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Abstract
Anomaly detection in surveillance videos aims to identify video frames that exhibit unexpected behavior. Most existing 
methods follow an unsupervised setup, training with normal videos and testing with videos from the same scene. However, 
in real-world deployments, the performance of existing models significantly degrades when faced with unseen scenes. To 
address this issue, we introduce the auxiliary tasks of segmentation and optical flow estimation into the fine-tuning process, 
proposing a novel Segmentation and Optical Flow Fine-tuning (SOFF) framework. This framework enables the existing 
models to adapt to new scenes with only a few samples for fine-tuning. To integrate these auxiliary tasks, we design a Seg-
mentation and Flow Output Network (SFO-Net). SFO-Net enhances fine-tuning performance in unseen scenes by extracting 
rich shape and motion information through the execution of auxiliary tasks during the fine-tuning process. Additionally, 
SFO-Net can be flexibly cascaded with existing models that output images to form the SOFF framework. Experiments on 
multiple datasets demonstrate that our framework improves the performance of existing models when faced unseen scenes 
through few-shot scenes fine-tuning and achieves competitive performance.
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1  Introduction

Video anomaly detection is an important task in the field of 
computer vision, involving the identification of abnormal 
behaviors or events in video clips. Given its critical appli-
cations in public safety, especially in surveillance videos, 
this area has received considerable attention in recent years. 
In practical applications, abnormal events occur much less 
frequently, leading to a scarcity of abnormal samples. This 
imbalance between the number of normal and abnormal 

samples poses significant challenges for dataset creation and 
model training. Therefore, most previous approaches [1–8] 
addressed this issue through unsupervised learning tech-
niques, where models are trained using only normal videos 
and then tested on the test set of the same dataset. However, 
when the trained anomaly detection models are faced with 
new scenes, their performance tends to decline sharply. To 
address this issue, in this paper, we focus on enhancing the 
model’s cross-dataset video anomaly detection capabilities.

Early research in video anomaly detection primarily relied 
on handcrafted features for identifying anomalies. These 
features included motion trajectories [9], object speed and 
size [10], histograms of optical flow [11], histograms of ori-
ented gradients (HOG) [12], SIFT [13], sparse feature points 
[14], and mixtures of dynamic textures (MDTs) [15]. Subse-
quently, deep learning was applied to video anomaly detec-
tion tasks, achieving significant results. Techniques such 
as the autoencoder [2, 3], generative adversarial network 
(GAN) [1], and diffusion model [4] were utilized. These 
methods utilized deep learning to extract features, providing 
more robust representations compared to handcrafted fea-
tures and achieved better detection performance. However, 
they were all trained and tested on the same dataset, with-
out considering that in real-world deployment, the model 
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would encounter new scenes, which could lead to a decline 
in performance. In recent years, some research explored 
meta-learning methods [16–19], which enabled models to 
adapt to new scenes with only a few samples. These meth-
ods could alleviate the challenge of cross-dataset setting, 
i.e., differing training and testing environments, which was 
crucial for real-world deployment. However, these methods 
often required specific training setups or specially designed 
models, limiting their broad applicability.

To address the performance degradation of traditional 
unsupervised methods in new scenes and the limited appli-
cability of meta-learning methods, in this paper, we present 
a novel framework called Segmentation and Optical Flow 
Fine-tuning (SOFF) for few-shot and scene-adaptive anom-
aly detection. Unlike existing methods, SOFF doesn’t need 
special training or model changes and works with existing 
models that output images. SOFF adapts an existing anom-
aly detection model to new scenes with just a few training 
samples. As depicted in Fig. 1, video anomaly detection can 
be performed through future frame prediction. The model 
is trained on normal data to predict future frames. During 
testing, a substantial discrepancy between the predicted and 
actual frames signals an anomaly, enabling the distinction 
between normal and anomalous frames. In Fig. 1, the dashed 
box represents the standard fine-tuning process, while 

the SOFF framework extends this process. Typically, the 
standard fine-tuning involves updating an existing model’s 
parameters by minimizing the loss between predicted and 
actual images. While effective with ample data, this standard 
approach can overfit when samples are scarce. Specifically, 
SOFF incorporates two additional auxiliary tasks of seg-
mentation and optical flow estimation. These tasks extract 
more information from the limited data and impose extra 
constraints during fine-tuning, alleviating overfitting.

In particular, SOFF enhances fine-tuning by introduc-
ing temporal and spatial information through two auxiliary 
tasks, i.e., optical flow estimation and segmentation. The 
optical flow estimation task captures the motion of objects, 
while the segmentation task acquires their shapes, focusing 
on objects critical for anomaly detection, such as vehicles, 
pedestrians, and related items. To perform these auxiliary 
tasks, we develop a Segmentation and Flow Output Net-
work (SFO-Net) with three components, including an optical 
flow branch, a segmentation branch, and an optical flow and 
segmentation fusion block. We adopt a three-stage train-
ing strategy, decomposing the overall training into several 
relatively independent stages, each focusing on training a 
specific part of the network. This modular learning strategy 
effectively reduces the complexity of the training process 
and ensures stable convergence of each module. Our SOFF 
framework is particularly suited for the practical deploy-
ment of video anomaly detection models, eliminating the 
need for special modifications to existing models or specific 
training setups. As long as the model outputs images, our 
SOFF framework can be applied for few-shot scenes fine-
tuning across various anomaly detection models, showcasing 
exceptional compatibility. To summarize, our contributions 
are as follows:

•	 We propose a novel Segmentation and Optical Flow Fine-
tuning (SOFF) framework for video anomaly detection 
that incorporates segmentation and optical flow estima-
tion tasks into the fine-tuning process. By adding these 
auxiliary tasks, we provide diverse loss supervisions that 
enhance the model’s performance during few-shot fine-
tuning.

