial learning rate
of fine-tuning was 1 × 10−5, which was divided by 10 after
10 epochs. Following [36], the difference of fixation (DoF)
maps were chosen as ground truth rather than the fixation
density map. We aimed to distinguish two clinical populations
based on what they focused on. The DoF maps depicted the
subtle differences between the fixation density maps of two
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TABLE IV
QUANTITATIVE PERFORMANCE COMPARISON ON THE EMS DATASET. DL-BASED IS SHORT FOR DEEP-LEARNING-BASED METHODS.

↑ REPRESENTS LARGER VALUE IS BETTER. THE BEST TWO RESULTS ARE MARKED IN RED AND BLUE, RESPECTIVELY

groups, so that the DoF maps were more suitable for eye
movement-based SZ recognition. We employed the feature
before the last fusion module of RINet as the feature map
of each stimulus. As a result, the channel dimension C was
1056.

V. BENCHMARK

We conduct the first comprehensive benchmark where the
related 13 methods are taken into comparison, and six metrics
are adopted to measure them. The experimental results are
analyzed, and the potential research topics are discussed in
this section.

A. Evaluation Metrics

To assess the performance of the proposed MSNet and other
SOTAs comprehensively, we adopt six widely used evaluation
metrics as follows.

1) Accuracy (Acc.) = (TP + TN)/(TP + TN + FP + FN).
2) Sensitivity (Sen.) = TP/(TP + FN).
3) Specificity (Spe.) = TN/(TN + FP).
4) Precision (Pre.) = TP/(TP + FP).
5) F1-score = (2 × Pre. × Sen.)/(Sen. + Pre.).
6) AUC is the area under the curve of receiver operating

characteristic (ROC) analysis, which varies the threshold
for classification and plots the true positive rate versus
false positive rate.

TP denotes true positive, FP represents false positive, TN indi-
cates true negative, and FN stands for false negative. For all
metrics, larger values are regarded to be better. For robust
assessment, the average metrics of fourfold cross validation
are regarded as the performance of validation, and the model
with the highest AUC will be tested on the test set.

B. Comparison Methods

For baseline experiments, we compare 13 psychosis recog-
nition methods, including our MSNet and 12 SOTAs, on the
EMS dataset to conduct a comprehensive evaluation. These
methods are all subject-level methods or adjusted to subject-
level methods. As shown in Table IV, the compared methods

include five traditional methods, which are based on the
statistics of eye movement data, and eight deep-learning-based
methods, which extract features from the eye movement data
by deep-learning-based models. Apart from MSNet, the other
methods are elaborated as follows.

EDB_SVM, EDB_QDA, and EDB_BYS are the traditional
recognition methods using support vector machine (SVM),
quadratic discriminant analysis (QDA), and Bayesian (BYS)
algorithm as classifier in [45], respectively. Though there are
three paradigms utilized to test in [45], for a fair comparison,
we only choose the free-viewing paradigm and select the
corresponding five variables for classification.

ESR_SVM and ESR_RF represent the traditional recogni-
tion method using SVM and random forest (RF) algorithm as
classifier in [25], respectively. Because the complete feature
set proposed in [25] is proved to be the most effective in
identifying schizophrenics, we deploy the two methods with
the complete feature set proposed in [25].

IAS [43] is a stimulus-level method originally. We compute
the scores of 100 stimuli for each subject and average the
scores to represent the corresponding subject. In terms of the
threshold, we apply the same way as MSNet and [8], that is,
exploit the maximum between-class variance method to select
the threshold for each validation set.

LVA denotes the convolution-based recognition method
proposed by [36]. The number of stimuli in the EMS dataset
is 100, which is equal to the number after the stimuli selection
in [36], so we deploy this method with all 100 stimuli.

DDB_DoF stands for the method extracting the stimulus
features based on the DoF prediction task in [66].

DDB is the recognition method based on both the DoF
prediction task and semantic segmentation task in [66].

DVP presents the subject-level method proposed in [8].
Xia et al. [8] utilized an LSTM network to encode the scanpath
of one stimulus and then classified based on the average score
of all stimuli.

GPI_LSTM and GPI_GRU denote the recognition meth-
ods using LSTM network and gated recurrent unit (GRU)
network, respectively, to learn the mapping between inputs
and the labels in [67]. Because the combination of position
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and duration is proven to be a better choice as input, we feed
position and duration into LSTM network and GRU network.

With regard to the name of the above methods, for simplic-
ity, we adopt the initial letters of the first three words in the
publication title to stand for the corresponding publication.

C. Performance Comparison and Analysis

Table IV reports the quantitative performance comparison
on the EMS dataset.

Among the traditional methods, EDB_QDA achieves the
overall best performance on the test set. Compared with
EDB_SVM and EDB_BYS, it can be observed that the choice
of classifier can affect classification performance. As for the
handcrafted features, compared with [45], Huang et al. [25]
designed a set of additional features. According to the com-
parison between ESR_SVM and EDB_SVM, these additional
features can effectively improve performance on the validation
and test sets.

