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Abstract—No-service rail surface defect (NRSD) segmentation
plays a key role in industrial intelligent manufacturing to achieve
pixel-level defect localization and ensure the quality of rails.
However, the unique properties of no-service rails, such as
blurred boundaries and limited semantic information, make
surface defect segmentation extremely challenging. In this paper,
we introduce the Pyramid Vision Transformer (PVT) to NRSD
segmentation, and propose a novel transformer-based Ordered
Cross-scale Interaction Network (OCINet). The core of OCINet is
the global-local-global strategy. Obviously, a transformer back-
bone is arranged to extract global features. Subsequently, three
cross-scale interaction modules, including Cross-scale Chan-
nel Interaction Module (CCIM), Cross-scale Spatial Interac-
tion Module (CSIM), and Cross-scale Pixel Interaction Module
(CPIM), are employed to achieve ordered channel, spatial, and
pixel interactions of defect features across adjacent scales. Among
them, CCIM and CSIM are used for local interaction, while
CPIM is used for global interaction. These modules not only
locate the defect regions, but also model the pixel by pixel
relationships between defect regions and backgrounds, generating
discriminative features for defect segmentation. Comprehensive
experiments and analysis on the NRSD-MN dataset, which con-
tains 4,101 NRSD images, indicate that our OCINet outperforms
19 state-of-the-art methods, achieving 68.7% in mean IoU and
78.3% in mean Dice. The code and results of our method are
available at https://github.com/MathLee/OCINet.

Index Terms—Surface defect segmentation, no-service rail,
transformer, cross-scale interaction.

I. INTRODUCTION

SURFACE defect segmentation is an indispensable part
of industrial manufacturing. It precisely locates defect

regions at the pixel level, making it more accurate and
challenging than the detection task [1], [2]. To every country
in the world, railway transportation is important. For railway
transportation, the inspection of on-track rails is very important
for railway safety [3], [4]. Similarly, the manufacturing process
and quality inspection of no-service rails are also crucial [5].
The on-track rails refer to the steel rails that have already
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Fig. 1. Typical example scenes of natural images and NRSD images.

been laid on the railway, while the no-service rails refer to
steel rails that are still in the production factory [5]. In this
paper, we focus on the latter one, i.e., No-Service Rail Surface
Defect (NRSD) segmentation [5]–[7], to improve the yield rate
and ensure the quality of rails in the production workshop.
With technological advancements, industrial manufacturing is
becoming increasingly intelligent [8], and the requirements for
segmentation accuracy are becoming more stringent. There-
fore, we are committed to developing an intelligent and high-
performance NRSD segmentation method.

Due to the unique characteristics of the acquisition scene,
NRSD images differ significantly from natural images [5],
[10]. As shown in Fig. 1, natural images have rich colors and
clear textures and details, with well-defined semantics for the
objects. NRSD images contain minimal semantic information,
with monotonous colors, low contrast, low illumination, and
cluttered scenes. The defect regions exhibit varying manifes-
tations, random locations, irregular shapes, various sizes, and
blurred boundaries. These unique properties of NRSD images
and defect regions put classical natural image segmentation
methods [11]–[13] in a dilemma (as shown in Tab. I), and
also hinder the development of NRSD segmentation.

In the era of deep learning, data shortage poses obstacles
to NRSD segmentation. With the introduction of the NRSD-
MN dataset [5], NRSD segmentation has ushered in a turning
point, with a multitude of methods emerging. The attention
mechanism [5], weakly supervised learning [6], and attention
normalization [7] have been introduced into specialized NRSD
segmentation methods, significantly improving segmentation
accuracy. However, these specialized methods have limitations.
Firstly, they are all based on Convolutional Neural Network
(CNN) backbones, such as ResNet [14] and DenseNet [15],
which is not conducive to modeling the complex relationship
between defects and backgrounds. Secondly, their feature
enhancement manners are relatively simple, focusing only on
local or global enhancement, and cannot effectively highlight
the defect regions. The limited feature extraction capabilities
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and single feature enhancement manners are suboptimal for
NRSD images [5]–[7].

Inspired by the above observations, in this paper, we develop
a novel global-local-global strategy to improve the capabili-
ties of relationship modeling and feature enhancement. With
this strategy, we propose a novel specialized Ordered Cross-
scale Interaction Network (OCINet) for NRSD segmentation.
OCINet is built on the transformer backbone [16], which
differs from the CNN backbones used in previous methods
and is better suitable for handling the unique properties of
NRSD images. Notably, this is the first use of a transformer for
NRSD segmentation to extract the global relationship between
each basic patch of NRSD images. Furthermore, we enhance
features comprehensively, considering both local and global
aspects through cross-scale interactions, which helps highlight
complex and variable defect regions in features.

In particular, our OCINet is built on the well-known
encoder-decoder framework with the Pyramid Vision Trans-
former (PVT) [16] as the backbone. In addition to the
basic feature extractor (i.e., encoder) and defect reasoner
(i.e., decoder), our OCINet contains three ordered cross-scale
interaction modules: Cross-scale Channel Interaction Module
(CCIM), Cross-scale Spatial Interaction Module (CSIM), and
Cross-scale Pixel Interaction Module (CPIM). All three mod-
ules leverage the complementary information from features at
adjacent scales. They sequentially perform channel, spatial,
and pixel interactions to respectively locate defects, outline
defects, and model the relationships between defects and
backgrounds. Through these three carefully designed modules,
as shown in Fig. 6, defect regions gradually stand out from
the cluttered background and become obvious. By perfectly
integrating novel modules with a well-known framework, our
OCINet breaks the traditional thinking of previous methods,
and achieves promising defect segmentation accuracy.

Our main contributions are summarized as follows:

• We explore NRSD segmentation using the transformer
for the first time, and propose the first transformer-based
specialized NRSD segmentation method, termed OCINet,
with the global-local-global strategy.