•	 We design the Segmentation and Flow Output Network 
(SFO-Net) to improve fine-tuning within the SOFF 
framework. SFO-Net is an important part of the SOFF 
framework, and specifically implements the auxiliary 
tasks, enhancing fine-tuning performance. It can generate 
segmentation and optical flow maps. By combining opti-
cal flow with segmentation features, SFO-Net improves 
accuracy, especially for small targets in surveillance vid-
eos.

•	 We conducted comprehensive experiments on multiple 
challenging datasets, including Shanghai Tech [20], 
UCF Crime [21], UCSD Ped1 [15], UCSD Ped2 [15], 

Fig. 1   Overview of the proposed Segmentation and Optical Flow 
Fine-tuning (SOFF) framework. During the fine-tuning process, the 
existing anomaly detection model generates a future predicted frame. 
Using both the predicted future frame and the actual future frame, 
the model generates pairs of predicted segmentation and optical flow 
maps as well as corresponding ground truth segmentation and optical 
flow maps, all based on the current ground truth frame. The model 
parameters are updated by computing losses from the segmentation 
maps, optical flow maps, and images
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and CUHK Avenue [22]. Our SOFF framework signifi-
cantly improves fine-tuning performance for anomaly 
detection in new scenes with few samples. Specifically, 
on the UCSD Ped2 dataset, our method pre-trained 
using the Shanghai Tech dataset outperforms the best 
method MPN [17] by 0.61% in AUC under the 10-shot 
setting. While pre-training with the UCF Crime data-
set, our method surpasses the best method VADNet [19] 
by 5.01% in AUC under the 10-shot setting. On the 
UCSD Ped1 dataset, our method pre-trained using the 
UCF Crime dataset exceeds the best method rGAN 
(Meta) [16] by 0.59% under the 10-shot setting. Moreo-
ver, in the 1-shot setting, our SOFF framework achieves 
competitive results across these datasets.

2 � Related work

2.1 � Intra‑dataset video anomaly detection

Video anomaly detection can be categorized into three 
paradigms based on the learning approach, i.e., unsuper-
vised video anomaly detection [23, 24], weakly supervised 
video anomaly detection [25, 26], and supervised video 
anomaly detection [27]. Given the difficulty of obtain-
ing anomalous data in the real world and the high cost 
of meticulously labeling large-scale datasets, we focus 
on unsupervised video anomaly detection. Unsupervised 
video anomaly detection uses proxy tasks, such as frame 
reconstruction and future frame prediction. During test-
ing, if there is a significant prediction error between the 
model’s output and the corresponding ground truth frame, 
the frame is classified as an anomaly. Due to the powerful 
feature representation and generalization capabilities of 
neural networks, autoencoders commonly used in recon-
struction-based methods [2, 3] can sometimes accurately 
reconstruct anomalous frames as well [28]. This poses a 
challenge for anomaly detection. An alternative approach 
is future frame prediction. This method involves predict-
ing the next frame in a sequence given a set of consecu-
tive frames. For anomalous samples, the predicted future 
frame significantly deviates from the actual future frame, 
thereby enabling the identification of anomalous frames. 
Liu et al. [5] employed a UNet [29] architecture as the 
generator for predicting future frames. They also incorpo-
rated a discriminator to form a structure akin to a genera-
tive adversarial network (GAN), enhancing the accuracy 
of the anomaly detection. Lei et al. [6] proposed a UNet 
model incorporating an attention mechanism with multi-
scale feature extraction and a weakly supervised data aug-
mentation network (WSDAN) to improve the accuracy 
and robustness of video anomaly detection. Ren et al. [7] 
proposed a two-stream spatio-temporal generative model 

(TSSTGM) that uses reconstruction error and prediction 
error to detect anomalous behavior, and also extracts the 
motion features of objects in the video through optical 
flow loss. Wang et al. [8] proposed an anomaly detection 
method that combines a dual-branch autoencoder and a 
memory module, enhancing the robustness of the autoen-
coder and improving detection performance through the 
branches of frame prediction and frame reconstruction.

Our architecture can be applied to methods that are 
based on reconstruction or prediction and produce image 
outputs. To demonstrate the effectiveness of our architec-
ture, we applied it to the widely referenced work [5].

2.2 � Few‑shot inter‑dataset video anomaly 
detection

In the field of few-shot learning, researchers aim to emu-
late the rapid and flexible learning capabilities exhibited 
by humans when faced with limited data, enabling quick 
adaptation and application of acquired knowledge in new 
contexts [30]. Transfer learning and meta-learning meth-
ods are commonly employed in this domain. For instance, 
Rostami et al. [31] and Tai et al. [32] utilized transfer 
learning approaches for SAR image classification under 
few-shot conditions. Yu et  al. [33] introduced a novel 
transfer learning framework for semi-supervised few-shot 
learning. Ghani et al. [34] applied transfer learning to the 
task of bioacoustic classification with limited samples. 
However, while transfer learning is predominantly used 
for simpler classification tasks, meta-learning methods 
are more prevalent in tackling the more challenging task 
of anomaly detection. Meta-learning methods are primar-
ily categorized into three types: optimization-based [16, 
17], metric-based [18, 19], and model-based approaches 
[35]. In relation to video anomaly detection, Lu et al. [16] 
and Lv et al. [17] adopted an optimization-based meta-
learning approach, where meta-training enables the model 
to learn a universal initialization parameter. This facili-
tates rapid adaptation to new scenarios by starting from 
this initialization parameter during practical applications. 
Meanwhile, Hu et al. [18] and Huang et al. [19] employed 
a metric-based approach, constructing a prototype network 
and using various distance functions to compute similarity. 
This method allows for application in previously unseen 
scenes without requiring fine-tuning.