In terms of the deep-learning-based methods, the per-
formance of MSNet is better than other methods on both
validation and test sets, showing effective integration of
multiple stimuli can indeed improve the performance signif-
icantly. Among the deep-learning-based methods, IAS gets
the second-best performance on the test set overall. This is
because the restricted visual pattern is the main characteris-
tic of schizophrenics; that is, besides semantic information,
temporal and spatial information of scanpath also plays an
important role. IAS combines the statistics of temporal and
spatial information of scanpath with the semantic information
lying in the fixations, whose competitive performance proves
adding the spatial and temporal information is a potential
direction for performance improvement.

D. Potential Research Topics

In this section, we analyze some challenges in the
EMS dataset, including performance improvement, accurate
recognition with fewer stimuli, and clinical interpretability.
Furthermore, we discuss the possible solutions to these chal-
lenges. The EMS dataset can also be used in general algorithm
research, such as data augmentation, transfer learning, con-
trastive learning, explainable learning, and so on. The potential
research topics are briefly summarized as follows.

1) Performance Improvement: The EMS dataset is designed
for the clinical applications of eye movement-based SZ recog-
nition to assist clinicians in rapid and accurate diagnosis.
As shown in Table IV, we can observe that the highest
accuracy on the test set is 0.8125. The further improvement is
essential for clinical applications. According to the analysis in
Section V-C, how to effectively utilize the spatial and temporal
information of scanpath is a possible direction for improve-
ment. The alterations in pupil size can reflect the subjects’
concentration and processing load [72], which is a potential
biomarker to differentiate schizophrenics from HC group [25].
Integrating the information of pupil size into deep-learning-
based method may further improve performance. In the field of
computer vision, data augmentation schemes, such as flipping,
cropping, and so on, are common and effective ways to

fully leverage datasets. Whether these common operations
can be directly applied to eye movement data remains to
be verified. The specific data augmentation methods for eye
movement data need to be explored. In this work, we attempt
to transfer the knowledge of HC group’s visual attention in
the SALICON dataset [73] and the MIT1003 dataset [59]
to the eye movement-based SZ recognition task. How to
transfer knowledge from other related datasets to the eye
movement-based SZ recognition task is one possible direction
to realize the next improvement.

2) Accurate Recognition With Fewer Stimuli: Finishing
viewing 100 stimuli takes up about 10 min. Although 10 min
is already acceptable for clinical application, accurate recog-
nition with fewer stimuli would be better to save time cost
and medical resources. For the eye movement-based SZ recog-
nition task, the number of stimuli, i.e., the duration of the
subject’s participation, can be considered as the efficiency of
methods, which is different from the common efficiency of
methods, i.e., inference time. So far, there has been no metric
designed to quantify the efficiency of eye movement-based SZ
recognition, and the relevant studies on improving efficiency
are also absent. Empirically speaking, more stimuli will lead to
an increase in recognition performance [8], [47]. Contrastive
learning is a possible solution to make the features with fewer
stimuli closer to the features with more stimuli, so as to
improve the efficiency of eye movement-based SZ recognition
methods.

3) Clinical Interpretability: For eye movement-based SZ
recognition, in addition to binary groups, i.e., SZ and HC
groups, it is meaningful to refine the recognition results, such
as the severity of illness. Moreover, it is essential to propose an
explainable model associated with relevant symptoms, which
will be helpful for disease analysis.

VI. EXPERIMENTAL RESULTS OF MSNET

In the benchmark, we briefly analyze the performance of all
methods. Here, we analyze in detail the experimental results
and advantages of our MSNet.

A. Comparison With SOTAs

As shown in Table IV, it can be observed that our MSNet
reaches a remarkable classification performance. To be spe-
cific, on the validation set, our method is better than other
methods on the five metrics of accuracy, sensitivity, specificity,
precision, and F1-score and ranks second on AUC. As for
the test set, the results are consistent with the ones on the
validation set, where our MSNet shows competitive perfor-
mance on accuracy, sensitivity, precision, AUC, and F1-score.
In particular, our method outperforms the second-best method
by 8.33% on accuracy (0.7500 → 0.8125). In terms of speci-
ficity, our method only ranks third on the test set. The reason
is that sensitivity shows the true positive rate, and specificity
represents the true negative rate. These methods with better
specificity, i.e., EDB_BYS, EDB_QDA, and IAS, significantly
sacrifice sensitivity. In contrast, our MSNet achieves a better
balance between sensitivity and specificity.
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TABLE V
ABLATION STUDY ON MAIN COMPONENTS OF MSNET. THE BEST

RESULT OF EACH METRIC IS SHOWN IN BOLD

TABLE VI
ABLATION STUDY ON FEATURE EXTRACTION. THE BEST RESULT

OF EACH METRIC IS SHOWN IN BOLD

TABLE VII
ABLATION STUDY ON THE STEP-BY-STEP MANNER. THE BEST RESULT

OF EACH METRIC IS SHOWN IN BOLD

B. Ablation Studies

In this section, we conduct comprehensive ablation studies
on the EMS test set. Specifically, we analyze the following:
1) the contributions of each key component in our MSNet;
2) the effectiveness of feature extraction based on DoF maps;
and 3) the necessity of the step-by-step manner.

