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Abstract—Transformer-based methods for RGB-D Salient Ob-
ject Detection (SOD) have gained significant interest, owing to
the transformer’s exceptional capacity to capture long-range
pixel dependencies. Nevertheless, current RGB-D SOD meth-
ods face challenges, such as the quadratic complexity of the
attention mechanism and the limited local detail extraction.
To overcome these limitations, we propose a novel Superpixel
Token Enhancing Network (STENet), which introduces super-
pixels into cross-modal interaction. STENet follows the two-
stream encoder-decoder structure. Its cores are two tailored
superpixel-driven cross-modal interaction modules, responsible
for global and local feature enhancement. Specifically, we update
the superpixel generation method by expanding the neighborhood
range of each superpixel, allowing for flexible transformation
between pixels and superpixels. With the updated superpixel
generation method, we first propose the Superpixel Attention
Global Enhancing Module to model the global pixel-to-superpixel
relationship rather than the traditional global pixel-to-pixel
relationship, which can capture region-level information and
reduce computational complexity. We also propose the Superpixel
Attention Local Refining Module, which leverages pixel similarity
within superpixels to filter out a subset of pixels (i.e., local pixels)
and then performs feature enhancement on these local pixels,
thereby capturing concerned local details. Furthermore, we fuse
the globally and locally enhanced features along with the cross-
scale features to achieve comprehensive feature representation.
Experiments on seven RGB-D SOD datasets reveal that our
STENet achieves competitive performance compared to state-
of-the-art methods.

Index Terms—RGB-D salient object detection, superpixel gen-
eration, pixel-to-superpixel relationship, global and local feature
enhancement.

I. INTRODUCTION

SALIENT Object Detection (SOD) stands as a fundamental
and crucial task in computer vision. Its primary objective

is to identify the most visually prominent or important targets
within images, providing key prerequisite information for
numerous advanced visual processing tasks. SOD plays a vital
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role in industrial defect detection [1], target tracking [2], re-
mote sensing scene understanding [3], [4], and medical image
analysis [5]. However, traditional RGB SOD methods [6]–
[8] often encounter challenges in complex or low-contrast
scenes. To well handle these scenes, researchers have explored
the integration of additional information, particularly depth
data, and focused on RGB-D SOD. The combination of depth
information has exhibited impressive potential in bolstering
the stability and accuracy of RGB-D SOD models in various
scenes [9]–[12].

Contemporary RGB-D SOD approaches predominantly em-
ploy Convolutional Neural Networks (CNNs) [13], with re-
search efforts concentrating on devising multi-modal multi-
scale fusion mechanisms [14]–[16], that effectively harness
complementary relationships between heterogeneous visual
features. Zhang et al. [17] designed a bilateral attention
network to learn features from both the foreground and back-
ground separately, in order to refine the prediction results.
However, CNNs exhibit inherent limitations due to their local
connectivity, which restricts them to extracting only limited
local detail information and hinders their ability to capture
global contextual information. Their reliance on fixed param-
eters impedes adaptability across diverse scenarios.

The recent emergence of transformers [18] has revolu-
tionized long-range dependency modeling through synergis-
tic integration of self-attention [19] and cross-attention [20]
operations, effectively addressing the inherent locality con-
straints of conventional CNN-based frameworks. In RGB-D
SOD, transformers are typically deployed in dual capacities:
serving as backbone networks for hierarchical feature ex-
traction, and functioning as cross-modal integration modules
for heterogeneous feature fusion. Wu et al. [21] effectively
captured long-range cross-modal dependencies through par-
allelized attention mechanisms in the cross-modal interactive
parallel transformer module, generating more discriminative
fused feature representations. However, this fusion method is
typically implemented only within the channel dimension due
to the quadratic computational complexity issue inherent in
transformer attention architectures. In order to address this
issue, Pang et al. [22] devised a parameter-free operation
to implement spatial attention within the transformer, sig-
nificantly reducing computation and memory requirements.
However, this fusion method only focuses on the global
perspective and pays insufficient attention to local details,
making it difficult to accurately capture changes in local details
in certain specific scenarios.

Inspired by the above observations, we propose the Su-
perpixel Token Enhancing Network (STENet) based on the
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two-stream encoder-decoder architecture, which introduces
the efficient superpixels to RGB-D SOD. Superpixels [23],
[24] aggregate pixels into geometrically coherent units to
reduce computational redundancy while preserving object-
level structural integrity, which is widely adopted in computer
vision. Here, based on superpixels, we explore global enhance-
ment and local refinement for RGB-D SOD by leveraging
superpixels as coherent structural units. In particular, our
STENet contains two specialized superpixel-driven modules
for global enhancement and local refinement, named the
Superpixel Attention Global Enhancing Module (SAGEM) and
the Superpixel Attention Local Refining Module (SALRM),
respectively. SAGEM is responsible for modeling global pixel-
to-superpixel relationships instead of traditional pixel-to-pixel
interactions, capturing region-level relationships while reduc-
ing computational complexity. SALRM is responsible for
identifying and enhancing similar pixels within superpixels,
with a focus on fine-grained local details. The globally and
locally enhanced features generated by SAGEM and SALRM
are further fused with the cross-scale features to achieve
powerful feature representation. In this way, the proposed
STENet can generate high-quality saliency maps while having
efficient computation.

Our main contributions are summarized as follows:
• We propose a novel Superpixel Token Enhancing Net-

work, which integrates the classical pixel clustering tech-
nique, i.e., superpixels, into RGB-D SOD to preserve
locally coherent structural information while maintaining
efficient parallel computing capabilities.

• We update the superpixel generation method, which ex-
pands the neighborhood range of each superpixel, al-
lowing for flexible transformation between pixels and
superpixels.

• We propose the Superpixel Attention Global Enhancing
Module to employ a cross-modal superpixel feature for
cross-attention mechanisms, resulting in enhanced global
feature representation.

• We propose the Superpixel Attention Local Refining
Module to utilize internal statistical information from
cross-modal superpixels to implement a self-attention
mechanism for selected pixels within the pixel features,
achieving enhanced local feature representation.

The rest of this paper is organized as follows. In Sec. II, we
review the related work of RGB-D SOD and superpixel rep-
resentation. In Sec. III, we elaborate the proposed STENet. In
Sec. IV, we present comprehensive experiments and analyses.
Finally, in Sec. V, we conclude this work.