In contrast to methods requiring special designs for train-
ing processes or models, our framework leverages an auxil-
iary task network independent of the basic model. The SFO-
Net provides optical flow information and detailed object 
characteristics, facilitating fine-tuning of the model under 
few-shot conditions and enhancing its applicability across a 
broader range of scenarios.
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3 � Method

In this section, we introduce our Segmentation and Optical 
Flow Fine-tuning (SOFF) framework designed for few-shot 
scenarios. The goal of SOFF framework is to enhance the 
performance of existing models on benchmark datasets when 
tested on new scenes of other datasets.

3.1 � SOFF framework

Our SOFF framework extends the traditional fine-tuning 
approach. Specifically, the standard fine-tuning framework 
begins with a pre-trained anomaly detection model predict-
ing future frames from past ones. The model then computes 
loss based on the discrepancy between predicted and actual 
frames, updating parameters accordingly. Unlike standard 
methods, our SOFF framework diverges by creating opti-
cal flow and segmentation maps to dissect the motion and 
shape characteristics of objects within the video. It leverages 
the resulting differences as a loss function to optimize the 
anomaly detection model’s parameters. Our SOFF framework 
notably improves fine-tuning with a few samples. Figure 2 
illustrates the details of the proposed SOFF framework. In 
our experiments, we applied the SOFF framework to fine-
tune two different anomaly detection models. The first is the 
UNet anomaly detection model from [5], which we refer to as 
Ours-UNet-3layer. The second is a modified version of Ours-
UNet-3layer, created by adding an additional downsampling 
layer, and is referred to as Ours-UNet-4layer.

We denote a DNN-based anomaly detection model 
as f (I(t−n) ∼ I(t−1);�) , where � represents the model’s 
parameters. It takes n consecutive past frames as input 
to predict the next frame Ît . This prediction is pivotal, 
as it, in conjunction with the preceding frame I(t−1) , is 
fed into the SFO-Net to generate optical flow map f(o−g) 

and segmentation map f(s−g) . The SFO-Net, denoted as 
g(I(t−1) ∼ It;�) , has � as the collective representation of its 
network parameters. To effectively utilize both dynamic 
and static video information, the SOFF framework com-
pares predicted and actual frames for optical flow and 
segmentation maps. These differences are used to update 
the model’s parameters. We obtain the real optical flow 
map f(o−truth) and segmentation map f(s−truth) by applying 
the same SFO-Net to the real previous frame I(t−1) and 
future frame It . This step replicates the process used for 
predicted frames but with actual data, providing the real 
maps f(o−truth) and f(s−truth) as pseudo-labels for loss calcula-
tion in the optical flow estimation and segmentation.

To fine-tune our model, we calculate three types of 
losses by comparing predictions to actual results. First, we 
compare the predicted future frame Ît with the real future 
frame It to calculate the pixel-level prediction loss for the 
RGB image, denoted as Lp . Then, we compare the pre-
dicted optical flow map f(o−g) with the actual optical flow 
map f(o−truth) to compute the optical flow prediction loss Lo , 
capturing the motion information. Next, we compare the 
predicted segmentation map f(s−g) with the real segmenta-
tion map f(s−truth) to calculate the segmentation prediction 
loss Ls , which captures the spatial shape information of the 
targets. Using back-propagation, we compute gradients for 
these losses relative to the model’s parameters � . These 
gradients are crucial for updating the anomaly detection 
model, especially in unseen scenes with few samples. The 
combined use of Lo and Ls adds valuable motion and spa-
tial information beyond what Lp provides, enhancing the 
model’s adaptation. Finally, we utilize all three losses Lp , 
Lo , and Ls simultaneously during fine-tuning. To stabilize 
and simplify the fine-tuning process, we keep the pre-
trained SFO-Net parameters fixed and only update those 
of the anomaly detection model.

Fig. 2   The details of SOFF 
framework. To update the 
parameters of the anomaly 
detection model, the process 
follows these steps. First, input-
ting It−1 and Ît into the SFO-Net 
to generate f(o−g) and f(s−g) . 
Next, inputting It−1 and It into 
the SFO-Net to generate f(o−truth) 
and f(s−truth) , and computing Lp , 
Lo , and Ls . Finally, updating 
the model’s parameters. Here, 
black arrows represent the feed-
forward inference process, while 
red arrows indicate the gradient 
back-propagation
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3.2 � SFO‑net

SFO-Net is an important component of our framework. It 
generates optical flow and segmentation maps from two 
consecutive images, providing richer information for fine-
tuning the video anomaly detection model. SFO-Net is 
based on the two-branch network architecture, where one 
branch is used for generating the optical flow map and 
another branch is used for generating the segmentation 
map. Additionally, we incorporate the Optical Flow and 
Segmentation Fusion (OSF) block, which merges features 
from the optical flow branch into the segmentation branch 
to enhance the accuracy of the segmentation map. As 
shown in Fig. 3, SFO-Net takes two consecutive frames 
(f1, f2) ∈ ℝ

H×W×6 as input, where H and W  are the height 
and width of frames, and 6 represents the combined chan-
nels of the two frames. The output includes an optical flow 
map fo ∈ ℝ

H×W×2 and a segmentation map fs ∈ ℝ
H×W×1 . 