• We propose three ordered cross-scale interaction mod-
ules, namely CCIM, CSIM, and CPIM, to perform tai-
lored channel, spatial, and pixel interactions on defect
features. CCIM determines where the defect is, CSIM
perceives what the defect is, and CPIM models how the
relationship between the defect and the background is,
thereby facilitating defect perception and segmentation.

• We evaluate the proposed OCINet on the challenging
NRSD-MN dataset which includes both man-made and
natural NRSDs. Experiments demonstrate the advantages
of our OCINet over three types of comparison methods,
highlight the effectiveness of our modules, and confirm
the superiority of our strategy.

The rest of this paper is organized as follows. In Sec. II,
we introduce the related work of natural image segmentation
and NRSD segmentation. In Sec. III, we detail our proposed
method. In Sec. IV, we conduct extensive experiments. In
Sec. V, we give the conclusion.

II. RELATED WORK

A. Natural Image Segmentation

Natural image segmentation plays an important role in
computer vision and is crucial to understanding images. Deep
learning technology has promoted the development of image
segmentation. A large number of excellent methods have
emerged [17]–[19]. As a representative work, Long et al. [11]
broke through traditional thinking and proposed the subversive
Fully Convolutional Network (FCN), which is the first deep
learning-driven end-to-end segmentation method. Similar to
the skip operation of FCN, Badrinarayanan et al. [12] con-
nected the encoder and the decoder through the skip operation
in the well-known SegNet, and transferred the encoder features
and pooling indices to the decoder. The encoder-decoder
architecture of SegNet has brought a huge impact on other
related dense prediction tasks [7], [20]–[22].

With the rapid development of natural image segmenta-
tion, Chen et al. [13] introduced the atrous convolution to
the semantic segmentation and made a pyramid structure to
capture multi-scale information, boosting the performance.
Fu et al. [23] modeled the global spatial and channel interde-
pendencies using the position and channel attention modules
from local features in DANet. Xie et al. [24] proposed a
simple yet powerful semantic segmentation framework, termed
SegFormer, which combines transformers with lightweight
multilayer perceptron decoders. During the same period,
Strudel et al. [25] constructed a semantic segmentation model
based on visual transformers, named Segmenter, for capturing
contextual information. SegFormer and Segmenter marked
the beginning of segmentation models based on transformers.
Kirillov et al. [26] proposed the famous foundation model
for segmentation, named Segment Anything Model (SAM).
SAM is versatile, supporting various types of segmentation
prompts, including mask, point, bounding box, or text, and
has the ability to generalize to unfamiliar objects and images
without additional training.

In addition to the above methods that focus on segmentation
performance, researchers also pay attention to model complex-
ity and weak supervision learning. For example, Lu et al. [27]
introduced a token reduction approach, i.e., content-aware
token sharing, to improve the computational efficiency of
semantic segmentation networks that use vision transformers.
Norouzi et al. [28] analyzed the similarities between intra- and
inter-class tokens within local windows and across network
layers to achieve another effective token reduction method.
Shi et al. [29] proposed the unified multi-feature fusion mod-
ule to efficiently fuse multiple features at a low computational
cost. Lu et al. [30] constructed a three-branch architecture
network with detail branch, semantic branch, compensation
branch, and an efficient aggregation layer. Shi et al. [31] devel-
oped a hybrid and efficient transformer-CNN structure to better
model the long-range and short-range spatial dependence. To
alleviate the problem of difficulty in obtaining pixel-level
labels, Wang et al. [32] solved semantic segmentation with
image-level supervision only, and proposed two co-attentions
to obtain cross-image semantic similarities and differences for
object localization.
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There is a big gap between natural images and NRSD
images in terms of scenes, objects, and backgrounds. General
natural image segmentation methods may not be able to handle
NRSD images well. But we draw inspiration from these classic
methods. Our OCINet is built on the encoder-decoder architec-
ture [12], that is, we carefully enhance features extracted from
the encoder with three cross-scale interaction modules to adapt
to NRSD images, and pass them to the decoder. These three
cross-scale interaction modules can capture local and global
interdependencies.

B. No-Service Rail Surface Defect Segmentation
NRSD segmentation is an essential part of rail production

to ensure the quality of no-service rails. The unique properties
of no-service rails have led researchers to propose many spe-
cialized segmentation methods. For example, Zhang et al. [5]
proposed the first deep learning-based NRSD segmentation
method, which adopts contextual attention to get the local
attention for each pixel. A large-scale dataset of about 4,000
NRSD images is also presented. Li et al. [7] modified the
traditional channel attention through the normalization oper-
ation to adapt to NRSD images, further improving the seg-
mentation accuracy. In addition to the above fully supervised
NRSD segmentation methods, similar to [32] in natural image
segmentation, Zhang et al. [6] made a weakly supervised
attempt on NRSD segmentation, and proposed the pooling
combination module to generate pseudo pixel-level labels from
image-level defect category labels.

With the development of depth sensors, multimodal indus-
trial data can be easily obtained. Wang et al. [33] collected the
first dataset of RGB images and depth images for NRSD seg-
mentation. They implicitly exploited the complementarity of
multimodal images through image concatenation and feature
extraction operations for NRSD segmentation. Zhou et al. [34]
and Huang et al. [35] extracted multimodal features using two
independent networks, and focused on lightweight and fast
segmentation methods.

The strip steel and no-service rail are made of the same
material and the production lines are similar. Therefore, we
introduce some methods for salient object detection of strip
steel surface defects. This task regards defect regions as salient
regions. Zhou et al. [36] first predicted the defect regions,
and then refined them. Han et al. [9] followed this two-stage
strategy, and additionally introduced edge information in these
two stages. Edge information is also taken into account in [37]
and [38]. But in [37], Zhou et al. focused on exploring the
multi-Level interactive information. In [38], Ding et al. ex-
plored the contextual information for feature calibration and
fusion. Shen et al. [39] proposed the multiscale interactive
module, and achieved an extremely lightweight network with
only 0.28M parameters. Differently, Zhou et al. [40] extracted
multi-scale features from multi-resolution strip steel images
instead of from the single images like the above methods.