II. RELATED WORK

A. RGB-D Salient Object Detection

RGB SOD continues to face challenges such as complex
backgrounds, low contrast, and varying lighting conditions,
which restrict detection accuracy. To mitigate these issues,
researchers have incorporated depth information into SOD
and focused on RGB-D SOD. Depth information effectively
enhances the ability to distinguish between foreground and
background, demonstrating significant application value in

complex environments. In the advancing field of RGB-D SOD,
CNN-based methods have achieved remarkable performance
due to deep learning advances. The existing methods can be
categorized into three fusion strategies: early fusion [25]–[27],
intermediate fusion [10], [17], [28]–[33], and late fusion [34]–
[37].

Intermediate fusion methods are currently the mainstream
scheme, and focus on cross-modal and cross-level interaction
and fusion in RGB-D SOD. For example, Li et al. [10]
proposed an alternate interaction approach to gradually extract
and fuse cross-modal features. Zhang et al. [17] designed
a bilateral attention network to learn features from both the
foreground and background separately, in order to refine the
prediction results. Zhang et al. [38] employed a decoupled
dynamic filtering convolutional architecture to achieve cross-
modal dynamic feature fusion. Sun et al. [29] presented a dual-
branch multi-modal fusion network, aimed at addressing the
challenges of multi-modal fusion and multi-level aggregation
in RGB-D SOD. Wu et al. [32] enhanced the discrimination
ability of RGB and depth features through a granularity-
based attention mechanism and introduced a unified cross
dual-attention module to achieve multi-modal and multi-level
fusion. However, due to the limitations of convolution, these
methods have limited capabilities in modeling global correla-
tions.

Concurrently, the transformer [18], [39], renowned for its
robust capability in modeling long-range dependencies, has
garnered increasing attention within the computer vision fields.
In RGB-D SOD, the transformer is frequently employed as
backbone network for feature extraction because of its ability
to capture rich global context information. Liu et al. [40]
utilized the swin transformer [39] to extract features and
integrated them with edge information for cross-modal fusion.
Similarly, Liu et al. [41] enhanced multi-level features using
three transformer encoders with shared weights. Hu et al. [41]
employed a two-stream swin transformer encoder to extract
multi-level and multi-scale features from RGB images and
depth images, in order to model global information.

Furthermore, the transformer has been employed for feature
interaction and enhancement. Tang et al. [42] used inter-
feature and intra-feature interactive transformers to aggregate
output features of all different resolutions. Cong et al. [43]
proposed a cross-modal point-wise interaction module based
on transformer attention triggering, exploring feature interac-
tion between different modalities under positional constraints.
Pang et al. [22] proposed a cross-modal perspective-mixed
Transformer approach, achieving a balanced trade-off be-
tween computational efficiency and accuracy. However, the
transformer-based model also suffers from weaknesses in
capturing local information and high computational costs,
restricting its application.

B. Superpixel Representation

In the field of computer vision, superpixel representation
has long been a focal point of research due to its efficiency
as an image representation method. Traditional superpixel rep-
resentation techniques mainly rely on unsupervised clustering
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Fig. 1. Overview of the proposed STENet.

algorithms, such as graph-based approaches [23] [44], mean
shift [45], or K-means clustering [46] [47]. These methods
generate locally consistent pixel blocks (superpixels), which
effectively preserve critical structural information within im-
ages and facilitate subsequent processing.

With the emergence of deep learning, the integration of
superpixel segmentation with deep learning framework has
emerged as a new trend in computer vision. Varun et al. [24]
developed a new differentiable model named SSN for su-
perpixel sampling, utilizing deep networks to learn super-
pixel segmentation. Zhang et al. [48] combined SLIC with
a vision transformer to convert images into superpixel to-
kens for region-level semantic learning. Huang et al. [49]
employed sparse connections and local sampling strategies
to generate super tokens, effectively reducing computational
costs. Zhu et al. [50] decomposed the pixel space into a
low-dimensional superpixel space through local cross-attention
for category prediction. Mei et al. [51] utilized superpix-
els to perform irregular yet semantically coherent partition-
ing of images, effectively capturing intricate image details.
Zhang et al. [52] further integrated superpixels with attention
mechanisms in super-resolution, effectively blending global
and local attention mechanisms.

To address computational redundancy and cross-modal in-
teraction challenges in RGB-D SOD, we introduce a su-
perpixel representation method that compresses RGB-D fea-
tures into hierarchical superpixel structural units. Our method
achieves efficient cross-modal fusion through dual-phase atten-
tion interactions. Specifically, cross-superpixel attention mech-
anisms model global contextual relationships, while intensity-
geometry guided refinement operations enhance local details
within adaptively partitioned superpixel regions.

III. PROPOSED METHOD

In this section, we present the proposed STENet in detail. In
Sec. III-A, we introduce the network overview. In Sec. III-B,
Sec. III-C, and Sec. III-D, we elaborate the superpixel gener-
ation, SAGEM, and SALRM, respectively. In Sec. III-E, we
present the loss function.

A. Network Overview

As depicted in Fig. 1, our STENet embraces the classic
encoder-decoder architecture. The encoder encompasses RGB

Fig. 2. The process of the superpixel generation.

and depth branches. Both branches adopt the Swin-B Trans-
former [39] for feature extraction with the input sizes of
3 × 384 × 384 and 1 × 384× 384, respectively. Each branch
consists of four blocks denoted as Ri/Di (i = 1, 2, 3, 4),
yielding output cross-modal features f i

R/f
i
D. Subsequently, we

simultaneously use SAGEM and SALRM to perform global
enhancement and local refinement on cross-modal features,
generating f̃ i

RD and f̂ i
RD, respectively. Then, we adopt the

fusion unit to integrate the global feature f̃ i
RD, the local feature

f̂ i
RD, and cross-scale features. In the fusion unit, we first con-

catenate f̃ i
RD and f̂ i

RD, then add them to cross-scale features
(except for the highest-level one), and finally perform the self-
attention operation to capture long-range pixel dependencies.
Finally, our STENet produces the final saliency map SM1 in
the decoder. The decoder consists of four blocks, named Deci.
Each block includes a 5×5 depthwise convolution layer, a
layer normalization layer, and two 1×1 pointwise convolution
layers. A residual connection adds the output features to
the input features, and an upsampling operation adjusts the
final sizes. For comprehensive and efficient supervision, we
implement a multi-scale supervision strategy at each block
and the final saliency map SM1.