The optical flow map fo has two channels, corresponding 
to the x-y flow fields that represent the optical flow. The 
segmentation map fs has a single channel, indicating the 
foreground objects and background in the image. The out-
puts of the SFO-Net, fo and fs , depend on the input frames. 
Depending on the input configuration, fo represents either 
f(o−g) or f(o−truth) , while fs represents either f(s−g) or f(s−truth) . 
Specifically, when the input consists of the real previous 
frame It−1 and the predicted next frame Ît , the outputs are 
f(o−g) and f(s−g) , generated based on the predicted frame. 
Conversely, when the input consists of the real previous 
frame It−1 and the future ground truth frame It , the outputs 
are f(o−truth) and f(s−truth) , generated based on the ground 
truth frame. Through this architecture, SFO-Net effectively 
extracts and leverages both the motion information and 
target shape information from the consecutive frames to 
produce precise optical flow and segmentation maps.

3.2.1 � Optical flow branch

The optical flow branch uses convolutional neural networks 
(i.e., encoder) to process two consecutive frames. Initially, 
features are extracted through two identical processing 
streams that share parameters, enhancing efficiency and 
generalization. These streams then undergo downsampling 
to capture features at various scales, which are subsequently 
fused. Following this, the decoder performs stepwise upsam-
pling to restore the fused features to the spatial resolution 
of the input frames. To maintain effective information flow 
during training, we implement skip connections between 
the encoder and decoder. These connections help preserve 
detailed information that might otherwise be lost during the 
encoding process. In the decoder, feature fusion operations 
merge corresponding encoder and decoder features. Feature 
fusion helps preserve high-resolution details during upsam-
pling, crucial for accurately estimating object edges and 
texture changes in dynamic scenes.

3.2.2 � Segmentation branch

We use an end-to-end training approach to predict segmen-
tation maps, leveraging CNNs for their ability to capture 
complex patterns. For the segmentation branch, we employ 
a lightweight variant of the UNet-like network, known for 
efficient feature extraction and reconstruction.

3.2.3 � Optical flow and segmentation fusion block

In surveillance video scenes, target objects are typically 
small and the video resolution is generally low, which 
complicates segmentation. To improve segmentation per-
formance, we apply an OSF block after the segmenta-
tion branch. This block uses an attention mechanism to 

Fig. 3   Illustration of our SFO-
Net, which consists of three 
main components, including 
the optical flow branch, the 
segmentation branch, and the 
OSF block. Optical flow branch 
is responsible for predicting the 
optical flow map. Segmentation 
branch is used for predicting the 
segmentation map. The OSF 
block fuses features of optical 
flow branch and segmentation 
branch to generate a more accu-
rate segmentation map
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deeply fuse shallow features from the optical flow branch 
(i.e.,  f o ∈ ℝ

H×W×48 ) with high-level features from the seg-
mentation branch (i.e.,  f s ∈ ℝ

H×W×48 ), enhancing the seg-
mentation map. Channel attention [36–38] improves fea-
ture representation by modeling interdependencies between 
channels, but it overlooks spatial positional information. 
Inspired by Coordinate Attention [39], we embed positional 
information into channel attention to preserve spatial layout 
better.

In our OSF block, for f o , we encode each channel with 
pooling kernels of spatial ranges (H, 1) and (1,W) , respec-
tively. Thus, the output at height h and width w for the c-th 
channel can be written as the following two equations:

Next, we concatenate zh and zw along the spatial dimension 
and feed them into a 1 × 1 convolution layer. After applying 
a sigmoid function, we obtain Xo ∈ ℝ

8×(H+W) . Xo is then 
split into two parts along the spatial dimension, i.e., one 
part is along the height direction, denoted as Xo

h
∈ ℝ

8×H , 
and the other part is along the width direction, denoted as 
Xo
w
∈ ℝ

8×W . Following this, we apply a 1 × 1 convolution 
layer to Xo

h
 and Xo

w
 , and then use the sigmoid function to 

obtain two attention maps, i.e., Yo
h
∈ ℝ

48×H and Yo
w
∈ ℝ

48×W . 
These attention maps represent the attention maps of the 
optical flow features in the height and width dimensions.

A similar process is applied to f s of the segmentation 
branch, resulting in two corresponding attention maps 
Ys
h
∈ ℝ

48×H and Ys
w
∈ ℝ

48×W . After obtaining these attention 
maps, we apply coordinate attention maps from the optical 
flow branch to f s of the segmentation branch. Specifically, 
for a given position (i, j) , its output f so is expressed as:

Similarly, we apply coordinate attention maps from the seg-
mentation branch to f o of the optical flow branch, with the 
output f os expressed as:

In this way, we obtain two new feature representations, 
i.e.,  f so and f os , which incorporate the attention maps from 
the segmentation and optical flow branches, respectively. 
Next, we perform an element-wise addition operation on 

(1)zh
c
(h) =

1

W

∑

0≤i<W

f o
c
(h, i),

(2)zw
c
(w) =

1

H

∑

0≤j<H

f o
c
(j,w).

(3)f so(i, j) = f s(i, j) × Yo
h
(i) × Yo

w
(j).