1) Contributions of Main Components: As shown in
Table V, to investigate the contribution of the two branches,
i.e., SFB and CCB, we establish four variants: 1) baseline:
average the feature F along the number of stimuli and classify
it using the classification head; 2) +SFB: average the output
feature of Stage 4 in SFB and classify it using the classification
head; 3) +SFB+CCB w/o Di

w: the complete MSNet without
the weight function Di

w; and 4) +SFB+CCB: the complete
MSNet. The quantitative results are reported in Table V.

We can observe that baseline only achieves 0.6458 on accu-
racy, 0.7240 on AUC, and 0.6047 on F1-score. SFB promotes
baseline by 0.0834 (0.6458 → 0.7292) on accuracy, 0.0503
(0.7240 → 0.7743) on AUC, and 0.1187 (0.6047 → 0.7234)
on F1-score. The +SFB+CCB w/o Di

w variant evaluates the
effect of the mean shift vector with uniform weight for all
samples. The results show that the plain mean shift vector can
improve the performance to some extent. In contrast, the mean
shift vector with weight functions Di

w (i.e., +SFB+CCB) can
optimize the performance more. For example, the score of
accuracy is promoted by 0.0833 (0.7292 → 0.8125) using
the mean shift vector weighted by Di

w, while only 0.0416
(0.7292 → 0.7708) adopting the plain mean shift vector.
Although the variant of +SFB+CCB does not further improve
specificity, it promotes sensitivity effectively, also resulting in
higher values on the other four metrics.

2) Ablation for Feature Extraction: Due to the restricted
visual patterns, schizophrenics tend to miss some informa-
tive regions, resulting in semantic differences from the HC

group. We try to transfer the semantic knowledge from other
datasets to benefit the eye movement-based SZ recognition
task. We deploy two popular semantic segmentation methods
(i.e., DeepLabv3 [74] and RegSeg [75]) and the original
RINet based on fixation prediction task for comparison in
Table VI. For DeepLabv3, we utilize the publicly available
models trained on the MS-COCO dataset [76] whose backbone
is ResNet-101 [41]. For RegSeg, we adopt the released models
trained on the Cityscapes dataset [77]. For the original RINet
based on fixation prediction task, we employ the model trained
on the SALICON dataset [73] and fine-tuned on the MIT1003
dataset [59]. As we observed, the initial stimulus features F
extracted by semantic segmentation models are overall weaker
than fixation prediction model (i.e., RINet). This is because the
fixation prediction model, in addition to semantic information,
provides extra knowledge about whether the fixations belong
to HC group. In our MSNet, we adopt the RINet fine-tuned
with the DoF maps of EMS dataset, which belong to the
160 subjects for cross validation, and achieve the best per-
formance. In comparison with the fixation density maps, the
DoF maps can describe the subtle differences between the two
groups, so as to benefit the task of eye movement-based SZ
recognition.

3) Ablation for Step-by-Step Manner: To study the neces-
sity of the step-by-step manner, we modify the number of
Stage-i and the corresponding CCS-i module and offer three
variants, as shown in Table VII. By comparing the results of
“Stage 1,” “Stage 1,2,” “Stage 1,2,3,” and “Stage 1,2,3,4,” it
can be observed that the addition of the number of Stage-
i and the corresponding CCS-i module realizes continuous
performance improvements. For instance, the accuracy and
AUC increase persistently (e.g., Acc.: 0.7083 → 0.7500 →

0.7708 → 0.8125 and AUC: 0.7535 → 0.8038 → 0.8420 →

0.8854). As the number of layers increases, the stimulus
features are enhanced, and the more discriminative features are
emphasized, so as to improve the performance. In other words,
the step-by-step manner plays a vital role in our MSNet.

VII. CONCLUSION

In this article, we have presented a novel EMS, which is
a large-scale and publicly available dataset and compensates
for the lack of relevant datasets in the research community.
It is based on the free-viewing paradigm with 100 carefully
selected stimuli. The 104 schizophrenics and 104 HCs par-
ticipated in this test. To ensure the privacy of the subjects,
their identities and personal information have been removed.
Furthermore, we conduct the first comprehensive evaluation
of the relevant 13 methods and measure them by six metrics
to act as a benchmark for this field. To integrate multiple
stimuli effectively, we further proposed a novel MSNet for eye
movement-based SZ recognition, which imitates the mean shift
algorithm with convolution. Our MSNet consists of an SFB
and a CCB. The SFB aggregates similar information for each
stimulus feature to enhance the representative ability. The CCB
chooses an appropriate stimulus feature as the initial cluster
center in the CCG module and shifts it to the denser feature
subspace in the CCS module. Comprehensive experimental
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results have certified the better performance of our MSNet
compared with 12 SOTAs.
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