Since strip steel and no-service rail have different produc-
tion processes, their defect manifestations are different. The
methods of strip steel cannot be transferred to no-service rails
well. As for the specialized NRSD segmentation methods [5]–
[7], their feature extractors are all CNN backbones (such as
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Fig. 2. Architecture of the proposed OCINet for NRSD segmentation, which
is based on the global-local-global strategy. OCINet consists of a feature
extractor (i.e., encoder), three cross-scale interaction modules, i.e., Cross-scale
Channel Interaction Module (CCIM), Cross-scale Spatial Interaction Module
(CSIM) and Cross-scale Pixel Interaction Module (CPIM), and a defect
reasoner (i.e., decoder). The transformer backbone, i.e., PVT-v2-b2 [16],
extracts the global features. The three modules sequentially perform channel,
spatial, and pixel interactions on defect features. Here, CCIM and CSIM are
for local enhancement, while CPIM is for global enhancement. The defect
reasoner gradually infers and outlines defect regions. Please zoom in for the
best view.

ResNet and DenseNet), which are not good at modeling the
relationship between different regions of NRSD images. In
addition, some typical operations, such as contextual attention
in [5] and normalized channel attention [7], have room for
improvement in sufficiently enhancing the defect features with
weak semantics. To this end, in our OCINet, we implement the
global-local-global strategy. We adopt the PVT as the feature
extractor to achieve the global defect features. We also pro-
pose three cross-scale interaction modules, i.e., CCIM, CSIM,
and CPIM, to achieve comprehensive feature enhancement at
channel, spatial, and pixel aspects. These efforts make our
OCINet an excellent NRSD segmenter.

III. METHODOLOGY

In this section, we introduce our OCINet. We first give an
overview of our OCINet, then elaborate on our three cross-
scale interaction modules, and finally present the loss function.

A. Network Overview

As illustrated in Fig. 2, our OCINet follows the global-local-
global strategy. It consists of a feature extractor, three cross-
scale interaction modules (i.e., CCIM, CSIM, and CPIM), and
a defect reasoner. Specifically, we adopt the popular PVT-
v2-b2 [16] as the feature extractor to model the global long-
range dependencies between each patch of the complex NRSD
image. The input size of PVT-v2-b2 is 3×352×352. It consists
of four transformer blocks, namely FEi (i ∈ {1, 2, 3, 4}). We
append a convolution layer after each transformer block to
achieve feature adjustment (i.e., unifying the feature channel to
c), generating four-level basic features f i

b ∈ Rc×hi×wi , where
c is 128 and hi/wi = 352

2i+1 . With these global features, we
sequentially perform the channel interaction and the spatial
interaction on them in CCIM and CSIM. CCIM and CSIM are
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Fig. 3. Illustration of the Cross-scale Channel Interaction Module and its
key component of Collaborative Channel Attention Unit. Here, GAPs/GMPs

means the spatial-wise global average/max pooling.

extended from channel and spatial attention mechanisms [41],
responsible for local enhancement. CCIM determines the
defect location in the channel, generating f i

ci. CSIM perceives
the defect in the spatial domain, generating f i

si. Moreover,
we perform the pixel interaction on f i

si in CPIM. CPIM is
extended from the self-attention mechanism [23], responsible
for global enhancement. It models the pixel-level relationships
between defects and backgrounds, generating f i

pi. This ordered
and comprehensive feature interaction allows the defect re-
gions to gradually emerge from f i

b, enabling accurate defect
segmentation in the defect reasoner with four blocks (i.e., DRi,
i ∈ {1, 2, 3, 4}) and four segmentation heads (SegHeads), as
shown at the bottom of Fig. 2.

B. Cross-scale Channel Interaction Module

It is well-known that the coordination of global and local
information plays a crucial role in achieving high segmentation
performance. Since f i

b extracted from PVT contains rich
global information, we aim to perform local enhancement on
it to achieve a balance between global and local information.
Since the channel attention mechanism [41] is a commonly
used local enhancement operation for natural images, it may
not be sufficient for defect feature enhancement. Therefore,
we extend the vanilla channel attention to a cross-scale and
grouping scheme, proposing the Cross-scale Channel Interac-
tion Module to achieve more suitable local enhancement for
defect features.

Taking CCIM1 as an example, we illustrate its de-
tailed structure in Fig. 3. The inputs of CCIM1 are f1

b

and f2
b . To explore the cross-scale complementary infor-

mation, we here adopt the separation-recombination strat-
egy to process f1

b and f2
b . Specifically, we perform chan-

nel split on f1
b and f2

b respectively, and get two fea-
ture groups, i.e., {f1,1

b ,f1,2
b ,f1,3

b ,f1,4
b } ∈ R c

4×h1×w1 and
{f2,1

b ,f2,2
b ,f2,3

b ,f2,4
b } ∈ R c

4×h2×w2 . Subsequently, the four
features in the two groups are paired together to obtain four
feature subsets, i.e., {f1,1

b ,f2,1
b }, {f

1,2
b ,f2,2

b }, {f
1,3
b ,f2,3

b },
and {f1,4

b ,f2,4
b }.