(4)f os(i, j) = f o(i, j) × Ys
h
(i) × Ys

w
(j).

these two features to produce a fused feature F ∈ ℝ
H×W×48 . 

Finally, we concatenate the original segmentation feature f s 
and the fused feature F along the channel dimension to form 
a new feature representation. This new feature representation 
is then processed by a convolution layer, producing the final 
segmentation map fs ∈ ℝ

H×W×1 . This segmentation map not 
only integrates the information from both the optical flow 
and segmentation branches but also leverages the attention 
mechanism to enhance the capture of details, ensuring a 
more precise segmentation map.

3.3 � Objective function

3.3.1 � Loss function of SFO‑Net

To train the SFO-Net suitable for surveillance video data, we 
pretrain it using the ShanghaiTech dataset [20], originally 
meant for anomaly detection and lacking direct labels for 
optical flow estimation and segmentation. To overcome this, 
we employ a pretrained optical flow estimation model [40] 
to generate optical flow labels. We do this by feeding con-
secutive frames from the ShanghaiTech training set into the 
model, producing predictions that serve as training labels for 
the optical flow branch, denoted as f(o−label) ∈ ℝ

H×W×2 . For 
segmentation labels, we first utilize YOLOv8 [41] to detect 
objects and generate bounding boxes as prompts. These 
prompts are then processed by MobileSAM [42] to produce 
detailed segmentation maps, which subsequently serve as 
training labels for the segmentation process, denoted as 
f(s−label) ∈ ℝ

H×W×1.
It is worth noting that f(o−label) and f(s−label) differ from 

f(o−truth) and f(s−truth) mentioned in Sect. 3.1. Specifically, 
f(o−label) and f(s−label) are generated using pre-trained models 
and are intended for training the SFO-Net. Once trained, the 
SFO-Net is integrated into the SOFF framework. During 
fine-tuning with the SOFF framework, the parameters of 
the SFO-Net remain frozen, and only the anomaly detection 
model is updated. When consecutive real frames are input 
into the SFO-Net, the outputs are f(o−truth) and f(s−truth) , which 
are utilized to update the anomaly detection model.

We employ a three-stage training strategy to train the 
SFO-Net. In the first training stage, we train only the opti-
cal flow branch with the OSF block removed, while keeping 
all other parameters of SFO-Net fixed. We use two consecu-
tive frames, i.e.,  f1 and f2 , as input. The loss for this stage 
Lo(f1, f2, f(o−label);�f ) , where �f  are the parameters of the opti-
cal flow branch, is computed using the endpoint error (EPE). 
EPE measures the Euclidean distance between the estimated 
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optical flow f(o−g) ∈ ℝ
H×W×2 and the ground truth f(o−label) . 

The loss is formulated as follows:

where N is the number of pixels, x and y are the optical flow 
components in their respective directions, and i , j denote the 
spatial indices of a video frame.

In the second training stage, we train only the segmenta-
tion branch without using the OSF block. We use a single 
frame, f2 , as input. The segmentation branch first produces 
f s ∈ ℝ

H×W×48 , which is then passed through convolutional 
layers to generate f(s−g) ∈ ℝ

H×W×1 . The loss function for 
this stage Ls(f2, f(s−label);�s) , where �s are the segmentation 
branch’s parameters, combines intensity loss L(s−I) and gradi-
ent loss L(s−G) . The loss is formulated as follows:

(5)

Lo(f1, f2, f(o−label))

=
1

N

∑

i,j

√(
f x
(o−g)

(i) − f x
(o−label)

(i)
)2

+

(
f
y

(o−g)
(j) − f

y

(o−label)
(j)
)2

,

(6)Ls(f2, f(s−label)) = L(s−I)(f2, f(s−label)) + L(s−G)(f2, f(s−label)),

In the third training stage, the OSF block is integrated into 
SFO-Net, and only its parameters ( �fs ) are trained, while the 
rest of the SFO-Net’s parameters remain fixed. We input two 
consecutive frames, f1 and f2 , into the SFO-Net. The optical 
flow and segmentation features from the two branches serve 
as inputs to the OSF block. Using the segmentation map 
f(s−label) as the label, the output is f(s−g) ∈ ℝ

H×W×1 . The loss 
function for this stage is the same as in the second training 
stage.

(7)L(s−I)(f2, f(s−label)) =
1

N

∑

i,j

(
f(s−g)(i, j) −f(s−label)(i, j)

)2
,

(8)

L(s−G)(f2, f(s−label))

=
1

N

∑

i,j

(
|
|
|
∇xf(s−g)(i, j) − ∇xf(s−label)(i, j)

|
|
|

+
|
|
|
∇yf(s−g)(i, j) − ∇yf(s−label)(i, j)

|
|
|

)
.

Algorithm 1   Three-Stage Training Strategy for SFO-Net
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3.3.2 � Loss function for few‑shot fine‑tuning

In our proposed SOFF framework, the calculation formula 
for Ls during few-shot fine-tuning of SFO-Net is the same as 
the one used during SFO-Net training, while the optical flow 
loss Lo during fine-tuning is calculated as the intensity loss 
of the optical flow map combined with the Lo from the SFO-
Net training phase. The image prediction loss Lp is defined as 
follows:

where L(p−I)(It, Ît) represents the intensity loss for the image, 
and L(p−G)(It, Ît) represents the gradient loss for the image. 
These losses are the same as the intensity loss L(s−I) and the 
gradient loss L(s−G) used during the training of the SFO-Net.