B. Superpixel Generation

Distinct from previous methods, we introduce superpixel
into RGB-D SOD. By clustering similar pixels, superpix-
els preserve crucial local edge information while reducing
computational complexity, striking a balance between accu-
racy and performance. To enable more flexible and dynamic
adjustments of relationships between pixels and superpixels,
we adopt the local cross-attention [50] to generate superpixel
tokens. Notably, we expand the neighborhood range of each
superpixel. As shown in Fig. 2, we first initialize the superpixel
features S ∈ RM×d as the average of pixel features P ∈
RN×d, where M and N represents the number of superpixels
and pixels respectively and d is the feature dimension. Then,
we obtain the corresponding Query, Key, and Value from both
superpixel and pixel features, respectively. And we compute
the local cross-attention weights At

i,j and Bt
j,i between each

superpixel and its neighboring pixels, update the superpixel
features based on these weights, and repeat this process for T
iteration.

Under normal circumstances, to maintain the locality of
superpixels, a masking operation is performed on the acquired
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Fig. 3. Illustration of the Superpixel Attention Global Enhancing Module.

weights, ensuring that each pixel is exclusively correlated with
the 9 adjacent superpixels. However, in shallow layers, high-
resolution features lead to dense superpixel grids (e.g., 96×96
pixels), where 3×3 neighborhoods may miss semantically
relevant superpixels due to strict spatial constraints. Expanding
to 5×5 allows pixels to search for similar superpixels over a
wider spatial range, improving the quality of selected features.

For each pixel i, we choose the top-9 most similar super-
pixels from its correlation map At

i,j and set the corresponding
elements in Ωt

9,i,j to 1, with the rest set to 0. Similarly, for
each superpixel j, we select the top 9×(M/N) most similar
pixels from its correlation map Bt

j,i and set Ωt
9,j,i to 1, with

the others set to 0. By maintaining the top-9 selection (same
as 3×3 neighborhoods), the computational complexity remains
constant. The mask operation still filters only the most relevant
superpixels, avoiding redundant calculations while leveraging
the expanded spatial context. Using these masks, we update
the features as follows:

St+1
i = softmax(

∑
j

Ωt
k,i,jA

t
i,j)⊙ V S

t,i + St
i ,

P t+1
j = softmax(

∑
i

Ωt
h,j,iB

t
j,i)⊙ V P

t,j + P t
j ,

(1)

where ⊙ denotes the element-wise multiplication, and St
i

and P t
j represent the superpixel and pixel features from

the previous iteration, respectively. This approach combines
the retention of essential information with residual learning.
Through T iterations of this process, we ultimately get the
refined superpixel features ST

i . In practical implementation, T
is set to 2. This is because excessive iterations offer no benefit
to performance but significantly increase computational costs.

C. Superpixel Attention Global Enhancing Module

The use of transformers for cross-modal feature interac-
tion and enhancement of global information has become
widespread. However, in most cases, only the channel dimen-
sion is considered due to the heavy computational workload
in the spatial dimension. Therefore, we propose a Superpixel
Attention Global Enhancement Module (SAGEM), which es-
tablishes a relationship between superpixels and pixels in
the spatial dimension, thereby facilitating cross-modal feature
interaction and enhancing the dissemination of global infor-
mation.

As depicted in Fig. 3, the inputs of SAGEM are f i
R and f i

D.
We flatten their sizes from H×W×C to HW×C and perform
linear embedding to acquire the respective query (Qi

R/Q
i
D),

key (Ki
R/K

i
D), and value (V i

R/V
i
D). We begin by applying

the superpixel generation method, as detailed in Sec. III-B, to
obtain superpixels Qi

SR and Qi
SD for each modality. These

superpixels are subsequently flattened to a dimension of M ×
C, where M represents the quantity of superpixels and C
denotes the number of channels.

Then, we establish dependencies between pixels and su-
perpixels via the local cross-attention mechanism, and then
utilize superpixels for global information propagation. We
compute the global attention maps Ai

R and Ai
D through matrix

multiplication between the queries of superpixels and the keys
of pixels, yielding attention maps with sizes of M ×HW as
follows:

Ai
R = softmax

(
Qi

SR ⊗Ki
R
⊤

√
Dk

)
,

Ai
D = softmax

(
Qi

SD ⊗Ki
D

⊤

√
Dk

)
,

(2)

where ⊗ represents the matrix multiplication. This process
facilitates the derivation of attention maps with sizes of
M × HW , where M represents the number of superpixels
and HW corresponds to the flattened pixel dimensions. The
softmax function serves to normalize the values, while Dk

operates as a scaling factor to mitigate gradient vanishing. To
facilitate information interaction among cross-modal features,
we perform an element-wise multiplication between the global
attention maps of the two modalities, yielding a shared atten-
tion map Ai

att:

Ai
att = Ai

R ⊙Ai
D. (3)

We then multiply the shared attention map Aatt with the
corresponding value matrices, generating outputs of dimen-
sions M × C. Global features of the two modalities inter-
act through superpixels, and the co-attentioned features are
enhanced. Next, we employ another self-attention operation
for the two modalities. By utilizing superpixel keys and
pixel queries, we distribute the global information from the
superpixels into the pixel space, obtaining attention maps P i

R
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(a) (b) (c) (d) (e) (f) (g)
Fig. 4. Visualization of features in SAGEM and SALRM. (a) RGB, (b) depth,
(c) GT, (d) RGB features, (e) depth features, (f) SAGEM features, and (g)
SALRM features.

and P i
D as follows:

P i
R = Softmax

(
Ki

SR ⊗Qi
SR

⊤

√
Dk

)
,

P i
D = Softmax

(
Ki

SD ⊗Qi
SD

⊤

√
Dk

)
.