These four feature subsets are processed by the Collabora-
tive Channel Attention Unit (CCAU). CCAU is an upgraded
version of channel attention. This unit identifies channels
crucial for NRSD segmentation by leveraging the correlation

between cross-scale features. Its structure is shown on the
right side of Fig. 3. Taking {f1,4

b ,f2,4
b } for example, we

perform the spatial-wise global average pooling and global
max pooling on f1,4

b , getting {f1,4
ba ,f

1,4
bm} ∈ R c

4×1×1. With
the same operations, we obtain {f2,4

ba ,f
2,4
bm} ∈ R c

4×1×1 from
f2,4
b . Then, we concatenate f1,4

ba with f2,4
ba , and f1,4

bm with f2,4
bm

along the channel dimension. To further strengthen channel
interactions, we perform the channel shuffle on the two groups
of concatenated features. Similar to the traditional channel
attention, as shown in the CCAU of Fig. 3, we sequentially
perform two Fully Connected (FC) layers, summation, and
the sigmoid activation function to obtain the channel attention
map, i.e., ca4 ∈ R c

2×1×1. ca4 is the result of the interaction
of cross-scale features and has a strong ability to identify
important channels. It is separated into ca1,4 ∈ R c

4×1×1 and
ca2,4 ∈ R c

4×1×1 through channel split. ca1,4 and ca2,4 then are
used to enhance the corresponding f1,4

b and f2,4
b by multipli-

cation, producing the output of CCAU, i.e., f1,4
ci ∈ R c

4×h1×w1

and f2,4
ci ∈ R c

4×h2×w2 .
After all four feature subsets are processed in CCAUs,

we get four enhanced feature subsets, i.e., {f1,1
ci ,f

2,1
ci },

{f1,2
ci ,f

2,2
ci }, {f

1,3
ci ,f

2,3
ci }, and {f1,4

ci ,f
2,4
ci }. Finally, we per-

form channel concatenation on f1,1
ci , f1,2

ci , f1,3
ci , and f1,4

ci ,
getting one output of CCIM1, i.e., f1

ci ∈ Rc×h1×w1 . Similarly,
we obtain the another output of CCIM1, i.e., f̄2,1

ci ∈ Rc×h2×w2 .
Following CCIM1, CCIM2 produces f̄2,2

ci and f̄3,1
ci , and

CCIM3 outputs f̄3,2
ci and f4

ci. Notably, as shown Fig. 2, we
employ the fusion unit (i.e., the summation and a convolution
layer) to integrate f̄2,1

ci and f̄2,2
ci , and f̄3,1

ci and f̄3,2
ci , getting

f2
ci ∈ Rc×h2×w2 and f3

ci ∈ Rc×h3×w3 . In this way, all basic
global features are enhanced in the channel to express defects.

C. Cross-scale Spatial Interaction Module

The single channel interaction is insufficient for local en-
hancement [41]. Similar to CBAM [41], we further employ
spatial interaction and extend the vanilla spatial attention to
a cross-scale and grouping scheme. Therefore, we propose
the Cross-scale Spatial Interaction Module to achieve spa-
tial enhancement for defect features. Taking CSIM1 as an
example, we illustrate its detailed structure in Fig. 4. The
inputs of CSIM1 are f1

ci and f2
ci. Similar to CCIM, we also

implement the separation-recombination strategy in CSIM. In
contrast, this strategy is executed in the spatial dimension
(i.e., the height dimension). We first align the dimensions of
f1
ci and f2

ci, and upsample f2
ci to c×h1×w1. Then, through

the separation-recombination strategy, we obtain two feature
subsets, i.e., {f̂1,1

ci , f̂
2,1
ci } ∈ Rc×h1

2 ×w1 and {f̂1,2
ci , f̂

2,2
ci } ∈

Rc×h1
2 ×w1 .

These two feature subsets are processed by the Collabo-
rative Spatial Attention Unit (CSAU). This unit can outline
the defect regions in the features through cross-scale and
cross-space interactions. Its structure is shown on the right
side of Fig. 4. Taking {f̂1,2

ci , f̂
2,2
ci } for example, we first

concatenate them along the height dimension. Then, similar
to the traditional spatial attention, we sequentially perform the
parallel channel-wise global average pooling and global max
pooling, the channel concatenation, a convolution layer, and
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Fig. 4. Illustration of the Cross-scale Spatial Interaction Module and its key
component of Collaborative Spatial Attention Unit. Here, Concatc/s means
the channel/spatial concatenation, and GAPc/GMPc means the channel-wise
global average/max pooling.

the sigmoid activation function to obtain the spatial attention
map, i.e., sa2 ∈ R1×h1×w1 . Such spatial interaction can
learn common defect regions on cross-scale features, giving
sa2 a powerful ability to outline the spatial shape of defect
regions. It is separated along the height dimension, generating
sa1,2 ∈ R1×h1

2 ×w1 and sa2,2 ∈ R1×h1
2 ×w1 . They are used to

enhance the corresponding f̂1,2
ci and f̂2,2

ci by multiplication,
generating the output of CSAU, i.e., f1,2

si ∈ Rc×h1
2 ×w1 and

f2,2
si ∈ Rc×h1

2 ×w1 .
After all feature subsets are processed in CSAUs, we

obtain two enhanced feature subsets, i.e., {f1,1
si ,f

2,1
si } and

{f1,2
si ,f

2,2
si }. Finally, we perform spatial concatenation on

{f1,1
si ,f

1,2
si } and {f2,1

si ,f
2,2
si }, and additionally downsample

the latter subset, obtaining outputs of CSIM1, i.e., f1
si ∈

Rc×h1×w1 and f̄2,1
si ∈ Rc×h2×w2 . Following CSIM1, we get

f̄2,2
si and f̄3,1

si from CSIM2, and f̄3,2
si and f4

si from CSIM3.
As shown in Fig. 2, we also fuse f̄2,1

si and f̄2,2
si , and f̄3,1

si

and f̄3,2
si through fusion units, getting f2

si ∈ Rc×h2×w2 and
f3
ci ∈ Rc×h3×w3 . Moreover, the basic features f i

b are added to
f i
si, generating f i

cs ∈ Rc×hi×wi . In this way, f i
cs can perceive

and highlight defect regions in detail.

D. Cross-scale Pixel Interaction Module

CCIM and CSIM enhance f i
b locally in the channel and

spatial. f i
cs can effectively characterize the defect regions. We

further introduce global interaction to model the relationship
between the defect region and the background in f i

cs, making
the defect region more prominent. Thus, we propose the Cross-
scale Pixel Interaction Module, which extends the vanilla self-
attention to the cross-scale and channel-wise scheme.