Finally, the total loss function Ltotal during few-shot fine-
tuning is defined as follows:

(9)Lp(It, Ît) = L(p−I)(It, Ît) + L(p−G)(It, Ît),

(10)Ltotal = Lp + �Ls + �Lo,

where � and � are weighting hyper-parameters. We set � to 
0.5 and � to 1 in our experiments. We use the total loss Ltotal 
to update the parameters � of the anomaly detection model.

4 � Experiments

4.1 � Dataset

The aim of this paper is to adapt the model to new scenarios 
with only a small number of fine-tuning samples, enabling it 
to detect anomalous events in previously unseen scenes. This 
setup requires that the training and testing videos come from 
different scenes. To validate the effectiveness of the SOFF 
framework, we use several popular and challenging datasets.

Shanghai Tech [20] contains 330 training videos with only 
normal events and 107 testing videos featuring anomalies like 
chasing or cycling. It spans 13 different scenes.

UCF Crime [21] is a large-scale dataset with 1,900 videos. 
The training set includes both 800 normal and 810 abnormal 
videos, while the testing set has 150 normal and 140 abnormal 
videos. It features 13 types of anomalies, such as theft and 
explosions, across diverse and complex scenes.

UCSD Ped1 [15] includes 34 training videos and 36 testing 
videos, all from the same scene, showing normal pedestrian 
activities and anomalies like walking on grass.

UCSD Ped2 [15] has 16 training and 12 testing videos, 
featuring lateral pedestrian movements with similar anomalies 
to UCSD Ped1.

CUHK Avenue [22] comprises 16 training and 21 test-
ing videos from the same scene at different times. Normal 
activities involve pedestrian movement, with test set anomalies 
including running and littering. Some anomalies are simulated, 
and camera shake adds complexity.

In our experiments, Shanghai Tech and UCF Crime datasets 
are used for training, respectively. UCSD Ped1, UCSD Ped2, 
and CUHK Avenue datasets are used only for testing, provid-
ing a few samples for fine-tuning the pre-trained model.

4.2 � Evaluation metrics

We use a frame prediction model trained only on normal sam-
ples, which can accurately predict future frames for normal 
scenarios. During testing, anomalies result in significant dif-
ferences between predicted and actual frames. By comparing 
these differences, we identify anomalies.

To compute the anomaly score for each frame, we calcu-
late the Peak Signal-to-Noise Ratio (PSNR) between the pre-
dicted future frame f̂  and the actual future frame f  , denoted as 
P(f̂ , f ) . The PSNR is given by the following formula:

Table 1   Comparison of K-shot (K = 0; 1; 10) scene-adaptive anom-
aly detection under the cross-dataset testing setting

We use the Shanghai Tech dataset for pre-training, reporting results in 
the form of AUC (%). Note that K = 0 represents the models are only 
pre-trained without any fine-tuning
The best performing results are marked in bold, while the second-best 
results are marked with an underline

Dataset Methods 0-shot 1-shot 10-shot

UCSD Ped1 rGAN [16] (Finetune) 73.1 76.99 78.23
rGAN [16] (Meta) 73.1 80.6 82.38
MPN [17] (Meta) 74.45 78.54 80.20
ADNet [43] (Meta) – 82.23 85.42
Ours-UNet-3layer 73.20 78.49 79.44
Ours-UNet-4layer 78.35 80.83 82.65

UCSD Ped2 rGAN [16] (Finetune) 81.95 85.64 91.11
rGAN [16] (Meta) 81.95 91.19 92.8
MPN [17] (Meta) 90.17 94.46 95.75
AADNet [18] (Meta) – 92.76 94.42
VADNet [19] (Meta) – 93.96 95.12
ADNet [43] (Meta) – 94.52 94.82
Ours-UNet-3layer 91.10 93.97 96.36
Ours-UNet-4layer 90.23 95.52 95.98

CUHK Avenue rGAN [16] (Finetune) 71.43 75.43 77.77
rGAN [16] (Meta) 71.43 76.58 78.79
MPN [17] (Meta) 74.06 78.92 81.69
AADNet [18] (Meta) – 78.88 80.59
VADNet [19] (Meta) – 80.83 82.62
ADNet [43] (Meta) – 83.71 85.33
Ours-UNet-3layer 76.89 81.22 84.63
Ours-UNet-4layer 80.67 81.85 85.72



Few‑shot fine‑tuning with auxiliary tasks for video anomaly detection﻿	 Page 9 of 14    127 

where MAX is the maximum pixel value of the image.
Next, for a test video segment consisting of t frames, we 

compute t PSNR values P(f̂ t, f t) for each frame. These PSNR 
values are then normalized to obtain P̄(f̂ t, f t) , ensuring that 
the results are constrained within the range [0, 1] . The nor-
malization is performed using the min–max normalization 
method, as described in the following formula:

The value of P̄(f̂ t, f t) , used as the anomaly score, reflects 
the degree of anomaly in a frame. By comparing it with a 
threshold, we can determine whether a frame is anomalous. 
To evaluate the model’s anomaly detection performance on 
the dataset, we use the AUC (Area Under the Curve) based 
on P̄(f̂ t, f t) as the evaluation metric, following previous 
works [16–19]. The AUC is calculated as the area under the 
Receiver Operating Characteristic (ROC) curve, which is 
obtained by varying the threshold of the anomaly scores. A 
higher AUC indicates better performance in distinguishing 
between normal and anomalous samples. In the experiments, 
we report results using the AUC (%).