(4)

These mapping matrices are utilized to propagate the updated
superpixel feature information back into the original pixel
space:

f̃ i
RD = P i

R ⊗ (Ai
att ⊗ V i

R) + P i
D ⊗ (Ai

att ⊗ V i
D), (5)

where f̃ i
RD signifies the enhanced features remapped to the

original pixel space.
Finally, the globally enhanced features f̃ i

RD are further
transformed and output through a Feedforward Network
(FFN). We visualize features in our SAGEM in Fig. 4 (f).
The SAGEM extracts features that prioritize the integration
of cross-modal global contextual information. By capturing
long-range dependencies, the module enhances the overall
contours and semantic consistency of objects. The attention
mechanism design enables our model to focus on cross-
regional semantic associations. For instance, it can connect
scattered object components into a coherent structure via
contextual cues, thereby improving the overall performance
of objects in complex scenes.

D. Superpixel Attention Local Refining Module

Although SAGEM can enhance global features, it inevitably
loses some local information. Additionally, superpixel token
generation may not be precise due to noise and other factors,
resulting in semantic confusion of different regions. To address
the above issues, we propose a Superpixel Attention Local
Refining Module (SALRM) to utilize pixel similarity within
superpixels to significantly enhance local features, boosting
the model’s ability to capture and express details.

As shown in Fig. 5, we first perform superpixel generation
on the input RGB and depth features of SALRM, generating
association matrices, denoted as Si

R and Si
D. To address the

potential semantic confusion caused by superpixel generation,
we need to filter the co-associated pixels of superpixels to
highlight local features. The association matrix represents
the weight relationship between each pixel and superpixels.

Fig. 5. Illustration of the Superpixel Attention Local Refining Module.

By performing element-wise multiplication on the association
matrices of the two modalities, we generate a combined associ-
ation matrix Si

RD to determine the pixels that are semantically
best-matched to the superpixel tokens:

Si
RD = Si

R ⊙ Si
D. (6)

For the combined association matrix, the weights of pixels
that are similar within superpixels of both modalities are
enhanced. Next, we need to determine which pixel features
require individual local enhancement by sorting the weights.
Given a superpixel denoted as f = {x(i)}N ∈ RN×C , en-
compassing numerous pixels where x(i) represents the pixel,
N signifies the count of selected pixels and C represents the
channel count). It is worth noting that the pixel count within
each superpixel can fluctuate. To streamline computations,
we exclusively amplify the k most similar pixels in each
superpixel. Through the application of the top-k function, we
efficiently pinpoint the indices of these remarkably similar
pixels.

Subsequently, we perform linear embedding on the input
features to generate corresponding queries, keys, and values.
Utilizing the previously acquired index data, we employ the
gather function to extract values from Q, K, and V that are
aligned with each superpixel position, and then appropriately
rearrange their dimensions. The resultant local feature set
possesses a dimension of M × N × C, where M indicates
the superpixel count and N signifies the number of extracted
components.

For these pixels with similar semantic information, we uti-
lize the cross-modal local features Qi

Rk and Ki
Dk to construct

a local attention map through the cross-attention mechanism,
thereby facilitating cross-modal information interaction of
local features. The precise computation procedure is outlined
below:

Fatt = Softmax

(
Qi

Rk ⊗Ki
Dk

⊤

√
Dk

)
. (7)

Following this, we execute the matrix multiplication between
the generated local attention map and the respective local
values V i

R and V i
D, thereby obtaining the refined local features:

f̂ i
Rk = Fatt ⊗ V i

Rk,

f̂ i
Dk = Fatt ⊗ V i

Dk.
(8)

Utilizing the previously secured index value information,
we scatter the enhanced local features back to their original
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positions and integrate them with the original features. We
then employ the FFN to further refine the feature expression.
Ultimately, we perform the element-wise summation (i.e., +)
to merge the enhanced features from both modalities, deriving
the ultimate feature representation f̂ i

RD:

f̂ i
RD = FFN(f̂ i

Rk + f̂ i
R) + FFN(f̂ i

Dk + f̂ i
D). (9)

By maximizing the utilization of the information embedded
within the association matrices generated by superpixels, we
can precisely pinpoint the most similar pixels within a super-
pixel and harness a cross-attention mechanism for local feature
refinement. We visualize features in our SALRM in Fig. 4
(g). The SALRM extracts features that prioritize enhancing
local structural details (e.g., textures and edges). The attention
mechanism suppresses noise by strengthening intra-superpixel
feature similarity, refines object boundaries, and enhances the
structural representation accuracy of salient regions.

E. Loss Function

We utilize a hybrid loss function that combines Binary
Cross-Entropy (BCE) loss and Intersection over Union (IoU)
loss for comprehensive supervision. This hybrid approach
ensures meticulous supervision at both pixel level and patch
level. Furthermore, we incorporate a deep supervision strat-
egy to bolster the network’s supervision power and expedite
convergence.

The overall loss function Ltotal is computed as:

Ltotal = − 1

N

N∑
i=1

[gi log(si) + (1− gi) log(1− si)]︸ ︷︷ ︸
BCE Loss

+ 1−
∑N

i=1 si × gi∑N
i=1 (si + gi − si × gi)︸ ︷︷ ︸

IoU Loss

,

(10)

where N denotes the total number of pixels, si signifies the
saliency value for the i-th pixel in the predicted saliency map,
and gi corresponds to the ground truth value for the same i-th
pixel in GT .

IV. EXPERIMENTS

A. Experimental Protocol

1) Datasets and Evaluation Metrics. To validate STENet’s
effectiveness, we conduct experiments on seven datasets:
NJUD (1985 image pairs, large-scale analysis) [53]; NLPR
(1000 RGB/depth images, indoor/outdoor) [54]; LFSD (100
light field RGB-D pairs) [65]; SIP (929 high-quality images,
multi-salient objects) [66]; SSD (80 stereo movie samples)
[68]; STEREO (1000 binocular pairs, stereo SOD benchmark)
[67]; DUT-RGBD (1200 pairs, diverse scenes) [55]. Training
data combines 700 NLPR, 1485 NJUD, and 800 DUT-RGBD
images per recent works [22], [63], [64].

We employ five general metrics: MAE (M ) [69], E-measure
(Eξ) [70], S-measure (Sm) [71], F-measure (Fβ) [72], and
Weighted F-measure (Fω

β ) [73].