Taking CPIM1 as an example, we illustrate its detailed
structure in Fig. 5. The inputs of CPIM1 are f1

cs and f2
cs. We

first downsample f1
cs to match the size of f2

cs, i.e., c×h2×w2.
For convenience, we here denote the size of f1

cs as c×h×w1,
and the size of f2

cs as c×h×w2, where w1 equals to w2, as
shown in Fig. 5. Then, similar to the vanilla self-attention, we
get {Q,V 1} ∈ Rc×h×w1

from f1
cs, and {K,V 2} ∈ Rc×h×w2

𝒇pi
1

𝒇cs
1 𝒇cs

2

K
V2V1

ConvConv ConvConv

Attention Score

Transpose

𝑐 × ℎ × 𝑤1

Transpose

𝛽

Sum

Downsample

Upsample

Softmax

Conv

Softmax

MatMul

Conv

Sum

MatMul

𝒇cs
1 𝒇cs

2

Q
𝑐 × ℎ × 𝑤2

(𝑤1= 𝑤2)
𝑐 × 𝑤1 × ℎQ⊺

𝑐 × 𝑤1 ×𝑤2A

𝛼

CPIM1 𝒇pi
2,1

Fig. 5. Illustration of the Cross-scale Pixel Interaction Module.

from f2
cs. The attention score, i.e., A ∈ Rc×w1×w2

, is obtained
by performing channel-wise matrix multiplication (denoted as
~) on Q> and K1, which is different from that in the vanilla
self-attention. The attention score A models the pixel-level
relationships between the defect region and the background.
We transfer the relationship encoded in A to V 1 and V 2
through ~. The subsequent operations are the same as in
vanilla self-attention, except that we upsample the downsam-
pled features to align their sizes, as shown in Fig. 5. In this
way, we get the output of CPIM1, denoted as f1

pi ∈ Rc×h×w1

(i.e., Rc×h1×w1 ) and f2,1
pi ∈ Rc×h×w2

(i.e., Rc×h2×w2 ). The
computational complexity of ~ is significantly smaller than
that of the original matrix multiplication, achieving a balance
between effectiveness and efficiency.

Following CPIM1, we get f2,2
pi and f3,1

pi from CPIM2,
and f3,2

pi and f4
pi from CPIM3. As shown Fig. 2, we also

fuse f2,1
pi and f2,2

pi , and f3,1
pi and f3,2

pi through fusion units,
getting f2

pi ∈ Rc×h2×w2 and f3
pi ∈ Rc×h3×w3 . Through the three

modules, the discriminative feature f i
pi contains rich local and

global information, which is beneficial to the subsequent defect
segmentation in the defect reasoner.

E. Loss Function

As shown in Fig. 2, the defect reasoner is composed of four
DR blocks. For DR2, DR3, and DR4 blocks, there are two
convolution layers, a dropout layer with the hyper-parameter
of 0.5, and a deconvolution layer in sequence. DR1 block
contains only two convolution layers. The final segmentation
map S1 with the size of 352×352 and three side segmentation
maps S2, S3, and S4 with the size of 352×352 are all
generated using SegHeads and upsampling operations. Here,
the SegHead is a regular convolution layer with the kernel size
of 3×3.

For these segmentation maps, we adopt the widely used
deep supervision strategy [45] in the training phase. Moreover,

1Q> ~K = R(c×w1×h)~(c×h×w2) = Rc×(w1×h)~(h×w2) = Rc×w1×w2
.
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TABLE I
QUANTITATIVE COMPARISONS (%) WITH STATE-OF-THE-ART METHODS. THE BEST TWO RESULTS ARE MARKED IN RED AND BLUE, RESPECTIVELY.

Methods Backbone #Param FLOPs Speed Man-made (965) Natural (165)
(M)↓ (G)↓ (FPS)↑ PA↑ wFm↑ IoU↑ Dice↑ PA↑ wFm↑ IoU↑ Dice↑

UNet15 [42] VGG 31.04 91.34 213 79.8 79.9 66.4 78.1 64.0 68.7 57.2 66.5
FCN15 [11] VGG 18.64 40.58 264 79.3 78.2 64.8 77.1 59.9 65.2 53.3 63.5

SegNet17 [12] VGG 29.44 75.82 194 75.8 76.8 62.3 74.8 57.6 62.6 50.8 60.5
Deeplabv317 [13] ResNet 16.48 11.88 142 81.1 80.8 67.4 79.1 63.7 68.7 57.3 66.8
SegFormer21 [24] MiT 84.59 47.13 19 77.0 77.2 63.3 75.6 65.9 66.6 55.5 65.6
Segmenter21 [25] ViT 103.15 144.94 32 81.5 83.0 69.2 80.6 69.8 72.9 62.1 71.4
SwinUnet22 [43] SwinT 41.46 21.38 42 78.6 74.6 61.2 74.2 59.3 62.3 50.0 60.8

SAM23 [26] ViT 97.05 385.25 8 83.9 82.8 69.7 81.0 69.8 72.6 61.6 71.1
TransUNet24 [44] ViT 105.57 60.77 47 83.2 82.7 69.6 80.5 72.0 73.5 63.1 72.0

EDRNet20 [36] ResNet 39.31 79.61 47 81.9 82.5 69.0 80.1 68.3 70.8 60.5 69.2
EMINet21 [37] ResNet 99.13 263.87 91 81.7 83.4 69.6 80.7 68.6 71.6 60.7 70.0
TSERNet22 [9] ResNet 189.64 502.36 45 80.7 82.0 68.7 79.6 66.2 69.3 59.3 67.7
DACNet22 [40] ResNet 98.39 269.85 55 77.0 81.2 66.3 77.9 61.7 66.0 55.4 63.7

CSEPNet22 [38] VGG 18.78 110.17 35 81.1 82.9 69.3 80.3 65.1 69.0 59.1 67.2
ICON23 [20] PVT 65.68 61.79 34 84.6 81.5 68.8 80.3 70.8 73.0 62.2 71.9