4.3 � Implementation details

We conducted our experiments using the PyTorch frame-
work. During the pre-training phase of the frame prediction 
model, all input frames were resized to 256 × 256 , with a 
batch size of 16 and a base learning rate of 0.0002. Other 
configurations followed the default settings described in the 
anomaly detection model [5], except for the optical flow 
and discriminator settings, which were not used during the 
pre-training of our anomaly detection model. In the testing 
phase, for the UCSD Ped2 and CUHK Avenue datasets, we 
resized the input frames to 256 × 172 . For the UCSD Ped1 
dataset, which has smaller original dimensions of 238 × 158 , 
we resized the input frames to 236 × 156 . In this experiment, 
the number of consecutive frames n fed into the model was 
set to 4. It is worth noting that, in the experiments and visu-
alization examples presented in this paper, unless otherwise 
specified, we use the Ours-UNet-3layer model pre-trained on 
the Shanghai Tech dataset for ablation studies and visualiza-
tion generation.

(11)P(f̂ , f ) = 10 ⋅ log10

(
MAX2

MSE

)

,

(12)MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

‖
‖
‖
f̂ (i, j) − f (i, j)

‖
‖
‖

2

,

(13)P̄(f̂ t, f t) =
P(f̂ t, f t) −mint P(f̂

t, f t)

maxt P(f̂
t, f t) −mint P(f̂

t, f t)
.

4.4 � Performance comparison

We conducted experiments to evaluate the fine-tuning per-
formance of the SOFF framework when adapting to new 
scenes. For comparison, we selected related works on few-
shot scene-adaptive anomaly detection tasks [16–19]. The 
anomaly detection model was pre-trained separately on the 
Shanghai Tech and UCF Crime datasets. We then tested the 
SOFF framework’s fine-tuning performance on three previ-
ously unseen datasets: UCSD Ped1, UCSD Ped2, and CUHK 
Avenue. Only a small number of samples from these datasets 
were used for fine-tuning the model.

The comparison results are presented in Tables 1 and 2. 
When using the model pre-trained on the Shanghai Tech 
dataset, as shown in Table 1, our method achieved outstand-
ing performance in the 10-shot setting on the UCSD Ped2 
and CUHK Avenue datasets. When using the model pre-
trained on the UCF Crime dataset, as shown in Table 2, our 
method outperformed previous methods on UCSD Ped1 
and UCSD Ped2 and achieved near-optimal performance 
on CUHK Avenue. Additionally, across the aforementioned 
cross-scene settings, our SOFF framework demonstrated 
a significant improvement when transitioning from 0-shot 
to 10-shot scenarios. Furthermore, both versions of our 

Table 2   Comparison of K-shot (K = 0; 1; 10) scene-adaptive anom-
aly detection under the cross-dataset testing setting

We use the UCF Crime dataset for pre-training, reporting results in 
the form of AUC (%). Note that K = 0 represents the models are only 
pre-trained without any fine-tuning
The best performing results are marked in bold, while the second-best 
results are marked with an underline

Target Methods 0-shot 1-shot 10-shot

UCSD Ped1 rGAN [16] (Finetune) 66.87 71.70 74.68
rGAN [16] (Meta) 66.87 78.44 81.62
MPN [17] (Meta) 75.52 77.19 79.53
Ours-UNet-3layer 74.35 77.39 79.77
Ours-UNet-4layer 76.01 78.51 82.21

UCSD Ped2 rGAN [16] (Finetune) 62.53 65.58 78.32
rGAN [16] (Meta) 62.53 83.08 90.21
MPN [17] (Meta) 86.04 88.43 89.89
AADNet [18] (Meta) – 87.62 90.28
VADNet [19] (Meta) – 88.20 90.40
Ours-UNet-3layer 90.85 92.65 95.41
Ours-UNet-4layer 90.98 91.88 94.69

CUHK Avenue rGAN [16] (Finetune) 64.32 66.70 70.61
rGAN [16] (Meta) 64.32 72.62 79.02
MPN [17] (Meta) 82.26 85.62 85.91
AADNet [18] (Meta) – 79.84 81.30
VADNet [19] (Meta) – 80.20 81.90
Ours-UNet-3layer 73.84 80.41 85.73
Ours-UNet-4layer 79.05 80.84 85.03
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anomaly detection model, Ours-UNet-3layer and Ours-
UNet-4layer, exhibited strong performance in Tables 1 and 
2, further validating the versatility and effectiveness of the 
proposed SOFF framework.

To further demonstrate the effectiveness of the SOFF 
framework, we visualized some predicted images in Fig. 4. 
As illustrated, our method significantly reduces prediction 
errors compared to models without fine-tuning. Addition-
ally, in non-anomalous areas, our method exhibits lower 
prediction errors than the model without fine-tuning. This 
improvement allows the model to better predict normal 
regions, concentrating prediction errors in anomalous areas. 
Consequently, this enhances the model’s ability to distin-
guish between normal and abnormal conditions.