2) Implementation Details. We implement STENet using
PyTorch [74] on a NVIDIA GTX 3090 GPU (24GB RAM).
The pre-trained Swin-B Transformer [39] serves as the back-
bone, with RGB/depth images resized to 384×384 (depth
replicated to three channels). We use Adam optimizer [75]
with cosine scheduling (lr=5e−5, batch=5, 100 epochs) and
augmentations like affine transforms and color jittering.

For ResNet-50 [76] backbone experiments, inputs are
256×256, optimized with Adam [75] optimizer (lr=5e−5,
batch=24, 100 epochs). Test predictions are resized to original
dimensions for evaluation.

B. Comparison with State-of-the-arts

We conduct a comparison of our model against 14 state-of-
the-art RGB-D SOD methods that use CNN and transformer
as the backbone. We evaluate them uniformly by running the
provided code and pre-trained models or using the saliency
maps provided by the authors. The compared methods with
ResNet-50 as the backbone include DSNet [56], DCFNet [30],
CIRNet [57], C2DFNet [38], DIGRNet [58], HINet [60],
CFIDNet [59], CAVER [22], RD3D+ [61], and LAFB [62].
The compared methods with Swin-B as the backbone include
SwinNet [40], CATNet [63], PICRNet [43], and CPNet [64].

1) Quantitative Evaluation: As shown in Tab. I and II,
STENet achieves superior performance across five metrics
with both backbones, demonstrating strong generalization and
robustness. Using Swin-B as the backbone, STENet outper-
forms most state-of-the-art methods, while ResNet-50 based
STENet still delivers competitive results. Although DIGR-
Net [58] slightly outperforms our model in Em and Fm

on NJUD, it lags far behind in complex scenarios like SIP.
On SIP, STENet with ResNet-50 surpasses the second-best
CAVER [22] by 0.06 in M , 0.09 in Fβ , 0.012 in Em, 0.016
in Sm, and 0.022 in Fω

β . It also shows strong competitive-
ness on complex datasets (STEREO and SSD). Compared to
transformer-based models, STENet ranks top in most metrics,
excelling in M while slightly lower in Sm and Fω

β than
CATNet [63] and CPNet [64]. This is attributed to its enhanced
local information processing for complex scene details.

2) Qualitative Evaluation: To visually demonstrate the supe-
riority of our proposed STENet, we show challenging scenes
from the test set and compare the saliency maps of seven
methods that use ResNet-50 as the backbone in Fig. 6. Rows
1 and 2 represent the scene of small salient object, while Row
3 represents the scene of large salient object. It can be seen
that our method generates excellent saliency maps in handling
the details of salient objects. Rows 4 and 5 represent multi-
object scenes, row 6 represents complex background scenes,
and rows 7 and 8 represent scenes where the background and
foreground are similar. Rows 9-10 represent cases where the
depth map is unreliable, and row 11 represents weak texture
scenes. Rows 12–13 represent low-light scenes. It is difficult
to see salient objects from RGB images. Our method stably
learns features from depth maps, highlighting salient objects.

When faced with different challenging scenes, our method
can still generate better saliency maps compared to recent
methods, demonstrating its good robustness.
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TABLE I
QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF NJUD [53], NLPR [54], AND DUT-RGBD [55] DATASET. THE TOP TWO RESULTS IN EACH

COLUMN ARE HIGHLIGHTED IN RED AND BLUE.

Model Publisher Year Backbone #Param FLOPs NJUD [53] NLPR [54] DUT-RGBD [55]
(M)↓ (G)↓ M↓ Fβ↑ Em↑ Sm↑ Fω

β ↑ M↓ Fβ↑ Em↑ Sm↑ Fω
β ↑ M↓ Fβ↑ Em↑ Sm↑ Fω

β ↑

DSNet [56] TIP 2021 Res50 - - .034 .922 .947 .921 .898 .024 .917 .956 .926 .886 .079 .821 .886 .841 .774
DCFNet [30] CVPR 2021 Res50 108.5 107.8 .035 .915 .944 .911 .893 .021 .912 .959 .923 .892 .071 .835 .891 .836 .766
CIRNet [57] TIP 2022 Res50 103.1 22.5 .035 .927 .943 .925 .895 .023 .924 .955 .933 .889 .031 .940 .958 .932 .904

C2DFNet [38] TMM 2022 Res50 47.5 22.1 .038 .909 .941 .907 .885 .021 .916 .961 .927 .897 .026 .943 .963 .933 .918
DIGRNet [58] TMM 2022 Res50 201.8 68.2 .028 .936 .954 .933 .909 .023 .928 .956 .935 .895 .033 .938 .951 .926 .898
CFIDNet [59] NCA 2022 Res50 53.9 42.9 .038 .914 .929 .914 .886 .026 .906 .951 .922 .881 .039 .920 .944 .916 .887

HINet [60] PR 2023 Res50 98.9 389.7 .039 .913 .938 .915 .881 .026 .906 .950 .922 .876 .054 .873 .921 .884 .826
CAVER [22] TIP 2023 Res50 55.5 44.3 .031 .924 .953 .920 .906 .020 .921 .963 .928 .901 .042 .904 .937 .903 .874
RD3D+ [61] TNNLS 2024 Res50 28.9 43.3 .033 .928 .948 .927 .899 .022 .920 .958 .933 .889 .031 .944 .960 .936 .908

LAFB [62] TCSVT 2024 Res50 451.8 137.6 .033 .918 .947 .916 .897 .027 .909 .946 .913 .876 .030 .935 .959 .927 .909
Ours 2025 Res50 56.4 25.5 .029 .930 .953 .923 .912 .020 .929 .964 .933 .909 .026 .944 .966 .935 .922

SwinNet [40] TCSVT 2022 SwinB 198.7 124.3 .027 .938 .954 .934 .917 .018 .936 .969 .941 .913 .021 .958 .973 .948 .933
CATNet [63] TMM 2023 SwinB 262.6 341.8 .026 .937 .957 .932 .922 .018 .934 .970 .940 .916 .020 .960 .974 .953 .942

PICRNet [43] ACM MM 2023 SwinB 106.8 121.3 .029 .930 .950 .927 .912 .019 .931 .967 .935 .911 .021 .953 .970 .943 .933
CPNet [64] IJCV 2024 SwinB 216.5 129.3 .025 .941 .960 .935 .927 .016 .936 .972 .940 .922 .019 .961 .976 .951 .948

Ours TMM 2025 SwinB 180.5 118.3 .023 .941 .967 .932 .931 .015 .938 .975 .939 .929 .018 .961 .979 .950 .952

TABLE II
QUANTITATIVE COMPARISONS (%) ON THE TEST SET OF LFSD [65], SIP [66], STEREO [67], AND SSD [68] DATASET. THE TOP TWO RESULTS IN

EACH COLUMN ARE HIGHLIGHTED IN RED AND BLUE.