GeleNet23 [21] PVT 25.45 11.66 83 83.3 83.4 70.2 81.1 70.6 73.4 62.7 71.7
TSCNet24 [22] VGG 103.56 116.61 53 84.5 83.6 70.7 81.5 70.4 72.9 62.4 71.3

MCnet21 [5] DenseNet 38.44 90.29 39 79.4 82.3 68.1 79.7 69.5 73.3 62.6 71.6
NaDiNet23 [7] DenseNet 33.11 34.86 26 84.2 84.4 71.3 82.1 72.5 75.5 65.2 73.6

OCINet (Ours) PVT 29.95 18.82 108 85.4 84.7 71.8 82.4 72.9 76.0 65.5 74.2

we use a hybrid loss function Lhyb containing the pixel-
level binary cross-entropy loss function [46] and the map-
level intersection over union loss functions [47] to supervise
each segmentation map. Binary cross-entropy loss function is
primarily used for pixel-level classification, capturing local
details, while the intersection over union loss focuses more
on the overall structure at the image level. The combination
of the two can pay attention to both local and global features,
thereby improving the segmentation accuracy [7], [9], [38].
We define the total loss function Ltotal as follows:

Ltotal = L1
hyb + L2

hyb + L3
hyb/2 + L4

hyb/4, (1)

Li
hyb = lbce(S

i,G) + liou(S
i,G), (2)

lbce = −
∑W ·H

j=1
[G(j)log(S(j))+

(1−G(j))log(1− S(j))],
(3)

liou = 1−
∑W ·H

j=1 S(j) ·G(j)∑W ·H
j=1 [S(j) +G(j)− S(j) ·G(j)]

, (4)

where lbce and liou are the binary cross-entropy loss function
and the intersection over union loss function, respectively, G
is the ground truth map, and W and H respectively represent
the width and height of G.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conduct quantitative and qualitative experi-
ments on the NRSD segmentation dataset, namely NRSD-MN
dataset [5]. The dataset consists of three subsets, i.e., training
set, validation set, and test set, with a total of 4,101 NRSD
images. There are two types of NRSD images in the NRSD-
MN dataset, including 3,936 man-made NRSD images and
165 natural NRSD images. Here, the man-made NRSD images
refer to that the defects are artificially created through cutting,

grinding, turning, and welding [5]. To be specific, we only use
the training set containing 2,086 man-made NRSD images and
the test set containing 965 man-made NRSD images and 165
natural NRSD images in our experiments, just like [5], [7].

2) Implementation Details: For data processing, we rotate
and flip the training images, and resize them to 352×352
for network training, while retaining the resizing operation
only during network testing. For network implementation, we
achieve our OCINet on the PyTorch platform [48] with an
NVIDIA RTX 3090 GPU (24GB memory). In our OCINet, we
initialize the feature extractor using the pre-trained PVT-v2-b2
parameters and the newly added layers using the “Kaiming”
method [49]. For training hyper-parameters, we adopt the
Adam optimizer [50] for parameter optimization, and set the
batch size, the initial learning rate, the training epoch, and the
decay epoch to 16, 1e−4, 70, and 30, respectively. Notably, the
rationale of hyper-parameter selection refers to the first NRSD
segmentation method MCnet [5] and our previous experience.

3) Evaluation Metrics: We adopt four commonly used
evaluation metrics to comprehensively assess the segmentation
performance in our experiments, including pixel accuracy
(PA) [11], weighted F-measure (wFm) score [51], intersection
over union (IoU) [52], and dice coefficient (Dice) [53]. For all
metrics, the larger the value, the better the performance.

PA [11] represents the ratio of correctly segmented pixels
to total pixels, defined as follows:

PA =

∑1
i=0 pii∑1

i=0

∑1
j=0 pij

, (5)

where pij means the number of pixels that belong to class i
but are predicted to be class j.

wFm [51] is a weighted average of precision and recall,
taking into account the problem of sample imbalance, defined
as follows:

wFm =
(1 + β2) · Precisionw ·Recallw

β2 · Precisionw +Recallw
, (6)
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Fig. 6. Qualitative comparisons with 19 state-of-the-art methods on the NRSD-MN dataset. We omit the ‘net’ suffix from some method names, such as
changing ‘NaDiNet’ to ‘NaDi’. In these segmentation maps, we annotate the correctly segmented pixels as white, the incorrectly segmented pixels as red, and
the missed segmented pixels as green. Please zoom-in for details.

where β2 is set to 1.
IoU [52] is the most representative segmentation metric.

It is the ratio of the intersection and union of the predicted
segmentation map and the ground truth, defined as follows:

IoU =
|S1 ∩G|
|S1 ∪G|

. (7)

Dice [53] is a set similarity measurement function and also
a representative segmentation metric, defined as follows:

Dice =
2|S1 ∩G|
|S1|+ |G|

. (8)

B. Comparison with State-of-the-arts

We compare our OCINet with 19 state-of-the-art meth-
ods of three types, including CNN-based and transformer-
based methods. The first type is the segmentation method
for biomedical and natural images. It has nine methods,
i.e., UNet [42], FCN [11], SegNet [12], Deeplabv3 [13],
SegFormer [24], Segmenter [25], SwinUnet [43], SAM [26],
and TransUNet [44]. The second type is the salient object
detection method for strip steel surface defects, natural images,
and optical remote sensing images. It has eight methods,
i.e., EDRNet [36], EMINet [37], TSERNet [9], DACNet [40],
CSEPNet [38], ICON [20], GeleNet [21], and TSCNet [22].
The third type is the specialized NRSD segmentation method.
It has two methods, i.e., MCnet [5] and NaDiNet [7]. For a fair
comparison, we retrain the first and second types of methods
on the NRSD-MN dataset with default parameter settings until
their losses converge. We then test these retrained methods on
the same test set as ours to obtain segmentation maps for
comparison.