4.5 � Ablation study

4.5.1 � Effectiveness of each component

To evaluate the effectiveness of each component of the 
SFO-Net, we tested its performance by systematically 
removing each part. When the optical flow branch was 
removed, we also removed the OSF block since it links to 

Fig. 4   The visualization of 
prediction result. The first 
column shows the real frames. 
The second column displays 
the prediction errors from the 
pre-trained model without fine-
tuning, where highlighted areas 
indicate the differences between 
the predicted frames and the 
real frames. The third column 
presents the prediction errors 
after fine-tuning with the SOFF 
framework

Table 3   Ablation studies of three parts of the proposed SFO-Net 
when evaluated on the UCSD Ped2

The best performing results are marked in bold, while the second-best 
results are marked with an underline

Optical flow Segmentation OSF UCSD Ped2 
(1-shot)

UCSD 
Ped2 (10-
shot)

× × × 92.15 93.46
✓ × × 92.93 95.82
× ✓ × 92.61 94.37
✓ ✓ × 93.62 96.04
✓ ✓ ✓ 93.97 96.36

Fig. 5   The segmentation maps 
predicted by the SFO-Net. The 
first column shows the RGB 
images. The second column 
presents the segmentation maps 
output without processing by 
the OSF block, and the third 
column shows the segmentation 
maps output with processing by 
the OSF block
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both the optical flow and segmentation branches, leaving 
only the segmentation branch for predicting segmenta-
tion maps. Similarly, removing the segmentation branch 
also removed the OSF block, leaving just the optical flow 
branch to predict optical flow maps. Without the OSF 
block, both branches remained to predict their respective 
maps independently. Using a model pre-trained on the 
Shanghai Tech dataset, we conducted few-shot fine-tuning 
tests on the UCSD Ped2 dataset. The results are presented 
in Table 3. Notably, the first row, which does not use the 
SOFF framework, serves as the baseline and represents 
the standard fine-tuning method. Both the segmentation 
and optical flow branches improved performance over the 
baseline, indicating that spatial and temporal informa-
tion enhances the fine-tuning process. Combining both 
branches further boosted performance, demonstrating their 
complementarity. The inclusion of the OSF block yielded 
the best results, enhancing feature fusion and improving 
segmentation accuracy during fine-tuning.

To further illustrate the effectiveness of the OSF block, 
we visualized several segmentation maps predicted by 
the SFO-Net in Fig. 5. As shown, with the inclusion of 
the OSF block, the SFO-Net can accurately segment even 
smaller objects. This demonstrates that the OSF block can 
effectively integrate features from both the optical flow 
branch and the segmentation branch, enhancing the final 
segmentation maps.

We utilized a model pretrained on the UCF Crime data-
set and fine-tuned on the UCSD Ped2 dataset to detect var-
ious types of anomalies. As shown in Fig. 6, the model is 

able to accurately detect diverse anomalies, such as theft, 
road accidents, and explosions. This demonstrates the fine-
tuned model’s strong adaptability and applicability across 
a range of real-world scenarios.

4.5.2 � Effectiveness of training strategy

To assess the impact of different training strategies on the 
SFO-Net’s fine-tuning performance, we tested one-stage, 
two-stage, and three-stage training methods. In the one-stage 
training approach, the entire SFO-Net is trained simulta-
neously. For the two-stage training, the process begins by 
training only the optical flow branch while keeping the 
other parameters frozen. In the second stage, the opti-
cal flow branch is frozen, and the training focuses on the 
segmentation branch and the OSF block. The three-stage 
training method involves a sequential approach: initially, the 
optical flow branch is trained with the rest of the network 

Fig. 6   Visualization of predic-
tion results for different types 
of anomalies. From left to right, 
the anomaly types are theft, 
road accidents, and explosion. 
The first row shows the ground 
truth frames, where the red 
boxes highlight the anoma-
lous regions. The second row 
presents the corresponding 
prediction errors generated by 
the model

Table 4   Comparison of different training strategies

The best performing results are marked in bold, while the second-best 
results are marked with an underline

Training strategy UCSD Ped2 (1-shot) UCSD 
Ped2 (10-
shot)

One-stage 93.76 95.13
Two-stage 93.45 95.69
Three-stage 93.97 96.36
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frozen; next, the segmentation branch is trained while freez-
ing the remaining parts; finally, the OSF block is trained 
independently.

We used the Shanghai Tech dataset to pre-train the anom-
aly detection model and evaluated the performance of differ-
ent training strategies for the SFO-Net on the UCSD Ped2 
dataset during few-shot fine-tuning. As listed in Table 4, the 
three-stage training strategy achieved the best performance. 
This indicates that progressively training each part of the 
network enhances training stability and ensures that each 
component learns effectively for its specific task, thereby 
improving the overall fine-tuning performance.

5 � Conclusion

In this paper, we tackle the challenge of few-shot scene-
adaptive anomaly detection by introducing a frame-
work called Segmentation and Optical Flow Fine-tuning 
(SOFF). This framework allows existing anomaly detec-
tion models to be fine-tuned to adapt to new scenes with 
just a few samples from those new scenes. It is worth 
noting that the SOFF framework can be widely applied 
to existing anomaly detection models with image-based 
outputs. To realize this, we integrate a network called 
SFO-Net into the SOFF framework. This network is then 
cascaded with existing anomaly detection models to per-
form two auxiliary tasks: segmentation and optical flow 
estimation. SFO-Net operates in a self-supervised man-
ner, generating segmentation and optical flow maps based 
on predicted and actual frames to calculate loss, thereby 
leveraging rich temporal and spatial information. Exten-
sive experiments demonstrate that, after fine-tuning with 
the SOFF framework, existing models can adapt well to 
new scenes. Further ablation studies reveal that the tasks 
of segmentation and optical flow estimation are comple-
mentary, jointly enhancing the few-shot generalization 
ability of the SOFF framework. After training SFO-Net, 
the SOFF framework can be applied to existing anomaly 
detection models with image-based outputs, demonstrating 
significant practical value.
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