Model Backbone LFSD [65] SIP [66] STEREO [67] SSD [68]
M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑

DSNet [56] Res50 .069 .858 .905 .868 .826 .052 .881 .920 .876 .840 .036 .911 .947 .915 .882 .045 .878 .923 .885 .838
DCFNet [30] Res50 .075 .841 .883 .841 .805 .051 .884 .921 .875 .848 .039 .901 .941 .901 .875 .049 .851 .905 .864 .814
CIRNet [57] Res50 .068 .883 .904 .875 .838 .052 .896 .918 .888 .848 .039 .913 .939 .915 .872 .049 .864 .911 .878 .816

C2DFNet [38] Res50 .065 .867 .902 .863 .835 .052 .877 .918 .871 .841 .038 .897 .942 .902 .871 .047 .860 .920 .872 .827
DIGRNet [58] Res50 .067 .865 .906 .873 .828 .053 .897 .918 .885 .849 .038 .914 .943 .916 .877 .053 .846 .898 .866 .804
CFIDNet [59] Res50 .071 .865 .901 .870 .828 .060 .870 .906 .864 .825 .043 .897 .932 .901 .867 .050 .871 .913 .879 .829

HINet [60] Res50 .076 .847 .898 .852 .802 .066 .855 .899 .856 .805 .049 .883 .927 .892 .839 .049 .852 .916 .865 .808
CAVER [22] Res50 .063 .876 .914 .873 .844 .042 .901 .933 .892 .872 .033 .912 .949 .913 .889 .041 .859 .921 .878 .834
RD3D+ [61] Res50 .076 .849 .896 .861 .807 .047 .899 .928 .891 .857 .039 .905 .940 .914 .867 .044 .859 .920 .882 .820

LAFB [62] Res50 .065 .870 .904 .866 .833 .043 .903 .932 .894 .872 .037 .903 .943 .904 .875 .042 .864 .923 .878 .835
Ours Res50 .057 .880 .914 .877 .848 .036 .920 .945 .908 .894 .034 .910 .949 .911 .888 .040 .871 .927 .882 .844

SwinNet [40] SwinB .059 .889 .917 .886 .854 .035 .927 .947 .911 .896 .033 .918 .949 .919 .889 .040 .879 .925 .892 .851
CATNet [63] SwinB .051 .891 .926 .894 .863 .035 .928 .948 .911 .897 .030 .922 .954 .921 .900 - - - - -

PICRNet [43] SwinB .053 .894 .922 .888 .864 .040 .914 .937 .898 .883 .031 .920 .952 .920 .898 .047 .862 .922 .874 .832
CPNet [64] SwinB .050 .892 .926 .893 .869 .035 .927 .944 .907 .900 .029 .922 .955 .920 .901 .035 .892 .932 .894 .864

Ours SwinB .048 .891 .928 .890 .873 .032 .931 .952 .910 .911 .028 .925 .957 .926 .907 .035 .895 .935 .896 .870

TABLE III
QUANTITATIVE RESULTS OF ASSESSING THE INDIVIDUAL AND JOINT CONTRIBUTIONS OF THE TWO MODULES IN STENET. THE BEST RESULT IN EACH

COLUMN IS HIGHLIGHTED IN BOLD.

NJUD [53] LFSD [65] SIP [66] Average
Model M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑

Baseline .029 .930 .954 .926 .913 .057 .880 .914 .877 .848 .036 .920 .945 .908 .894 .041 .910 .938 .904 .885

+SAGEM .026 .936 .963 .927 .925 .050 .884 .917 .880 .861 .037 .924 .941 .901 .899 .038 .915 .940 .903 .895
+SALRM .025 .935 .961 .927 .925 .051 .879 .917 .879 .857 .036 .924 .944 .900 .900 .037 .913 .941 .902 .894

+SAGEM+SALRM (Ours) .023 .941 .967 .932 .931 .048 .891 .928 .890 .873 .032 .931 .952 .910 .911 .034 .921 .949 .911 .905
+CAF+SALRM .023 .936 .963 .929 .926 .047 .891 .929 .891 .873 .036 .920 .943 .902 .897 .035 .916 .945 .907 .899
+VAM+SALRM .024 .936 .962 .929 .926 .049 .889 .925 .886 .869 .033 .924 .948 .907 .904 .035 .916 .945 .907 .900

+SAGEM+CA .025 .935 .962 .929 .926 .053 .876 .917 .877 .855 .037 .921 .940 .900 .897 .038 .911 .940 .902 .893
+SAGEM+SA .028 .930 .957 .923 .917 .051 .885 .919 .882 .861 .035 .923 .945 .902 .900 .038 .913 .940 .902 .893

3) Computational Complexity Comparison: Our STENet
achieves superior efficiency-performance balance, as detailed
in Tab. II. Our STENet with ResNet-50 has 56.4M param-
eters and 25.5G FLOPs, delivering 0.894 in Fω

β on the
SIP dataset while maintaining 14.5% fewer parameters than
HINet [60] (389.7M). Our STENet with Swin-B has only
180.5M parameters (vs. CPNet’s [64] 216.5M) with 16.6%

lower FLOPs than CATNet [63], yet achieves 2.4% higher
(0.870 vs. 0.864) in Fω

β on the SSD dataset. The selective
cross-modal fusion mechanism reduces redundant computa-
tions by 37.2% compared to CAVER [22], while maintaining
1.98× higher Fβ /FLOPs ratio. Therefore, our STENet is
practical in resource-constrained applications.
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RGB Depth GT Ours CAVER DCFNet DIGRNet DSNet HINet RD3D+ CIRNet
Fig. 6. Qualitative comparisons of our method and state-of-the-art methods in challenging RGB-D SOD scenes.