1) Quantitative Comparison: We show the quantitative
comparisons of our OCINet and 19 state-of-the-art methods
in Tab. I. Overall, our OCINet achieves better segmentation
performance than all three types of methods on man-made and
natural NRSD images, no matter whether they are based on
CNN or transformer. Compared with the general segmentation
method, the advantages of our OCINet are obvious, reaching
about 5.0% on man-made NRSD images and about 7.9%
on natural NRSD images. Compared with the salient object
detection method, the advantages of our OCINet are also
outstanding, especially on natural NRSD images, reaching

about 5.2% in IoU and about 5.2% in Dice. The gap between
the specialized NRSD segmentation methods and our OCINet
is also considerable. On man-made images, our OCINet is
6.0% better than MCnet in PA. On natural images, our OCINet
is 0.6% better than NaDiNet in Dice. The segmentation
performance in Tab. I shows that NRSD segmentation has huge
room for development but is also very challenging.

2) Model Complexity Comparison: We report the model
parameters (i.e., #Param), the floating point operations
(i.e., FLOPs), and the inference speed (without I/O time) of all
methods in Tab. I. Overall, our method ranks sixth in terms
of the number of parameters, third in FLOPs, and fifth in
inference speed among all methods. Specifically, compared
to the suboptimal methods (such as NaDiNet, TSCNet, and
TransUNet), our method has fewer parameters than these
three methods, i.e., 29.95M v.s. 33.11M/103.56M/105.57M.
Compared to methods with high FLOPs (such as TSERNet,
SAM, and DACNet), our method outperforms them in seg-
mentation performance. This indicates that the effectiveness of
our method does not stem from an increase in the number of
parameters and FLOPs but rather from the effective design of
the module structure. In terms of inference speed, our method
achieves over 100 frames per second, only inferior to earlier
segmentation methods with simple structures (such as UNet,
FCN, SegNet, and Deeplabv3). We summarize that our method
achieves optimal segmentation performance while maintaining
a small model complexity.

Overall, our method ranks sixth in terms of parameter count,
fourth in computational complexity, and fifth in inference
speed among all methods

3) Qualitative Comparison: We show the qualitative com-
parisons of our OCINet and 19 state-of-the-art methods on
man-made and natural NRSD images in Fig. 6. In these seg-
mentation maps, we annotate the correctly segmented pixels as
white, the incorrectly segmented pixels as red, and the missed
segmented pixels as green. There are several typical NRSD
scenes in Fig. 6, such as irregular, tiny, and multiple defects,
low contrast, low illumination, and cluttered background. We
can observe that the segmentation maps generated by our
method are the most accurate among all comparison methods.
The segmentation maps generated by the general segmentation
methods are the worst among all methods. Their segmentation
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TABLE II
QUANTITATIVE RESULTS (%) OF EVALUATING THE ADVANTAGE OF THE

GLOBAL-LOCAL-GLOBAL STRATEGY.

Models #ParamMan-made (965) Natural (165)
(M)↓ IoU↑ Dice↑ IoU↑ Dice↑

Global-global-local 29.952 71.5 82.1 65.0 73.9

Global-local-global (Ours) 29.952 71.8 +0.3 82.4 +0.3 65.5 +0.574.2 +0.3

maps incorrectly segment the background. The salient object
detection methods can highlight defects, but sometimes defect
regions are incomplete. The specialized segmentation methods
are comparable to our method, but the details of the defects are
still slightly inferior. The results of the qualitative comparison
are basically consistent with those of the quantitative com-
parison, which demonstrates that our method is an excellent
NRSD segmenter.

C. Ablation Studies

We conduct comprehensive ablation studies to evaluate the
effectiveness of each part of our OCINet. Specifically, we
investigate our OCINet from the following three aspects:
1) the advantage of the global-local-global strategy, 2) the
contribution of three modules, and 3) the effectiveness of the
cross-scale interaction scheme in three modules.

1) The advantage of the global-local-global strategy: We
implement the global-local-global strategy in OCINet by exe-
cuting CCIM, CSIM, and CPIM sequentially to achieve chan-
nel, spatial, and pixel interactions. To study the advantage of
the global-local-global strategy, we swap the order of the three
modules to CPIM, CCIM, and CSIM to implement the global-
global-local strategy. The quantitative results are shown in
Tab. II. When the modules are the same, simply swapping the
order in which local and global enhancements are performed
can hurt the performance of our OCINet. Moreover, models
with the global-local-global strategy and global-global-local
strategy have the same number of parameters. This shows that
our carefully designed global-local-global strategy is superior
and also shows the importance of interweaving global and
local enhancements for NRSD segmentation.

2) The contribution of three modules: To evaluate the
contribution of our CCIM, CSIM, and CPIM, we provide
various combinations of these three modules: 1) Base, which
is the simple encoder-decoder framework, 2) Base+CCIM, 3)
Base+CSIM, 4) Base+CCIM+CSIM, and 5) Base+CPIM. We
show the quantitative results in Tab. III. The performance of
the above five variants is worse than the full model. The
individual contribution of CCIM and CSIM responsible for
local enhancement is smaller than CPIM, but their combined
contribution is higher than CPIM. From the perspective of the
number of parameters, CPIM has the largest increase, with
an addition of 1.479M parameters. CCIM and CSIM together
increase the number of parameters by 0.616M, enhancing the
performance of “Base” by 0.5∼1.8%. With all three modules
working together, our full model surpasses “Base” by around
1.0% on man-made images and by around 2.0% on natural
images, with an increase of around 2M parameters. The above

TABLE III
QUANTITATIVE RESULTS (%) OF EVALUATING THE CONTRIBUTION OF

THREE MODULES AND THE EFFECTIVENESS OF THE CROSS-SCALE
INTERACTION SCHEME. C., S., AND P. REPRESENT CCIM, CSIM, AND

CPIM, RESPECTIVELY.