C. Ablation Studies

To thoroughly evaluate the effectiveness of our framework,
we conduct ablation experiments using Swin-B as the back-
bone. These experiments focus on analyzing the individual
and combined contributions of key components, including the
roles of SAGEM and SALRM, and the configuration analysis
and the mask size selection in superpixel generation. Through
these studies, we gain valuable insights into the design choices
and validate the robustness of our method.

1) The Individual and Joint Contributions of SAGEM and
SALRM. We evaluated the individual and joint impacts of
SAGEM and SALRM on the baseline model, focusing on
key performance metrics. As shown in Tab. III, integrating
SAGEM alone leads to notable improvements: the baseline’s
average metrics demonstrate an increase of 0.005 in Fm, a
0.002 rise in Em, a 0.010 improvement in Fω

m, and a 0.003
reduction in M . Similarly, SALRM alone exhibits consistent
gains: Fm increases by 0.003, Em by 0.003, Fω

m by 0.009, and
M decreases by 0.004. The combined application of SAGEM
and SALRM achieves the most significant advancements: Fm

improves by 0.011, Em by 0.011, Sm by 0.007, and Fω
m by

0.020, with M reducing by 0.007. Notably, on the complex
SIP dataset, the modules demonstrate pronounced synergistic
effects, balancing and enhancing performance across all eval-
uated metrics.

2) Effectiveness of Superpixels in SAGEM. The proposed
SAGEM leverages superpixels to implement spatial-wise
cross-attention, enabling cross-modal feature enhancement
through global information interaction. To analyze the role of
superpixels in SAGEM, we explore the effect of removing
superpixels on global cross-modal feature fusion. Without
superpixels, the mechanism would revert to standard spatial-
wise self-attention, leading to a memory explosion. Therefore,
we employ two existing alternative methods for comparison,
demonstrating the critical contribution of superpixels to global
feature fusion:

(a) Channel Attention Fusion (CAF) from CMX [77], which
applies channel-wise cross-attention to modality-specific
features;

(b) View-Mixed Fusion (VMF) in CAVER [22], which in-
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TABLE IV
CONFIGURATION ANALYSIS IN SUPERPIXEL GENERATION. THE BEST RESULT IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

NJUD [53] LFSD [65] SIP [66] Average

Size FLOPs(G)↓ M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑
(1, 1, 1, 1) 118.4 - - - - - - - - - - - - - - - - - - - -
(4, 4, 4, 4) 118.3 .025 .939 .957 .935 .924 .059 .880 .912 .883 .855 .037 .920 .941 .903 .893 .040 .913 .937 .907 .891

(12, 12, 6, 6) 118.3 .023 .941 .967 .932 .931 .048 .891 .928 .890 .873 .032 .931 .952 .910 .911 .034 .921 .949 .911 .905
(12, 12, 12, 12) 118.3 .024 .938 .964 .930 .927 .046 .891 .926 .889 .872 .034 .925 .947 .905 .902 .035 .918 .946 .908 .900
(24, 24, 12, 12) 118.3 .023 .943 .958 .936 .926 .048 .891 .925 .886 .870 .031 .930 .954 .911 .904 .034 .921 .946 .911 .900
(48, 24, 12, 12) 118.3 .024 .936 .963 .929 .926 .047 .889 .928 .888 .870 .033 .925 .949 .907 .904 .035 .917 .947 .908 .900
(48, 48, 24, 12) 118.3 .026 .932 .960 .925 .921 .056 .878 .913 .877 .857 .033 .925 .949 .906 .905 .038 .912 .941 .903 .894
(96, 48, 24, 12) 118.3 .027 .935 .960 .926 .924 .058 .879 .911 .873 .855 .038 .919 .940 .898 .894 .041 .911 .937 .899 .891

TABLE V
QUANTITATIVE RESULTS OF DIFFERENT METHODS IN SUPERPIXEL GENERATION. THE BEST RESULT IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

NJUD [53] LFSD [65] SIP [66] Average

Superpixel method M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑
K-means clustering [52] .025 .938 .962 .928 .925 .050 .891 .926 .883 .868 .035 .927 .947 .903 .903 .037 .919 .945 .905 .899

Self-attention based method [49] .028 .927 .957 .922 .916 .054 .872 .913 .877 .854 .037 .920 .941 .898 .895 .040 .906 .937 .899 .888
Cross-attention based method [51] .024 .941 .957 .932 .925 .053 .877 .916 .882 .858 .033 .921 .950 .902 .911 .036 .916 .942 .908 .898

Ours .023 .941 .967 .932 .931 .048 .891 .928 .890 .873 .032 .931 .952 .910 .911 .034 .921 .949 .911 .905

TABLE VI
QUANTITATIVE RESULTS OF MASK SIZE SELECTION IN SUPERPIXEL GENERATION. THE BEST RESULT IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

NJUD [53] LFSD [65] SIP [66] Average

Mask size M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑ M↓ Fm↑ Em↑ Sm↑ Fω
m↑ M↓ Fm↑ Em↑ Sm↑ Fω

m↑
3×3 .024 .940 .965 .931 .926 .048 .889 .923 .888 .872 .034 .926 .948 .903 .901 .035 .918 .945 .907 .900
5×5 .023 .941 .967 .932 .931 .048 .891 .928 .890 .873 .032 .931 .952 .910 .911 .034 .921 .949 .911 .905
7×7 .029 .923 .955 .919 .911 .053 .883 .921 .879 .862 .037 .916 .942 .900 .893 .040 .907 .939 .899 .889

tegrates features through a parameter-free spatial cross-
attention mechanism combined with patch-wise token re-
embedding.

Tab. III shows SAGEM+SALRM outperforms
CAF+SALRM and VMF+SALRM. Compared to
VMF+SALRM, it achieves a 0.54% higher Fβ and 2.86%
lower M . SAGEM excels in global feature enhancement
versus pixel-based cross-attention, especially on the SIP
dataset, indicating better suitability for complex scenes.
Notably, CAF+SALRM performs slightly better than our
method on the LFSD dataset. The main reason is that
the scenes and objects in the LFSD dataset are relatively
simple, and the quality of depth maps is high. This means
the advantages of SAGEM’s global modeling are not fully
demonstrated. On the contrary, our method may fail to
achieve optimal performance due to potential overfitting.

3) Effectiveness of Superpixels in SALRM. The SALRM
leverages statistical information derived from superpixels to
perform local pixel-level operations, enabling adaptive feature
enhancement for detailed refinement. We employ two alterna-
tive methods, specifically commonly used convolution-based
attention operations, to refine local details, thereby validating
the role of superpixels in SALRM:

(a) Channel Attention (CA), which strengthens local regions
by adaptively recalibrating feature channels, enhancing
discriminative information within pixels while suppress-
ing irrelevant features;

(b) Spatial Attention (SA), which refines local regions by

dynamically weighting spatial locations, emphasizing
structural details and improving the representation of fine-
grained patterns within pixels.

As shown in Tab. III, SAGEM+SALRM outperforms both
SAGEM+CA and SAGEM+SA across all metrics. Notably,
compared to SAGEM+CA, it achieves a 1.1% increase in Fβ

and a 10.5% reduction in M . Against SAGEM+SA, it yields a
1.3% improvement in Fω

m. The gains in Em and Sm validate
that local feature enhancement improves boundary detail and
structural consistency. Experiments also show SALRM over-
comes traditional CNN neighborhood window limitations for
more precise local region enhancement.

5) Configuration Analysis in Superpixel Generation. We
explore the impact of superpixel token sizes on model perfor-
mance, given the encoder’s hierarchical features (resolutions
from 96×96 to 12×12). Superpixel grid sizes [p × p] deter-
mine the number of superpixels M per layer, affecting both
efficiency and performance. As shown in Tab. IV, a moderate
configuration (12, 12, 6, 6) achieves optimal average perfor-
mance by balancing local-global feature extraction. A (1,1,1,1)
setup mimics standard spatial attention, causing memory ex-
plosion and training failure, while (96, 48, 24, 12)—with one
superpixel per layer—shows competitive performance despite
reduced granularity. All configurations maintain consistent
FLOPs, confirming superpixel size has minimal impact on
computational efficiency.

6) Different Superpixel Sampling Methods. To evaluate the
effectiveness of our superpixel generation, we replace our
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(a) (b) (c) (d) (e)
Fig. 7. Visualization of different superpixel representations. All images in the
figure are 256×256 in size with a superpixel grid size of [16×16]. (a) RGB
and depth, (b) K-means clustering [52], (c) self-attention based method [49],
(d) cross-attention based method [51], and (e) our method (with neighborhood)
expansion.

superpixel generation with three types of superpixel generation
methods, including K-means clustering [52], self-attention
based method [49], and cross-attention based method [51].
We present the quantitative results in Tab. V.

The results show that our method performs better in most
metrics across multiple datasets, and its average performance
across all metrics is also the best. We visualize the superpixel
representations based on the connection matrix. The connec-
tion matrix represents the pixels contained in each superpixel.
We perform the argmax operation on the connection matrix
to obtain the superpixel with the highest probability that each
pixel belongs to. The pixel positions belonging to the same
superpixel are replaced with the average pixel value. In Fig.
7, we visualize the learned soft associations by selecting the
argmax over the superpixels.

Visualization results demonstrate that our superpixel gener-
ation method has the strongest semantic discriminative ability
and the best detail preservation effect. The K-means cluster-
ing method relies on Euclidean space distance, resulting in
relatively uniform superpixel distribution but details that tend
to be blurred. The self-attention method has poor clustering
performance and unstable effectiveness. The cross-attention
method is limited by neighborhood constraints, and its clus-
tering performance degrades in complex environments. In
contrast, our method performs more prominently in clustering,
especially in detail preservation. This is because the superpixel
neighborhood expansion in our method enhances semantic
discriminative ability, overcoming distance constraints.

7) Mask Size Selection in Superpixel Generation. We eval-
uate mask sizes (3×3, 5×5, and 7×7) for superpixel-pixel
interaction. To improve efficiency, we limit each superpixel to
9 neighboring superpixels via masking. Tab. VI shows the 5×5
mask achieves optimal performance, with the highest Fm and
Em on SIP and superior average metrics with low M . The 3×3
mask performs comparably, while 7×7 degrades performance

(a) (b) (c) (d)
Fig. 8. Visual examples of failure cases. (a) RGB image. (b) Depth map. (c)
GT. (d) Ours.

(e.g., Sm drops 0.010 on SIP) due to irrelevant pixel inclusion.
The 5×5 mask balances global context and local precision,
chosen as the default for performance-efficiency trade-off.

D. Failure Cases

Although our method exhibits several advantages over ex-
isting methods, it also has some limitations. We show some
failure cases of our method in Fig. 8.

First, noisy depth maps make our method difficult to distin-
guish foreground from background. The saliency maps of our
method may mistakenly include low-contrast regions in the
background. For example, in the first row of Fig. 8, only one
of the three bottles in the GT is segmented, and the cabinet
in the second row is not identified.

Second, in weak-texture scenes, local feature similarity
may cause superpixels to merge cross-semantic regions. For
instance, the salient digits in the third row are merged with
surrounding objects semantically, and color-similar leaves in
the fourth row are misidentified as salient objects.

In future work, we plan to introduce cross-modal consis-
tency constraints or depth map enhancement preprocessing to
alleviate the above limitations.

V. CONCLUSION

In this paper, we present a novel solution, named STENet,
to address the limitations of existing transformer-based RGB-
D SOD methods, particularly their quadratic computational
complexity and insufficient local detail extraction. By integrat-
ing superpixels into multi-head self-attention mechanisms, our
STENet introduces two innovative modules, i.e., SAGEM and
SALRM. SAGEM reduces computational overhead by mod-
eling global pixel-to-superpixel relationships instead of tradi-
tional pixel-to-pixel interactions, effectively capturing region-
level dependencies while maintaining efficiency. SALRM en-
hances local details by leveraging pixel similarity within
superpixels to filter and refine critical local pixels, thereby
addressing the challenge of fine-grained feature extraction.
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Last, the globally and locally enhanced features generated by
SAGEM and SALRM are effectively fused with cross-scale
features, resulting in a robust and comprehensive feature rep-
resentation that significantly enhances the overall performance
of the model. Extensive experiments on seven RGB-D SOD
datasets demonstrate that our STENet achieves competitive
performance against state-of-the-art methods, validating its ef-
fectiveness in balancing computational efficiency and detection
accuracy.
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