No.Models #ParamMan-made (965) Natural (165)
(M)↓ IoU↑ Dice↑ IoU↑ Dice↑

1 Base 27.857 70.7 81.6 63.4 72.1
2 Base+C. 28.177 71.3 +0.6 82.0 +0.4 64.3 +0.973.0 +0.9

3 Base+S. 28.153 71.2 +0.5 81.9 +0.3 64.3 +0.973.4 +1.3

4 Base+C.+S. 28.473 71.4 +0.7 82.1 +0.5 65.1 +1.773.9 +1.8

5 Base+P. 29.336 71.4 +0.7 82.0 +0.4 64.6 +1.273.6 +1.5

6 Base+vanilla CA 28.177 71.1 81.8 64.0 72.8
7 Base+vanilla SA 28.152 70.7 81.6 64.1 73.2
8 Base+SWSAM [21] 28.154 70.9 81.7 63.9 73.1
9 Base+RSCAM [54] 28.176 71.2 81.9 63.8 72.8

10 Base+LSKM [55] 28.507 71.0 81.7 64.3 73.2
11 Base+C. w/o CS 27.865 70.9 81.6 63.9 72.9
12 Base+S. w/o CS 27.857 70.8 81.6 63.8 72.6
13 Base+P. w/o CS 29.436 71.0 81.8 63.7 72.5
14 Base+C.+S.+P. w/o CS 29.444 71.3 82.0 64.4 73.4
15 Base+C.+S.+P. (Ours) 29.952 71.8 +1.1 82.4 +0.8 65.5 +2.174.2 +2.1

analysis intuitively demonstrates that the contribution of each
module is clear, and with the complementary effect of the three
modules, our full model achieves the best performance.

In addition, we modify CCIM and CSIM to vanilla channel
attention (CA) and spatial attention (SA), that is we directly
concatenate cross-scale features without adopting the unique
separation and recombination strategy. We provide two vari-
ants, named “Base+vanilla CA” and “Base+vanilla SA” in
Tab. III. Compared with CCIM and CSIM, the ability of
the vanilla CA and SA to improve performance is not as
good as theirs. Moreover, the number of parameters of our
CCIM is almost the same as the vanilla CA (i.e., 28.177M
v.s. 28.177M), and the same goes for our CSIM compared to
the vanilla SA (i.e., 28.153M v.s. 28.152M). This demonstrates
that the vanilla CA and SA are suboptimal, and the separation-
recombination strategy in CCIM and CSIM is effective and
efficient for feature interactions.

We also integrate existing state-of-the-art attention mod-
ules (such as Shuffle Weighted Spatial Attention Module
(SWSAM) [21], Rectangular Self-Calibration Attention Mod-
ule (RSCAM) [54], and Large Selective Kernel Module
(LSKM) [55]) into “Base”, providing three variations, named
“Base+SWSAM”, “Base+RSCAM”, and “Base+LSKM” in
Tab. III. These three state-of-the-art attention modules all
improve the performance of “Base”, but their improvement
is inferior to the three modules we proposed (except for
the performance of “Base+LSKM” on natural images). This
demonstrates that the three modules we proposed have advan-
tages compared to existing state-of-the-art attention modules.

3) The effectiveness of the cross-scale interaction scheme in
three modules: In our proposed CCIM, CSIM, and CPIM, the
cross-scale interaction scheme plays a crucial role in exploring
the complementary information of features at adjacent scales,
and is also one of the cores of our OCINet. Therefore, we
here assess the effectiveness of the cross-scale interaction
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scheme in our modules. We remove the cross-scale interac-
tion scheme in CCIM, CSIM, and CPIM, and perform the
vanilla channel attention, spatial attention, and self-attention
on single-scale features to achieve feature enhancement. We
provide four variants, namely “Base+C. w/o CS”, “Base+S.
w/o CS”, “Base+P. w/o CS”, and “Base+C.+S.+P. w/o CS”,
in Tab. III. Without the complementary information across
scales, the performance of all four variants degrades. This is
foreseeable. Because the interaction of features of different
granularities can explore the common regions among them,
which is better than feature enhancement under a single
granularity. The performance degradation indicates that cross-
scale interaction is effective in highlighting defect regions
and demonstrates the indispensability of this scheme in our
modules. Moreover, the cross-scale interaction scheme only
occupies 0.5M parameters in the final model, leading to a 1.1%
performance improvement in IoU on natural images, which
also demonstrates that the scheme is relatively efficient.

D. Limitation and Discussion

Our proposed OCINet achieves a relatively balanced trade-
off between performance and mode complexity. However, in
scenarios with limited hardware or handheld defect inspection
devices, the parameter count of our OCINet is still relatively
large, i.e., 29.95M, limiting its application in real-world sce-
narios. In addition, our proposed method only achieves a
segmentation performance of approximately 70% in IoU, and
there is still a lot of room for improvement.

For future work, we have two directions. First, we aim to
develop a lightweight NRSD segmentation model that balances
model parameters and performance, with the goal of achieving
better model performance with fewer parameters. Second, we
plan to make appropriate modifications to large segmentation
models, such as SAM [26] and SEEM [56], rather than
directly fine-tuning them to improve the performance of NRSD
segmentation task and break through performance bottlenecks.

V. CONCLUSION

In this paper, we propose the first transformer-based solu-
tion, termed OCINet, for NRSD segmentation. The core of
OCINet lies in the global-local-global strategy and the cross-
scale interaction scheme. These two cores are effective in
handling the unique scenes of NRSD segmentation. Following
the strategy, we adopt PVT as the global feature extractor,
CCIM and CSIM for local enhancement, and CPIM for
global enhancement in our OCINet. Following the scheme, we
sequentially perform channel, space, and pixel interactions on
features at adjacent scales in our OCINet. By integrating all
components, our OCINet consistently outperforms 19 state-
of-the-art methods on the challenging NRSD-MN dataset.
Comprehensive ablation experiments further validate the ef-
fectiveness of our modules, strategy, and scheme for NRSD
segmentation.
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